Properties

Label 755.2.s.a
Level $755$
Weight $2$
Character orbit 755.s
Analytic conductor $6.029$
Analytic rank $0$
Dimension $592$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [755,2,Mod(87,755)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(755, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 6])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("755.87"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 755 = 5 \cdot 151 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 755.s (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.02870535261\)
Analytic rank: \(0\)
Dimension: \(592\)
Relative dimension: \(74\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 592 q - 16 q^{2} - 10 q^{3} - 6 q^{5} - 10 q^{7} + 16 q^{8} + 6 q^{10} - 10 q^{13} + 10 q^{15} - 568 q^{16} - 6 q^{17} + 6 q^{18} - 2 q^{20} - 4 q^{21} - 40 q^{22} - 6 q^{25} - 20 q^{26} - 10 q^{27} - 30 q^{28}+ \cdots - 68 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
87.1 −1.98460 1.98460i 1.94938 + 0.308751i 5.87724i 0.632558 + 2.14473i −3.25598 4.48147i 0.436526 + 0.856730i 7.69475 7.69475i 0.851577 + 0.276694i 3.00105 5.51179i
87.2 −1.90049 1.90049i −0.266080 0.0421429i 5.22374i 1.96893 1.05987i 0.425590 + 0.585775i 1.23971 + 2.43307i 6.12669 6.12669i −2.78415 0.904624i −5.75620 1.72767i
87.3 −1.88236 1.88236i 2.76771 + 0.438363i 5.08657i −1.66401 1.49367i −4.38468 6.03500i 0.0830858 + 0.163065i 5.81004 5.81004i 4.61491 + 1.49948i 0.320642 + 5.94391i
87.4 −1.86754 1.86754i −2.90481 0.460077i 4.97539i −0.219116 2.22531i 4.56563 + 6.28405i −1.28090 2.51391i 5.55664 5.55664i 5.37309 + 1.74582i −3.74663 + 4.56505i
87.5 −1.83343 1.83343i −1.82239 0.288637i 4.72297i −1.95127 + 1.09204i 2.81203 + 3.87042i −0.491881 0.965371i 4.99238 4.99238i 0.384607 + 0.124966i 5.57971 + 1.57534i
87.6 −1.72753 1.72753i −1.54662 0.244961i 3.96870i 2.12654 + 0.691254i 2.24866 + 3.09501i −2.06112 4.04517i 3.40097 3.40097i −0.521133 0.169326i −2.47949 4.86781i
87.7 −1.70788 1.70788i 1.13308 + 0.179462i 3.83368i 1.84924 1.25711i −1.62866 2.24166i −0.343685 0.674520i 3.13170 3.13170i −1.60151 0.520361i −5.30525 1.01128i
87.8 −1.68678 1.68678i −1.20182 0.190350i 3.69042i −1.07480 1.96082i 1.70613 + 2.34828i 1.82377 + 3.57935i 2.85136 2.85136i −1.44502 0.469516i −1.49452 + 5.12040i
87.9 −1.67245 1.67245i −2.94102 0.465811i 3.59418i 0.548171 + 2.16783i 4.13966 + 5.69775i 1.39664 + 2.74106i 2.66619 2.66619i 5.57942 + 1.81286i 2.70881 4.54239i
87.10 −1.66721 1.66721i 0.738036 + 0.116893i 3.55918i −2.08198 0.815693i −1.03557 1.42535i −1.54098 3.02434i 2.59948 2.59948i −2.32214 0.754508i 2.11117 + 4.83103i
87.11 −1.55951 1.55951i 1.45725 + 0.230805i 2.86411i 0.758601 + 2.10346i −1.91264 2.63253i −1.74795 3.43054i 1.34759 1.34759i −0.782868 0.254369i 2.09731 4.46339i
87.12 −1.49425 1.49425i 0.279235 + 0.0442265i 2.46554i −0.150120 + 2.23102i −0.351161 0.483331i 2.01479 + 3.95425i 0.695639 0.695639i −2.77715 0.902352i 3.55801 3.10938i
87.13 −1.47447 1.47447i 2.24041 + 0.354846i 2.34813i 0.669715 2.13342i −2.78020 3.82662i −0.0691630 0.135740i 0.513301 0.513301i 2.04034 + 0.662946i −4.13314 + 2.15819i
87.14 −1.36078 1.36078i 3.06174 + 0.484932i 1.70344i 2.21188 + 0.327992i −3.50647 4.82624i 1.82923 + 3.59007i −0.403546 + 0.403546i 6.28591 + 2.04241i −2.56356 3.45621i
87.15 −1.33088 1.33088i 3.12646 + 0.495183i 1.54247i −1.28633 + 1.82903i −3.50191 4.81997i −0.475703 0.933619i −0.608916 + 0.608916i 6.67640 + 2.16929i 4.14617 0.722262i
87.16 −1.30770 1.30770i −1.19019 0.188508i 1.42018i 1.75507 + 1.38554i 1.30991 + 1.80293i 0.323588 + 0.635078i −0.758227 + 0.758227i −1.47215 0.478331i −0.483229 4.10700i
87.17 −1.21987 1.21987i −2.81696 0.446163i 0.976151i 2.00515 0.989624i 2.89206 + 3.98058i 0.292741 + 0.574536i −1.24896 + 1.24896i 4.88303 + 1.58659i −3.65323 1.23881i
87.18 −1.18786 1.18786i −2.00510 0.317577i 0.822026i −1.82901 + 1.28635i 2.00454 + 2.75902i −0.911490 1.78890i −1.39927 + 1.39927i 1.06640 + 0.346495i 3.70062 + 0.644603i
87.19 −1.12275 1.12275i 1.37132 + 0.217196i 0.521121i −2.17967 0.499056i −1.29579 1.78350i 1.36426 + 2.67751i −1.66041 + 1.66041i −1.01983 0.331362i 1.88690 + 3.00753i
87.20 −1.09994 1.09994i −1.73160 0.274259i 0.419746i −2.19515 0.425836i 1.60300 + 2.20633i 0.993637 + 1.95012i −1.73819 + 1.73819i 0.0700639 + 0.0227651i 1.94614 + 2.88293i
See next 80 embeddings (of 592 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 87.74
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
151.f odd 10 1 inner
755.s even 20 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 755.2.s.a 592
5.c odd 4 1 inner 755.2.s.a 592
151.f odd 10 1 inner 755.2.s.a 592
755.s even 20 1 inner 755.2.s.a 592
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
755.2.s.a 592 1.a even 1 1 trivial
755.2.s.a 592 5.c odd 4 1 inner
755.2.s.a 592 151.f odd 10 1 inner
755.2.s.a 592 755.s even 20 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(755, [\chi])\).