Properties

Label 755.2.f.b
Level $755$
Weight $2$
Character orbit 755.f
Analytic conductor $6.029$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [755,2,Mod(452,755)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(755, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("755.452"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 755 = 5 \cdot 151 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 755.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.02870535261\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} - 2 \beta_{2} q^{4} + ( - \beta_{2} - 2) q^{5} + \beta_{3} q^{7} - q^{11} + 2 \beta_{3} q^{12} - \beta_1 q^{13} + (\beta_{3} + 2 \beta_1) q^{15} - 4 q^{16} - 3 \beta_{2} q^{19} + (4 \beta_{2} - 2) q^{20}+ \cdots + ( - 10 \beta_{2} - 10) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{5} - 4 q^{11} - 16 q^{16} - 8 q^{20} + 12 q^{21} + 12 q^{25} - 24 q^{31} + 20 q^{37} + 20 q^{43} + 8 q^{55} - 24 q^{76} + 32 q^{80} + 36 q^{81} + 12 q^{91} - 12 q^{95} - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/755\mathbb{Z}\right)^\times\).

\(n\) \(6\) \(152\)
\(\chi(n)\) \(-1\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
452.1
1.22474 + 1.22474i
−1.22474 1.22474i
1.22474 1.22474i
−1.22474 + 1.22474i
0 −1.22474 1.22474i 2.00000i −2.00000 1.00000i 0 −1.22474 + 1.22474i 0 0 0
452.2 0 1.22474 + 1.22474i 2.00000i −2.00000 1.00000i 0 1.22474 1.22474i 0 0 0
603.1 0 −1.22474 + 1.22474i 2.00000i −2.00000 + 1.00000i 0 −1.22474 1.22474i 0 0 0
603.2 0 1.22474 1.22474i 2.00000i −2.00000 + 1.00000i 0 1.22474 + 1.22474i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
151.b odd 2 1 inner
755.f even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 755.2.f.b 4
5.c odd 4 1 inner 755.2.f.b 4
151.b odd 2 1 inner 755.2.f.b 4
755.f even 4 1 inner 755.2.f.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
755.2.f.b 4 1.a even 1 1 trivial
755.2.f.b 4 5.c odd 4 1 inner
755.2.f.b 4 151.b odd 2 1 inner
755.2.f.b 4 755.f even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(755, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{3}^{4} + 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 9 \) Copy content Toggle raw display
$5$ \( (T^{2} + 4 T + 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + 9 \) Copy content Toggle raw display
$11$ \( (T + 1)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 9 \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 2304 \) Copy content Toggle raw display
$29$ \( (T^{2} + 64)^{2} \) Copy content Toggle raw display
$31$ \( (T + 6)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - 10 T + 50)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 150)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 10 T + 50)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} + 144 \) Copy content Toggle raw display
$59$ \( (T^{2} + 49)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 150)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 21609 \) Copy content Toggle raw display
$71$ \( (T^{2} + 150)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 11664 \) Copy content Toggle raw display
$79$ \( (T^{2} - 150)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 9 \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + 20 T + 200)^{2} \) Copy content Toggle raw display
show more
show less