Newspace parameters
Level: | \( N \) | \(=\) | \( 755 = 5 \cdot 151 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 755.s (of order \(20\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.02870535261\) |
Analytic rank: | \(0\) |
Dimension: | \(592\) |
Relative dimension: | \(74\) over \(\Q(\zeta_{20})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{20}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
87.1 | −1.98460 | − | 1.98460i | 1.94938 | + | 0.308751i | 5.87724i | 0.632558 | + | 2.14473i | −3.25598 | − | 4.48147i | 0.436526 | + | 0.856730i | 7.69475 | − | 7.69475i | 0.851577 | + | 0.276694i | 3.00105 | − | 5.51179i | ||
87.2 | −1.90049 | − | 1.90049i | −0.266080 | − | 0.0421429i | 5.22374i | 1.96893 | − | 1.05987i | 0.425590 | + | 0.585775i | 1.23971 | + | 2.43307i | 6.12669 | − | 6.12669i | −2.78415 | − | 0.904624i | −5.75620 | − | 1.72767i | ||
87.3 | −1.88236 | − | 1.88236i | 2.76771 | + | 0.438363i | 5.08657i | −1.66401 | − | 1.49367i | −4.38468 | − | 6.03500i | 0.0830858 | + | 0.163065i | 5.81004 | − | 5.81004i | 4.61491 | + | 1.49948i | 0.320642 | + | 5.94391i | ||
87.4 | −1.86754 | − | 1.86754i | −2.90481 | − | 0.460077i | 4.97539i | −0.219116 | − | 2.22531i | 4.56563 | + | 6.28405i | −1.28090 | − | 2.51391i | 5.55664 | − | 5.55664i | 5.37309 | + | 1.74582i | −3.74663 | + | 4.56505i | ||
87.5 | −1.83343 | − | 1.83343i | −1.82239 | − | 0.288637i | 4.72297i | −1.95127 | + | 1.09204i | 2.81203 | + | 3.87042i | −0.491881 | − | 0.965371i | 4.99238 | − | 4.99238i | 0.384607 | + | 0.124966i | 5.57971 | + | 1.57534i | ||
87.6 | −1.72753 | − | 1.72753i | −1.54662 | − | 0.244961i | 3.96870i | 2.12654 | + | 0.691254i | 2.24866 | + | 3.09501i | −2.06112 | − | 4.04517i | 3.40097 | − | 3.40097i | −0.521133 | − | 0.169326i | −2.47949 | − | 4.86781i | ||
87.7 | −1.70788 | − | 1.70788i | 1.13308 | + | 0.179462i | 3.83368i | 1.84924 | − | 1.25711i | −1.62866 | − | 2.24166i | −0.343685 | − | 0.674520i | 3.13170 | − | 3.13170i | −1.60151 | − | 0.520361i | −5.30525 | − | 1.01128i | ||
87.8 | −1.68678 | − | 1.68678i | −1.20182 | − | 0.190350i | 3.69042i | −1.07480 | − | 1.96082i | 1.70613 | + | 2.34828i | 1.82377 | + | 3.57935i | 2.85136 | − | 2.85136i | −1.44502 | − | 0.469516i | −1.49452 | + | 5.12040i | ||
87.9 | −1.67245 | − | 1.67245i | −2.94102 | − | 0.465811i | 3.59418i | 0.548171 | + | 2.16783i | 4.13966 | + | 5.69775i | 1.39664 | + | 2.74106i | 2.66619 | − | 2.66619i | 5.57942 | + | 1.81286i | 2.70881 | − | 4.54239i | ||
87.10 | −1.66721 | − | 1.66721i | 0.738036 | + | 0.116893i | 3.55918i | −2.08198 | − | 0.815693i | −1.03557 | − | 1.42535i | −1.54098 | − | 3.02434i | 2.59948 | − | 2.59948i | −2.32214 | − | 0.754508i | 2.11117 | + | 4.83103i | ||
87.11 | −1.55951 | − | 1.55951i | 1.45725 | + | 0.230805i | 2.86411i | 0.758601 | + | 2.10346i | −1.91264 | − | 2.63253i | −1.74795 | − | 3.43054i | 1.34759 | − | 1.34759i | −0.782868 | − | 0.254369i | 2.09731 | − | 4.46339i | ||
87.12 | −1.49425 | − | 1.49425i | 0.279235 | + | 0.0442265i | 2.46554i | −0.150120 | + | 2.23102i | −0.351161 | − | 0.483331i | 2.01479 | + | 3.95425i | 0.695639 | − | 0.695639i | −2.77715 | − | 0.902352i | 3.55801 | − | 3.10938i | ||
87.13 | −1.47447 | − | 1.47447i | 2.24041 | + | 0.354846i | 2.34813i | 0.669715 | − | 2.13342i | −2.78020 | − | 3.82662i | −0.0691630 | − | 0.135740i | 0.513301 | − | 0.513301i | 2.04034 | + | 0.662946i | −4.13314 | + | 2.15819i | ||
87.14 | −1.36078 | − | 1.36078i | 3.06174 | + | 0.484932i | 1.70344i | 2.21188 | + | 0.327992i | −3.50647 | − | 4.82624i | 1.82923 | + | 3.59007i | −0.403546 | + | 0.403546i | 6.28591 | + | 2.04241i | −2.56356 | − | 3.45621i | ||
87.15 | −1.33088 | − | 1.33088i | 3.12646 | + | 0.495183i | 1.54247i | −1.28633 | + | 1.82903i | −3.50191 | − | 4.81997i | −0.475703 | − | 0.933619i | −0.608916 | + | 0.608916i | 6.67640 | + | 2.16929i | 4.14617 | − | 0.722262i | ||
87.16 | −1.30770 | − | 1.30770i | −1.19019 | − | 0.188508i | 1.42018i | 1.75507 | + | 1.38554i | 1.30991 | + | 1.80293i | 0.323588 | + | 0.635078i | −0.758227 | + | 0.758227i | −1.47215 | − | 0.478331i | −0.483229 | − | 4.10700i | ||
87.17 | −1.21987 | − | 1.21987i | −2.81696 | − | 0.446163i | 0.976151i | 2.00515 | − | 0.989624i | 2.89206 | + | 3.98058i | 0.292741 | + | 0.574536i | −1.24896 | + | 1.24896i | 4.88303 | + | 1.58659i | −3.65323 | − | 1.23881i | ||
87.18 | −1.18786 | − | 1.18786i | −2.00510 | − | 0.317577i | 0.822026i | −1.82901 | + | 1.28635i | 2.00454 | + | 2.75902i | −0.911490 | − | 1.78890i | −1.39927 | + | 1.39927i | 1.06640 | + | 0.346495i | 3.70062 | + | 0.644603i | ||
87.19 | −1.12275 | − | 1.12275i | 1.37132 | + | 0.217196i | 0.521121i | −2.17967 | − | 0.499056i | −1.29579 | − | 1.78350i | 1.36426 | + | 2.67751i | −1.66041 | + | 1.66041i | −1.01983 | − | 0.331362i | 1.88690 | + | 3.00753i | ||
87.20 | −1.09994 | − | 1.09994i | −1.73160 | − | 0.274259i | 0.419746i | −2.19515 | − | 0.425836i | 1.60300 | + | 2.20633i | 0.993637 | + | 1.95012i | −1.73819 | + | 1.73819i | 0.0700639 | + | 0.0227651i | 1.94614 | + | 2.88293i | ||
See next 80 embeddings (of 592 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
151.f | odd | 10 | 1 | inner |
755.s | even | 20 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 755.2.s.a | ✓ | 592 |
5.c | odd | 4 | 1 | inner | 755.2.s.a | ✓ | 592 |
151.f | odd | 10 | 1 | inner | 755.2.s.a | ✓ | 592 |
755.s | even | 20 | 1 | inner | 755.2.s.a | ✓ | 592 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
755.2.s.a | ✓ | 592 | 1.a | even | 1 | 1 | trivial |
755.2.s.a | ✓ | 592 | 5.c | odd | 4 | 1 | inner |
755.2.s.a | ✓ | 592 | 151.f | odd | 10 | 1 | inner |
755.2.s.a | ✓ | 592 | 755.s | even | 20 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(755, [\chi])\).