Properties

Label 755.2.e.a.636.1
Level $755$
Weight $2$
Character 755.636
Analytic conductor $6.029$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [755,2,Mod(571,755)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(755, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("755.571"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 755 = 5 \cdot 151 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 755.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.02870535261\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 636.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 755.636
Dual form 755.2.e.a.571.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} -2.00000 q^{3} +(0.500000 - 0.866025i) q^{4} +(-0.500000 - 0.866025i) q^{5} +(-1.00000 - 1.73205i) q^{6} +3.00000 q^{8} +1.00000 q^{9} +(0.500000 - 0.866025i) q^{10} +(1.50000 + 2.59808i) q^{11} +(-1.00000 + 1.73205i) q^{12} +(1.00000 + 1.73205i) q^{15} +(0.500000 + 0.866025i) q^{16} +(-4.00000 - 6.92820i) q^{17} +(0.500000 + 0.866025i) q^{18} -1.00000 q^{19} -1.00000 q^{20} +(-1.50000 + 2.59808i) q^{22} +(-3.00000 - 5.19615i) q^{23} -6.00000 q^{24} +(-0.500000 + 0.866025i) q^{25} +4.00000 q^{27} +9.00000 q^{29} +(-1.00000 + 1.73205i) q^{30} +(-2.00000 - 3.46410i) q^{31} +(2.50000 - 4.33013i) q^{32} +(-3.00000 - 5.19615i) q^{33} +(4.00000 - 6.92820i) q^{34} +(0.500000 - 0.866025i) q^{36} +(-5.00000 - 8.66025i) q^{37} +(-0.500000 - 0.866025i) q^{38} +(-1.50000 - 2.59808i) q^{40} -7.00000 q^{41} +(2.00000 - 3.46410i) q^{43} +3.00000 q^{44} +(-0.500000 - 0.866025i) q^{45} +(3.00000 - 5.19615i) q^{46} +(1.00000 - 1.73205i) q^{47} +(-1.00000 - 1.73205i) q^{48} +(3.50000 - 6.06218i) q^{49} -1.00000 q^{50} +(8.00000 + 13.8564i) q^{51} -4.00000 q^{53} +(2.00000 + 3.46410i) q^{54} +(1.50000 - 2.59808i) q^{55} +2.00000 q^{57} +(4.50000 + 7.79423i) q^{58} -1.00000 q^{59} +2.00000 q^{60} +(-4.50000 + 7.79423i) q^{61} +(2.00000 - 3.46410i) q^{62} +7.00000 q^{64} +(3.00000 - 5.19615i) q^{66} +8.00000 q^{67} -8.00000 q^{68} +(6.00000 + 10.3923i) q^{69} +(-1.50000 + 2.59808i) q^{71} +3.00000 q^{72} +2.00000 q^{73} +(5.00000 - 8.66025i) q^{74} +(1.00000 - 1.73205i) q^{75} +(-0.500000 + 0.866025i) q^{76} +16.0000 q^{79} +(0.500000 - 0.866025i) q^{80} -11.0000 q^{81} +(-3.50000 - 6.06218i) q^{82} -6.00000 q^{83} +(-4.00000 + 6.92820i) q^{85} +4.00000 q^{86} -18.0000 q^{87} +(4.50000 + 7.79423i) q^{88} +(-1.00000 + 1.73205i) q^{89} +(0.500000 - 0.866025i) q^{90} -6.00000 q^{92} +(4.00000 + 6.92820i) q^{93} +2.00000 q^{94} +(0.500000 + 0.866025i) q^{95} +(-5.00000 + 8.66025i) q^{96} +(7.00000 + 12.1244i) q^{97} +7.00000 q^{98} +(1.50000 + 2.59808i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - 4 q^{3} + q^{4} - q^{5} - 2 q^{6} + 6 q^{8} + 2 q^{9} + q^{10} + 3 q^{11} - 2 q^{12} + 2 q^{15} + q^{16} - 8 q^{17} + q^{18} - 2 q^{19} - 2 q^{20} - 3 q^{22} - 6 q^{23} - 12 q^{24} - q^{25}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/755\mathbb{Z}\right)^\times\).

\(n\) \(6\) \(152\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i 0.986869 0.161521i \(-0.0516399\pi\)
−0.633316 + 0.773893i \(0.718307\pi\)
\(3\) −2.00000 −1.15470 −0.577350 0.816497i \(-0.695913\pi\)
−0.577350 + 0.816497i \(0.695913\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) −1.00000 1.73205i −0.408248 0.707107i
\(7\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(8\) 3.00000 1.06066
\(9\) 1.00000 0.333333
\(10\) 0.500000 0.866025i 0.158114 0.273861i
\(11\) 1.50000 + 2.59808i 0.452267 + 0.783349i 0.998526 0.0542666i \(-0.0172821\pi\)
−0.546259 + 0.837616i \(0.683949\pi\)
\(12\) −1.00000 + 1.73205i −0.288675 + 0.500000i
\(13\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(14\) 0 0
\(15\) 1.00000 + 1.73205i 0.258199 + 0.447214i
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) −4.00000 6.92820i −0.970143 1.68034i −0.695113 0.718900i \(-0.744646\pi\)
−0.275029 0.961436i \(-0.588688\pi\)
\(18\) 0.500000 + 0.866025i 0.117851 + 0.204124i
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) −1.50000 + 2.59808i −0.319801 + 0.553912i
\(23\) −3.00000 5.19615i −0.625543 1.08347i −0.988436 0.151642i \(-0.951544\pi\)
0.362892 0.931831i \(-0.381789\pi\)
\(24\) −6.00000 −1.22474
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 4.00000 0.769800
\(28\) 0 0
\(29\) 9.00000 1.67126 0.835629 0.549294i \(-0.185103\pi\)
0.835629 + 0.549294i \(0.185103\pi\)
\(30\) −1.00000 + 1.73205i −0.182574 + 0.316228i
\(31\) −2.00000 3.46410i −0.359211 0.622171i 0.628619 0.777714i \(-0.283621\pi\)
−0.987829 + 0.155543i \(0.950287\pi\)
\(32\) 2.50000 4.33013i 0.441942 0.765466i
\(33\) −3.00000 5.19615i −0.522233 0.904534i
\(34\) 4.00000 6.92820i 0.685994 1.18818i
\(35\) 0 0
\(36\) 0.500000 0.866025i 0.0833333 0.144338i
\(37\) −5.00000 8.66025i −0.821995 1.42374i −0.904194 0.427121i \(-0.859528\pi\)
0.0821995 0.996616i \(-0.473806\pi\)
\(38\) −0.500000 0.866025i −0.0811107 0.140488i
\(39\) 0 0
\(40\) −1.50000 2.59808i −0.237171 0.410792i
\(41\) −7.00000 −1.09322 −0.546608 0.837389i \(-0.684081\pi\)
−0.546608 + 0.837389i \(0.684081\pi\)
\(42\) 0 0
\(43\) 2.00000 3.46410i 0.304997 0.528271i −0.672264 0.740312i \(-0.734678\pi\)
0.977261 + 0.212041i \(0.0680112\pi\)
\(44\) 3.00000 0.452267
\(45\) −0.500000 0.866025i −0.0745356 0.129099i
\(46\) 3.00000 5.19615i 0.442326 0.766131i
\(47\) 1.00000 1.73205i 0.145865 0.252646i −0.783830 0.620975i \(-0.786737\pi\)
0.929695 + 0.368329i \(0.120070\pi\)
\(48\) −1.00000 1.73205i −0.144338 0.250000i
\(49\) 3.50000 6.06218i 0.500000 0.866025i
\(50\) −1.00000 −0.141421
\(51\) 8.00000 + 13.8564i 1.12022 + 1.94029i
\(52\) 0 0
\(53\) −4.00000 −0.549442 −0.274721 0.961524i \(-0.588586\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 2.00000 + 3.46410i 0.272166 + 0.471405i
\(55\) 1.50000 2.59808i 0.202260 0.350325i
\(56\) 0 0
\(57\) 2.00000 0.264906
\(58\) 4.50000 + 7.79423i 0.590879 + 1.02343i
\(59\) −1.00000 −0.130189 −0.0650945 0.997879i \(-0.520735\pi\)
−0.0650945 + 0.997879i \(0.520735\pi\)
\(60\) 2.00000 0.258199
\(61\) −4.50000 + 7.79423i −0.576166 + 0.997949i 0.419748 + 0.907641i \(0.362118\pi\)
−0.995914 + 0.0903080i \(0.971215\pi\)
\(62\) 2.00000 3.46410i 0.254000 0.439941i
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) 0 0
\(66\) 3.00000 5.19615i 0.369274 0.639602i
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) −8.00000 −0.970143
\(69\) 6.00000 + 10.3923i 0.722315 + 1.25109i
\(70\) 0 0
\(71\) −1.50000 + 2.59808i −0.178017 + 0.308335i −0.941201 0.337846i \(-0.890302\pi\)
0.763184 + 0.646181i \(0.223635\pi\)
\(72\) 3.00000 0.353553
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 5.00000 8.66025i 0.581238 1.00673i
\(75\) 1.00000 1.73205i 0.115470 0.200000i
\(76\) −0.500000 + 0.866025i −0.0573539 + 0.0993399i
\(77\) 0 0
\(78\) 0 0
\(79\) 16.0000 1.80014 0.900070 0.435745i \(-0.143515\pi\)
0.900070 + 0.435745i \(0.143515\pi\)
\(80\) 0.500000 0.866025i 0.0559017 0.0968246i
\(81\) −11.0000 −1.22222
\(82\) −3.50000 6.06218i −0.386510 0.669456i
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0 0
\(85\) −4.00000 + 6.92820i −0.433861 + 0.751469i
\(86\) 4.00000 0.431331
\(87\) −18.0000 −1.92980
\(88\) 4.50000 + 7.79423i 0.479702 + 0.830868i
\(89\) −1.00000 + 1.73205i −0.106000 + 0.183597i −0.914146 0.405385i \(-0.867138\pi\)
0.808146 + 0.588982i \(0.200471\pi\)
\(90\) 0.500000 0.866025i 0.0527046 0.0912871i
\(91\) 0 0
\(92\) −6.00000 −0.625543
\(93\) 4.00000 + 6.92820i 0.414781 + 0.718421i
\(94\) 2.00000 0.206284
\(95\) 0.500000 + 0.866025i 0.0512989 + 0.0888523i
\(96\) −5.00000 + 8.66025i −0.510310 + 0.883883i
\(97\) 7.00000 + 12.1244i 0.710742 + 1.23104i 0.964579 + 0.263795i \(0.0849741\pi\)
−0.253837 + 0.967247i \(0.581693\pi\)
\(98\) 7.00000 0.707107
\(99\) 1.50000 + 2.59808i 0.150756 + 0.261116i
\(100\) 0.500000 + 0.866025i 0.0500000 + 0.0866025i
\(101\) −17.0000 −1.69156 −0.845782 0.533529i \(-0.820865\pi\)
−0.845782 + 0.533529i \(0.820865\pi\)
\(102\) −8.00000 + 13.8564i −0.792118 + 1.37199i
\(103\) −3.00000 5.19615i −0.295599 0.511992i 0.679525 0.733652i \(-0.262186\pi\)
−0.975124 + 0.221660i \(0.928852\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −2.00000 3.46410i −0.194257 0.336463i
\(107\) −8.00000 −0.773389 −0.386695 0.922208i \(-0.626383\pi\)
−0.386695 + 0.922208i \(0.626383\pi\)
\(108\) 2.00000 3.46410i 0.192450 0.333333i
\(109\) 9.00000 15.5885i 0.862044 1.49310i −0.00790932 0.999969i \(-0.502518\pi\)
0.869953 0.493135i \(-0.164149\pi\)
\(110\) 3.00000 0.286039
\(111\) 10.0000 + 17.3205i 0.949158 + 1.64399i
\(112\) 0 0
\(113\) −2.00000 3.46410i −0.188144 0.325875i 0.756487 0.654008i \(-0.226914\pi\)
−0.944632 + 0.328133i \(0.893581\pi\)
\(114\) 1.00000 + 1.73205i 0.0936586 + 0.162221i
\(115\) −3.00000 + 5.19615i −0.279751 + 0.484544i
\(116\) 4.50000 7.79423i 0.417815 0.723676i
\(117\) 0 0
\(118\) −0.500000 0.866025i −0.0460287 0.0797241i
\(119\) 0 0
\(120\) 3.00000 + 5.19615i 0.273861 + 0.474342i
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) −9.00000 −0.814822
\(123\) 14.0000 1.26234
\(124\) −4.00000 −0.359211
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) −1.50000 2.59808i −0.132583 0.229640i
\(129\) −4.00000 + 6.92820i −0.352180 + 0.609994i
\(130\) 0 0
\(131\) 21.0000 1.83478 0.917389 0.397991i \(-0.130293\pi\)
0.917389 + 0.397991i \(0.130293\pi\)
\(132\) −6.00000 −0.522233
\(133\) 0 0
\(134\) 4.00000 + 6.92820i 0.345547 + 0.598506i
\(135\) −2.00000 3.46410i −0.172133 0.298142i
\(136\) −12.0000 20.7846i −1.02899 1.78227i
\(137\) −3.00000 + 5.19615i −0.256307 + 0.443937i −0.965250 0.261329i \(-0.915839\pi\)
0.708942 + 0.705266i \(0.249173\pi\)
\(138\) −6.00000 + 10.3923i −0.510754 + 0.884652i
\(139\) 1.50000 2.59808i 0.127228 0.220366i −0.795373 0.606120i \(-0.792725\pi\)
0.922602 + 0.385754i \(0.126059\pi\)
\(140\) 0 0
\(141\) −2.00000 + 3.46410i −0.168430 + 0.291730i
\(142\) −3.00000 −0.251754
\(143\) 0 0
\(144\) 0.500000 + 0.866025i 0.0416667 + 0.0721688i
\(145\) −4.50000 7.79423i −0.373705 0.647275i
\(146\) 1.00000 + 1.73205i 0.0827606 + 0.143346i
\(147\) −7.00000 + 12.1244i −0.577350 + 1.00000i
\(148\) −10.0000 −0.821995
\(149\) −1.50000 2.59808i −0.122885 0.212843i 0.798019 0.602632i \(-0.205881\pi\)
−0.920904 + 0.389789i \(0.872548\pi\)
\(150\) 2.00000 0.163299
\(151\) 2.00000 + 12.1244i 0.162758 + 0.986666i
\(152\) −3.00000 −0.243332
\(153\) −4.00000 6.92820i −0.323381 0.560112i
\(154\) 0 0
\(155\) −2.00000 + 3.46410i −0.160644 + 0.278243i
\(156\) 0 0
\(157\) 5.00000 + 8.66025i 0.399043 + 0.691164i 0.993608 0.112884i \(-0.0360089\pi\)
−0.594565 + 0.804048i \(0.702676\pi\)
\(158\) 8.00000 + 13.8564i 0.636446 + 1.10236i
\(159\) 8.00000 0.634441
\(160\) −5.00000 −0.395285
\(161\) 0 0
\(162\) −5.50000 9.52628i −0.432121 0.748455i
\(163\) −2.00000 + 3.46410i −0.156652 + 0.271329i −0.933659 0.358162i \(-0.883403\pi\)
0.777007 + 0.629492i \(0.216737\pi\)
\(164\) −3.50000 + 6.06218i −0.273304 + 0.473377i
\(165\) −3.00000 + 5.19615i −0.233550 + 0.404520i
\(166\) −3.00000 5.19615i −0.232845 0.403300i
\(167\) 9.00000 + 15.5885i 0.696441 + 1.20627i 0.969693 + 0.244328i \(0.0785675\pi\)
−0.273252 + 0.961943i \(0.588099\pi\)
\(168\) 0 0
\(169\) 6.50000 + 11.2583i 0.500000 + 0.866025i
\(170\) −8.00000 −0.613572
\(171\) −1.00000 −0.0764719
\(172\) −2.00000 3.46410i −0.152499 0.264135i
\(173\) −2.00000 + 3.46410i −0.152057 + 0.263371i −0.931984 0.362500i \(-0.881923\pi\)
0.779926 + 0.625871i \(0.215256\pi\)
\(174\) −9.00000 15.5885i −0.682288 1.18176i
\(175\) 0 0
\(176\) −1.50000 + 2.59808i −0.113067 + 0.195837i
\(177\) 2.00000 0.150329
\(178\) −2.00000 −0.149906
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) −1.00000 −0.0745356
\(181\) −3.50000 + 6.06218i −0.260153 + 0.450598i −0.966282 0.257485i \(-0.917106\pi\)
0.706129 + 0.708083i \(0.250440\pi\)
\(182\) 0 0
\(183\) 9.00000 15.5885i 0.665299 1.15233i
\(184\) −9.00000 15.5885i −0.663489 1.14920i
\(185\) −5.00000 + 8.66025i −0.367607 + 0.636715i
\(186\) −4.00000 + 6.92820i −0.293294 + 0.508001i
\(187\) 12.0000 20.7846i 0.877527 1.51992i
\(188\) −1.00000 1.73205i −0.0729325 0.126323i
\(189\) 0 0
\(190\) −0.500000 + 0.866025i −0.0362738 + 0.0628281i
\(191\) 5.50000 + 9.52628i 0.397966 + 0.689297i 0.993475 0.114051i \(-0.0363829\pi\)
−0.595509 + 0.803349i \(0.703050\pi\)
\(192\) −14.0000 −1.01036
\(193\) −2.00000 + 3.46410i −0.143963 + 0.249351i −0.928986 0.370116i \(-0.879318\pi\)
0.785022 + 0.619467i \(0.212651\pi\)
\(194\) −7.00000 + 12.1244i −0.502571 + 0.870478i
\(195\) 0 0
\(196\) −3.50000 6.06218i −0.250000 0.433013i
\(197\) −12.0000 + 20.7846i −0.854965 + 1.48084i 0.0217133 + 0.999764i \(0.493088\pi\)
−0.876678 + 0.481078i \(0.840245\pi\)
\(198\) −1.50000 + 2.59808i −0.106600 + 0.184637i
\(199\) −0.500000 0.866025i −0.0354441 0.0613909i 0.847759 0.530381i \(-0.177951\pi\)
−0.883203 + 0.468990i \(0.844618\pi\)
\(200\) −1.50000 + 2.59808i −0.106066 + 0.183712i
\(201\) −16.0000 −1.12855
\(202\) −8.50000 14.7224i −0.598058 1.03587i
\(203\) 0 0
\(204\) 16.0000 1.12022
\(205\) 3.50000 + 6.06218i 0.244451 + 0.423401i
\(206\) 3.00000 5.19615i 0.209020 0.362033i
\(207\) −3.00000 5.19615i −0.208514 0.361158i
\(208\) 0 0
\(209\) −1.50000 2.59808i −0.103757 0.179713i
\(210\) 0 0
\(211\) 13.0000 0.894957 0.447478 0.894295i \(-0.352322\pi\)
0.447478 + 0.894295i \(0.352322\pi\)
\(212\) −2.00000 + 3.46410i −0.137361 + 0.237915i
\(213\) 3.00000 5.19615i 0.205557 0.356034i
\(214\) −4.00000 6.92820i −0.273434 0.473602i
\(215\) −4.00000 −0.272798
\(216\) 12.0000 0.816497
\(217\) 0 0
\(218\) 18.0000 1.21911
\(219\) −4.00000 −0.270295
\(220\) −1.50000 2.59808i −0.101130 0.175162i
\(221\) 0 0
\(222\) −10.0000 + 17.3205i −0.671156 + 1.16248i
\(223\) 26.0000 1.74109 0.870544 0.492090i \(-0.163767\pi\)
0.870544 + 0.492090i \(0.163767\pi\)
\(224\) 0 0
\(225\) −0.500000 + 0.866025i −0.0333333 + 0.0577350i
\(226\) 2.00000 3.46410i 0.133038 0.230429i
\(227\) 12.0000 20.7846i 0.796468 1.37952i −0.125435 0.992102i \(-0.540033\pi\)
0.921903 0.387421i \(-0.126634\pi\)
\(228\) 1.00000 1.73205i 0.0662266 0.114708i
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) −6.00000 −0.395628
\(231\) 0 0
\(232\) 27.0000 1.77264
\(233\) 12.0000 + 20.7846i 0.786146 + 1.36165i 0.928312 + 0.371802i \(0.121260\pi\)
−0.142166 + 0.989843i \(0.545407\pi\)
\(234\) 0 0
\(235\) −2.00000 −0.130466
\(236\) −0.500000 + 0.866025i −0.0325472 + 0.0563735i
\(237\) −32.0000 −2.07862
\(238\) 0 0
\(239\) −2.00000 3.46410i −0.129369 0.224074i 0.794063 0.607835i \(-0.207962\pi\)
−0.923432 + 0.383761i \(0.874629\pi\)
\(240\) −1.00000 + 1.73205i −0.0645497 + 0.111803i
\(241\) −8.50000 + 14.7224i −0.547533 + 0.948355i 0.450910 + 0.892570i \(0.351100\pi\)
−0.998443 + 0.0557856i \(0.982234\pi\)
\(242\) 2.00000 0.128565
\(243\) 10.0000 0.641500
\(244\) 4.50000 + 7.79423i 0.288083 + 0.498974i
\(245\) −7.00000 −0.447214
\(246\) 7.00000 + 12.1244i 0.446304 + 0.773021i
\(247\) 0 0
\(248\) −6.00000 10.3923i −0.381000 0.659912i
\(249\) 12.0000 0.760469
\(250\) 0.500000 + 0.866025i 0.0316228 + 0.0547723i
\(251\) −6.00000 10.3923i −0.378717 0.655956i 0.612159 0.790735i \(-0.290301\pi\)
−0.990876 + 0.134778i \(0.956968\pi\)
\(252\) 0 0
\(253\) 9.00000 15.5885i 0.565825 0.980038i
\(254\) −4.00000 6.92820i −0.250982 0.434714i
\(255\) 8.00000 13.8564i 0.500979 0.867722i
\(256\) 8.50000 14.7224i 0.531250 0.920152i
\(257\) −15.0000 25.9808i −0.935674 1.62064i −0.773427 0.633885i \(-0.781459\pi\)
−0.162247 0.986750i \(-0.551874\pi\)
\(258\) −8.00000 −0.498058
\(259\) 0 0
\(260\) 0 0
\(261\) 9.00000 0.557086
\(262\) 10.5000 + 18.1865i 0.648692 + 1.12357i
\(263\) −12.0000 + 20.7846i −0.739952 + 1.28163i 0.212565 + 0.977147i \(0.431818\pi\)
−0.952517 + 0.304487i \(0.901515\pi\)
\(264\) −9.00000 15.5885i −0.553912 0.959403i
\(265\) 2.00000 + 3.46410i 0.122859 + 0.212798i
\(266\) 0 0
\(267\) 2.00000 3.46410i 0.122398 0.212000i
\(268\) 4.00000 6.92820i 0.244339 0.423207i
\(269\) −9.50000 16.4545i −0.579225 1.00325i −0.995568 0.0940400i \(-0.970022\pi\)
0.416343 0.909208i \(-0.363311\pi\)
\(270\) 2.00000 3.46410i 0.121716 0.210819i
\(271\) −9.50000 16.4545i −0.577084 0.999539i −0.995812 0.0914269i \(-0.970857\pi\)
0.418728 0.908112i \(-0.362476\pi\)
\(272\) 4.00000 6.92820i 0.242536 0.420084i
\(273\) 0 0
\(274\) −6.00000 −0.362473
\(275\) −3.00000 −0.180907
\(276\) 12.0000 0.722315
\(277\) 15.0000 25.9808i 0.901263 1.56103i 0.0754058 0.997153i \(-0.475975\pi\)
0.825857 0.563880i \(-0.190692\pi\)
\(278\) 3.00000 0.179928
\(279\) −2.00000 3.46410i −0.119737 0.207390i
\(280\) 0 0
\(281\) 7.50000 + 12.9904i 0.447412 + 0.774941i 0.998217 0.0596933i \(-0.0190123\pi\)
−0.550804 + 0.834634i \(0.685679\pi\)
\(282\) −4.00000 −0.238197
\(283\) 26.0000 1.54554 0.772770 0.634686i \(-0.218871\pi\)
0.772770 + 0.634686i \(0.218871\pi\)
\(284\) 1.50000 + 2.59808i 0.0890086 + 0.154167i
\(285\) −1.00000 1.73205i −0.0592349 0.102598i
\(286\) 0 0
\(287\) 0 0
\(288\) 2.50000 4.33013i 0.147314 0.255155i
\(289\) −23.5000 + 40.7032i −1.38235 + 2.39431i
\(290\) 4.50000 7.79423i 0.264249 0.457693i
\(291\) −14.0000 24.2487i −0.820695 1.42148i
\(292\) 1.00000 1.73205i 0.0585206 0.101361i
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) −14.0000 −0.816497
\(295\) 0.500000 + 0.866025i 0.0291111 + 0.0504219i
\(296\) −15.0000 25.9808i −0.871857 1.51010i
\(297\) 6.00000 + 10.3923i 0.348155 + 0.603023i
\(298\) 1.50000 2.59808i 0.0868927 0.150503i
\(299\) 0 0
\(300\) −1.00000 1.73205i −0.0577350 0.100000i
\(301\) 0 0
\(302\) −9.50000 + 7.79423i −0.546664 + 0.448507i
\(303\) 34.0000 1.95325
\(304\) −0.500000 0.866025i −0.0286770 0.0496700i
\(305\) 9.00000 0.515339
\(306\) 4.00000 6.92820i 0.228665 0.396059i
\(307\) −7.00000 12.1244i −0.399511 0.691974i 0.594154 0.804351i \(-0.297487\pi\)
−0.993666 + 0.112377i \(0.964153\pi\)
\(308\) 0 0
\(309\) 6.00000 + 10.3923i 0.341328 + 0.591198i
\(310\) −4.00000 −0.227185
\(311\) 19.0000 1.07739 0.538696 0.842500i \(-0.318917\pi\)
0.538696 + 0.842500i \(0.318917\pi\)
\(312\) 0 0
\(313\) −3.00000 5.19615i −0.169570 0.293704i 0.768699 0.639611i \(-0.220905\pi\)
−0.938269 + 0.345907i \(0.887571\pi\)
\(314\) −5.00000 + 8.66025i −0.282166 + 0.488726i
\(315\) 0 0
\(316\) 8.00000 13.8564i 0.450035 0.779484i
\(317\) 3.00000 + 5.19615i 0.168497 + 0.291845i 0.937892 0.346929i \(-0.112775\pi\)
−0.769395 + 0.638774i \(0.779442\pi\)
\(318\) 4.00000 + 6.92820i 0.224309 + 0.388514i
\(319\) 13.5000 + 23.3827i 0.755855 + 1.30918i
\(320\) −3.50000 6.06218i −0.195656 0.338886i
\(321\) 16.0000 0.893033
\(322\) 0 0
\(323\) 4.00000 + 6.92820i 0.222566 + 0.385496i
\(324\) −5.50000 + 9.52628i −0.305556 + 0.529238i
\(325\) 0 0
\(326\) −4.00000 −0.221540
\(327\) −18.0000 + 31.1769i −0.995402 + 1.72409i
\(328\) −21.0000 −1.15953
\(329\) 0 0
\(330\) −6.00000 −0.330289
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) −3.00000 + 5.19615i −0.164646 + 0.285176i
\(333\) −5.00000 8.66025i −0.273998 0.474579i
\(334\) −9.00000 + 15.5885i −0.492458 + 0.852962i
\(335\) −4.00000 6.92820i −0.218543 0.378528i
\(336\) 0 0
\(337\) −10.0000 + 17.3205i −0.544735 + 0.943508i 0.453889 + 0.891058i \(0.350036\pi\)
−0.998624 + 0.0524499i \(0.983297\pi\)
\(338\) −6.50000 + 11.2583i −0.353553 + 0.612372i
\(339\) 4.00000 + 6.92820i 0.217250 + 0.376288i
\(340\) 4.00000 + 6.92820i 0.216930 + 0.375735i
\(341\) 6.00000 10.3923i 0.324918 0.562775i
\(342\) −0.500000 0.866025i −0.0270369 0.0468293i
\(343\) 0 0
\(344\) 6.00000 10.3923i 0.323498 0.560316i
\(345\) 6.00000 10.3923i 0.323029 0.559503i
\(346\) −4.00000 −0.215041
\(347\) 10.0000 + 17.3205i 0.536828 + 0.929814i 0.999072 + 0.0430610i \(0.0137110\pi\)
−0.462244 + 0.886753i \(0.652956\pi\)
\(348\) −9.00000 + 15.5885i −0.482451 + 0.835629i
\(349\) 1.00000 1.73205i 0.0535288 0.0927146i −0.838019 0.545640i \(-0.816286\pi\)
0.891548 + 0.452926i \(0.149620\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 15.0000 0.799503
\(353\) −14.0000 24.2487i −0.745145 1.29063i −0.950127 0.311863i \(-0.899047\pi\)
0.204982 0.978766i \(-0.434286\pi\)
\(354\) 1.00000 + 1.73205i 0.0531494 + 0.0920575i
\(355\) 3.00000 0.159223
\(356\) 1.00000 + 1.73205i 0.0529999 + 0.0917985i
\(357\) 0 0
\(358\) 0 0
\(359\) −11.0000 −0.580558 −0.290279 0.956942i \(-0.593748\pi\)
−0.290279 + 0.956942i \(0.593748\pi\)
\(360\) −1.50000 2.59808i −0.0790569 0.136931i
\(361\) −18.0000 −0.947368
\(362\) −7.00000 −0.367912
\(363\) −2.00000 + 3.46410i −0.104973 + 0.181818i
\(364\) 0 0
\(365\) −1.00000 1.73205i −0.0523424 0.0906597i
\(366\) 18.0000 0.940875
\(367\) 24.0000 1.25279 0.626395 0.779506i \(-0.284530\pi\)
0.626395 + 0.779506i \(0.284530\pi\)
\(368\) 3.00000 5.19615i 0.156386 0.270868i
\(369\) −7.00000 −0.364405
\(370\) −10.0000 −0.519875
\(371\) 0 0
\(372\) 8.00000 0.414781
\(373\) 8.00000 13.8564i 0.414224 0.717458i −0.581122 0.813816i \(-0.697386\pi\)
0.995347 + 0.0963587i \(0.0307196\pi\)
\(374\) 24.0000 1.24101
\(375\) −2.00000 −0.103280
\(376\) 3.00000 5.19615i 0.154713 0.267971i
\(377\) 0 0
\(378\) 0 0
\(379\) 11.5000 19.9186i 0.590715 1.02315i −0.403421 0.915014i \(-0.632179\pi\)
0.994136 0.108134i \(-0.0344877\pi\)
\(380\) 1.00000 0.0512989
\(381\) 16.0000 0.819705
\(382\) −5.50000 + 9.52628i −0.281404 + 0.487407i
\(383\) −16.0000 −0.817562 −0.408781 0.912633i \(-0.634046\pi\)
−0.408781 + 0.912633i \(0.634046\pi\)
\(384\) 3.00000 + 5.19615i 0.153093 + 0.265165i
\(385\) 0 0
\(386\) −4.00000 −0.203595
\(387\) 2.00000 3.46410i 0.101666 0.176090i
\(388\) 14.0000 0.710742
\(389\) 35.0000 1.77457 0.887285 0.461221i \(-0.152589\pi\)
0.887285 + 0.461221i \(0.152589\pi\)
\(390\) 0 0
\(391\) −24.0000 + 41.5692i −1.21373 + 2.10225i
\(392\) 10.5000 18.1865i 0.530330 0.918559i
\(393\) −42.0000 −2.11862
\(394\) −24.0000 −1.20910
\(395\) −8.00000 13.8564i −0.402524 0.697191i
\(396\) 3.00000 0.150756
\(397\) −7.00000 12.1244i −0.351320 0.608504i 0.635161 0.772380i \(-0.280934\pi\)
−0.986481 + 0.163876i \(0.947600\pi\)
\(398\) 0.500000 0.866025i 0.0250627 0.0434099i
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) −7.50000 12.9904i −0.374532 0.648709i 0.615725 0.787961i \(-0.288863\pi\)
−0.990257 + 0.139253i \(0.955530\pi\)
\(402\) −8.00000 13.8564i −0.399004 0.691095i
\(403\) 0 0
\(404\) −8.50000 + 14.7224i −0.422891 + 0.732468i
\(405\) 5.50000 + 9.52628i 0.273297 + 0.473365i
\(406\) 0 0
\(407\) 15.0000 25.9808i 0.743522 1.28782i
\(408\) 24.0000 + 41.5692i 1.18818 + 2.05798i
\(409\) 3.00000 0.148340 0.0741702 0.997246i \(-0.476369\pi\)
0.0741702 + 0.997246i \(0.476369\pi\)
\(410\) −3.50000 + 6.06218i −0.172853 + 0.299390i
\(411\) 6.00000 10.3923i 0.295958 0.512615i
\(412\) −6.00000 −0.295599
\(413\) 0 0
\(414\) 3.00000 5.19615i 0.147442 0.255377i
\(415\) 3.00000 + 5.19615i 0.147264 + 0.255069i
\(416\) 0 0
\(417\) −3.00000 + 5.19615i −0.146911 + 0.254457i
\(418\) 1.50000 2.59808i 0.0733674 0.127076i
\(419\) −6.00000 + 10.3923i −0.293119 + 0.507697i −0.974546 0.224189i \(-0.928027\pi\)
0.681426 + 0.731887i \(0.261360\pi\)
\(420\) 0 0
\(421\) 3.50000 6.06218i 0.170580 0.295452i −0.768043 0.640398i \(-0.778769\pi\)
0.938623 + 0.344946i \(0.112103\pi\)
\(422\) 6.50000 + 11.2583i 0.316415 + 0.548047i
\(423\) 1.00000 1.73205i 0.0486217 0.0842152i
\(424\) −12.0000 −0.582772
\(425\) 8.00000 0.388057
\(426\) 6.00000 0.290701
\(427\) 0 0
\(428\) −4.00000 + 6.92820i −0.193347 + 0.334887i
\(429\) 0 0
\(430\) −2.00000 3.46410i −0.0964486 0.167054i
\(431\) −14.5000 + 25.1147i −0.698440 + 1.20973i 0.270567 + 0.962701i \(0.412789\pi\)
−0.969007 + 0.247033i \(0.920544\pi\)
\(432\) 2.00000 + 3.46410i 0.0962250 + 0.166667i
\(433\) 20.0000 0.961139 0.480569 0.876957i \(-0.340430\pi\)
0.480569 + 0.876957i \(0.340430\pi\)
\(434\) 0 0
\(435\) 9.00000 + 15.5885i 0.431517 + 0.747409i
\(436\) −9.00000 15.5885i −0.431022 0.746552i
\(437\) 3.00000 + 5.19615i 0.143509 + 0.248566i
\(438\) −2.00000 3.46410i −0.0955637 0.165521i
\(439\) 0.500000 0.866025i 0.0238637 0.0413331i −0.853847 0.520524i \(-0.825737\pi\)
0.877711 + 0.479191i \(0.159070\pi\)
\(440\) 4.50000 7.79423i 0.214529 0.371575i
\(441\) 3.50000 6.06218i 0.166667 0.288675i
\(442\) 0 0
\(443\) −10.0000 + 17.3205i −0.475114 + 0.822922i −0.999594 0.0285009i \(-0.990927\pi\)
0.524479 + 0.851423i \(0.324260\pi\)
\(444\) 20.0000 0.949158
\(445\) 2.00000 0.0948091
\(446\) 13.0000 + 22.5167i 0.615568 + 1.06619i
\(447\) 3.00000 + 5.19615i 0.141895 + 0.245770i
\(448\) 0 0
\(449\) 2.50000 4.33013i 0.117982 0.204351i −0.800986 0.598684i \(-0.795691\pi\)
0.918968 + 0.394332i \(0.129024\pi\)
\(450\) −1.00000 −0.0471405
\(451\) −10.5000 18.1865i −0.494426 0.856370i
\(452\) −4.00000 −0.188144
\(453\) −4.00000 24.2487i −0.187936 1.13930i
\(454\) 24.0000 1.12638
\(455\) 0 0
\(456\) 6.00000 0.280976
\(457\) −11.0000 + 19.0526i −0.514558 + 0.891241i 0.485299 + 0.874348i \(0.338711\pi\)
−0.999857 + 0.0168929i \(0.994623\pi\)
\(458\) −3.00000 5.19615i −0.140181 0.242800i
\(459\) −16.0000 27.7128i −0.746816 1.29352i
\(460\) 3.00000 + 5.19615i 0.139876 + 0.242272i
\(461\) −5.00000 −0.232873 −0.116437 0.993198i \(-0.537147\pi\)
−0.116437 + 0.993198i \(0.537147\pi\)
\(462\) 0 0
\(463\) 17.0000 29.4449i 0.790057 1.36842i −0.135874 0.990726i \(-0.543384\pi\)
0.925931 0.377693i \(-0.123282\pi\)
\(464\) 4.50000 + 7.79423i 0.208907 + 0.361838i
\(465\) 4.00000 6.92820i 0.185496 0.321288i
\(466\) −12.0000 + 20.7846i −0.555889 + 0.962828i
\(467\) 9.00000 15.5885i 0.416470 0.721348i −0.579111 0.815249i \(-0.696600\pi\)
0.995582 + 0.0939008i \(0.0299336\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −1.00000 1.73205i −0.0461266 0.0798935i
\(471\) −10.0000 17.3205i −0.460776 0.798087i
\(472\) −3.00000 −0.138086
\(473\) 12.0000 0.551761
\(474\) −16.0000 27.7128i −0.734904 1.27289i
\(475\) 0.500000 0.866025i 0.0229416 0.0397360i
\(476\) 0 0
\(477\) −4.00000 −0.183147
\(478\) 2.00000 3.46410i 0.0914779 0.158444i
\(479\) −5.00000 −0.228456 −0.114228 0.993455i \(-0.536439\pi\)
−0.114228 + 0.993455i \(0.536439\pi\)
\(480\) 10.0000 0.456435
\(481\) 0 0
\(482\) −17.0000 −0.774329
\(483\) 0 0
\(484\) −1.00000 1.73205i −0.0454545 0.0787296i
\(485\) 7.00000 12.1244i 0.317854 0.550539i
\(486\) 5.00000 + 8.66025i 0.226805 + 0.392837i
\(487\) 1.00000 1.73205i 0.0453143 0.0784867i −0.842479 0.538730i \(-0.818904\pi\)
0.887793 + 0.460243i \(0.152238\pi\)
\(488\) −13.5000 + 23.3827i −0.611116 + 1.05848i
\(489\) 4.00000 6.92820i 0.180886 0.313304i
\(490\) −3.50000 6.06218i −0.158114 0.273861i
\(491\) 7.50000 + 12.9904i 0.338470 + 0.586248i 0.984145 0.177365i \(-0.0567572\pi\)
−0.645675 + 0.763612i \(0.723424\pi\)
\(492\) 7.00000 12.1244i 0.315584 0.546608i
\(493\) −36.0000 62.3538i −1.62136 2.80828i
\(494\) 0 0
\(495\) 1.50000 2.59808i 0.0674200 0.116775i
\(496\) 2.00000 3.46410i 0.0898027 0.155543i
\(497\) 0 0
\(498\) 6.00000 + 10.3923i 0.268866 + 0.465690i
\(499\) 1.50000 2.59808i 0.0671492 0.116306i −0.830496 0.557024i \(-0.811943\pi\)
0.897645 + 0.440719i \(0.145276\pi\)
\(500\) 0.500000 0.866025i 0.0223607 0.0387298i
\(501\) −18.0000 31.1769i −0.804181 1.39288i
\(502\) 6.00000 10.3923i 0.267793 0.463831i
\(503\) −42.0000 −1.87269 −0.936344 0.351085i \(-0.885813\pi\)
−0.936344 + 0.351085i \(0.885813\pi\)
\(504\) 0 0
\(505\) 8.50000 + 14.7224i 0.378245 + 0.655140i
\(506\) 18.0000 0.800198
\(507\) −13.0000 22.5167i −0.577350 1.00000i
\(508\) −4.00000 + 6.92820i −0.177471 + 0.307389i
\(509\) −14.5000 25.1147i −0.642701 1.11319i −0.984827 0.173537i \(-0.944480\pi\)
0.342126 0.939654i \(-0.388853\pi\)
\(510\) 16.0000 0.708492
\(511\) 0 0
\(512\) 11.0000 0.486136
\(513\) −4.00000 −0.176604
\(514\) 15.0000 25.9808i 0.661622 1.14596i
\(515\) −3.00000 + 5.19615i −0.132196 + 0.228970i
\(516\) 4.00000 + 6.92820i 0.176090 + 0.304997i
\(517\) 6.00000 0.263880
\(518\) 0 0
\(519\) 4.00000 6.92820i 0.175581 0.304114i
\(520\) 0 0
\(521\) 3.00000 0.131432 0.0657162 0.997838i \(-0.479067\pi\)
0.0657162 + 0.997838i \(0.479067\pi\)
\(522\) 4.50000 + 7.79423i 0.196960 + 0.341144i
\(523\) 16.0000 0.699631 0.349816 0.936819i \(-0.386244\pi\)
0.349816 + 0.936819i \(0.386244\pi\)
\(524\) 10.5000 18.1865i 0.458695 0.794482i
\(525\) 0 0
\(526\) −24.0000 −1.04645
\(527\) −16.0000 + 27.7128i −0.696971 + 1.20719i
\(528\) 3.00000 5.19615i 0.130558 0.226134i
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) −2.00000 + 3.46410i −0.0868744 + 0.150471i
\(531\) −1.00000 −0.0433963
\(532\) 0 0
\(533\) 0 0
\(534\) 4.00000 0.173097
\(535\) 4.00000 + 6.92820i 0.172935 + 0.299532i
\(536\) 24.0000 1.03664
\(537\) 0 0
\(538\) 9.50000 16.4545i 0.409574 0.709403i
\(539\) 21.0000 0.904534
\(540\) −4.00000 −0.172133
\(541\) −7.50000 12.9904i −0.322450 0.558500i 0.658543 0.752543i \(-0.271173\pi\)
−0.980993 + 0.194043i \(0.937840\pi\)
\(542\) 9.50000 16.4545i 0.408060 0.706781i
\(543\) 7.00000 12.1244i 0.300399 0.520306i
\(544\) −40.0000 −1.71499
\(545\) −18.0000 −0.771035
\(546\) 0 0
\(547\) −16.0000 −0.684111 −0.342055 0.939680i \(-0.611123\pi\)
−0.342055 + 0.939680i \(0.611123\pi\)
\(548\) 3.00000 + 5.19615i 0.128154 + 0.221969i
\(549\) −4.50000 + 7.79423i −0.192055 + 0.332650i
\(550\) −1.50000 2.59808i −0.0639602 0.110782i
\(551\) −9.00000 −0.383413
\(552\) 18.0000 + 31.1769i 0.766131 + 1.32698i
\(553\) 0 0
\(554\) 30.0000 1.27458
\(555\) 10.0000 17.3205i 0.424476 0.735215i
\(556\) −1.50000 2.59808i −0.0636142 0.110183i
\(557\) −9.00000 + 15.5885i −0.381342 + 0.660504i −0.991254 0.131965i \(-0.957871\pi\)
0.609912 + 0.792469i \(0.291205\pi\)
\(558\) 2.00000 3.46410i 0.0846668 0.146647i
\(559\) 0 0
\(560\) 0 0
\(561\) −24.0000 + 41.5692i −1.01328 + 1.75505i
\(562\) −7.50000 + 12.9904i −0.316368 + 0.547966i
\(563\) −16.0000 −0.674320 −0.337160 0.941447i \(-0.609466\pi\)
−0.337160 + 0.941447i \(0.609466\pi\)
\(564\) 2.00000 + 3.46410i 0.0842152 + 0.145865i
\(565\) −2.00000 + 3.46410i −0.0841406 + 0.145736i
\(566\) 13.0000 + 22.5167i 0.546431 + 0.946446i
\(567\) 0 0
\(568\) −4.50000 + 7.79423i −0.188816 + 0.327039i
\(569\) 19.0000 32.9090i 0.796521 1.37962i −0.125347 0.992113i \(-0.540004\pi\)
0.921869 0.387503i \(-0.126662\pi\)
\(570\) 1.00000 1.73205i 0.0418854 0.0725476i
\(571\) −16.5000 28.5788i −0.690504 1.19599i −0.971673 0.236329i \(-0.924056\pi\)
0.281170 0.959658i \(-0.409278\pi\)
\(572\) 0 0
\(573\) −11.0000 19.0526i −0.459532 0.795932i
\(574\) 0 0
\(575\) 6.00000 0.250217
\(576\) 7.00000 0.291667
\(577\) −32.0000 −1.33218 −0.666089 0.745873i \(-0.732033\pi\)
−0.666089 + 0.745873i \(0.732033\pi\)
\(578\) −47.0000 −1.95494
\(579\) 4.00000 6.92820i 0.166234 0.287926i
\(580\) −9.00000 −0.373705
\(581\) 0 0
\(582\) 14.0000 24.2487i 0.580319 1.00514i
\(583\) −6.00000 10.3923i −0.248495 0.430405i
\(584\) 6.00000 0.248282
\(585\) 0 0
\(586\) 0 0
\(587\) 21.0000 + 36.3731i 0.866763 + 1.50128i 0.865286 + 0.501278i \(0.167137\pi\)
0.00147660 + 0.999999i \(0.499530\pi\)
\(588\) 7.00000 + 12.1244i 0.288675 + 0.500000i
\(589\) 2.00000 + 3.46410i 0.0824086 + 0.142736i
\(590\) −0.500000 + 0.866025i −0.0205847 + 0.0356537i
\(591\) 24.0000 41.5692i 0.987228 1.70993i
\(592\) 5.00000 8.66025i 0.205499 0.355934i
\(593\) 15.0000 + 25.9808i 0.615976 + 1.06690i 0.990212 + 0.139569i \(0.0445716\pi\)
−0.374236 + 0.927333i \(0.622095\pi\)
\(594\) −6.00000 + 10.3923i −0.246183 + 0.426401i
\(595\) 0 0
\(596\) −3.00000 −0.122885
\(597\) 1.00000 + 1.73205i 0.0409273 + 0.0708881i
\(598\) 0 0
\(599\) 12.5000 + 21.6506i 0.510736 + 0.884621i 0.999923 + 0.0124417i \(0.00396043\pi\)
−0.489186 + 0.872179i \(0.662706\pi\)
\(600\) 3.00000 5.19615i 0.122474 0.212132i
\(601\) 38.0000 1.55005 0.775026 0.631929i \(-0.217737\pi\)
0.775026 + 0.631929i \(0.217737\pi\)
\(602\) 0 0
\(603\) 8.00000 0.325785
\(604\) 11.5000 + 4.33013i 0.467928 + 0.176190i
\(605\) −2.00000 −0.0813116
\(606\) 17.0000 + 29.4449i 0.690578 + 1.19612i
\(607\) 14.0000 0.568242 0.284121 0.958788i \(-0.408298\pi\)
0.284121 + 0.958788i \(0.408298\pi\)
\(608\) −2.50000 + 4.33013i −0.101388 + 0.175610i
\(609\) 0 0
\(610\) 4.50000 + 7.79423i 0.182200 + 0.315579i
\(611\) 0 0
\(612\) −8.00000 −0.323381
\(613\) −24.0000 −0.969351 −0.484675 0.874694i \(-0.661062\pi\)
−0.484675 + 0.874694i \(0.661062\pi\)
\(614\) 7.00000 12.1244i 0.282497 0.489299i
\(615\) −7.00000 12.1244i −0.282267 0.488901i
\(616\) 0 0
\(617\) 3.00000 5.19615i 0.120775 0.209189i −0.799298 0.600935i \(-0.794795\pi\)
0.920074 + 0.391745i \(0.128129\pi\)
\(618\) −6.00000 + 10.3923i −0.241355 + 0.418040i
\(619\) 18.0000 + 31.1769i 0.723481 + 1.25311i 0.959596 + 0.281381i \(0.0907924\pi\)
−0.236115 + 0.971725i \(0.575874\pi\)
\(620\) 2.00000 + 3.46410i 0.0803219 + 0.139122i
\(621\) −12.0000 20.7846i −0.481543 0.834058i
\(622\) 9.50000 + 16.4545i 0.380915 + 0.659765i
\(623\) 0 0
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 3.00000 5.19615i 0.119904 0.207680i
\(627\) 3.00000 + 5.19615i 0.119808 + 0.207514i
\(628\) 10.0000 0.399043
\(629\) −40.0000 + 69.2820i −1.59490 + 2.76246i
\(630\) 0 0
\(631\) −7.00000 −0.278666 −0.139333 0.990246i \(-0.544496\pi\)
−0.139333 + 0.990246i \(0.544496\pi\)
\(632\) 48.0000 1.90934
\(633\) −26.0000 −1.03341
\(634\) −3.00000 + 5.19615i −0.119145 + 0.206366i
\(635\) 4.00000 + 6.92820i 0.158735 + 0.274937i
\(636\) 4.00000 6.92820i 0.158610 0.274721i
\(637\) 0 0
\(638\) −13.5000 + 23.3827i −0.534470 + 0.925729i
\(639\) −1.50000 + 2.59808i −0.0593391 + 0.102778i
\(640\) −1.50000 + 2.59808i −0.0592927 + 0.102698i
\(641\) −8.50000 14.7224i −0.335730 0.581501i 0.647895 0.761730i \(-0.275650\pi\)
−0.983625 + 0.180229i \(0.942316\pi\)
\(642\) 8.00000 + 13.8564i 0.315735 + 0.546869i
\(643\) −7.00000 + 12.1244i −0.276053 + 0.478138i −0.970400 0.241502i \(-0.922360\pi\)
0.694347 + 0.719640i \(0.255693\pi\)
\(644\) 0 0
\(645\) 8.00000 0.315000
\(646\) −4.00000 + 6.92820i −0.157378 + 0.272587i
\(647\) 7.00000 12.1244i 0.275198 0.476658i −0.694987 0.719023i \(-0.744590\pi\)
0.970185 + 0.242365i \(0.0779231\pi\)
\(648\) −33.0000 −1.29636
\(649\) −1.50000 2.59808i −0.0588802 0.101983i
\(650\) 0 0
\(651\) 0 0
\(652\) 2.00000 + 3.46410i 0.0783260 + 0.135665i
\(653\) 18.0000 31.1769i 0.704394 1.22005i −0.262515 0.964928i \(-0.584552\pi\)
0.966910 0.255119i \(-0.0821147\pi\)
\(654\) −36.0000 −1.40771
\(655\) −10.5000 18.1865i −0.410269 0.710607i
\(656\) −3.50000 6.06218i −0.136652 0.236688i
\(657\) 2.00000 0.0780274
\(658\) 0 0
\(659\) 7.50000 12.9904i 0.292159 0.506033i −0.682161 0.731202i \(-0.738960\pi\)
0.974320 + 0.225168i \(0.0722932\pi\)
\(660\) 3.00000 + 5.19615i 0.116775 + 0.202260i
\(661\) 6.00000 0.233373 0.116686 0.993169i \(-0.462773\pi\)
0.116686 + 0.993169i \(0.462773\pi\)
\(662\) 10.0000 + 17.3205i 0.388661 + 0.673181i
\(663\) 0 0
\(664\) −18.0000 −0.698535
\(665\) 0 0
\(666\) 5.00000 8.66025i 0.193746 0.335578i
\(667\) −27.0000 46.7654i −1.04544 1.81076i
\(668\) 18.0000 0.696441
\(669\) −52.0000 −2.01044
\(670\) 4.00000 6.92820i 0.154533 0.267660i
\(671\) −27.0000 −1.04232
\(672\) 0 0
\(673\) 11.0000 + 19.0526i 0.424019 + 0.734422i 0.996328 0.0856156i \(-0.0272857\pi\)
−0.572309 + 0.820038i \(0.693952\pi\)
\(674\) −20.0000 −0.770371
\(675\) −2.00000 + 3.46410i −0.0769800 + 0.133333i
\(676\) 13.0000 0.500000
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) −4.00000 + 6.92820i −0.153619 + 0.266076i
\(679\) 0 0
\(680\) −12.0000 + 20.7846i −0.460179 + 0.797053i
\(681\) −24.0000 + 41.5692i −0.919682 + 1.59294i
\(682\) 12.0000 0.459504
\(683\) −24.0000 −0.918334 −0.459167 0.888350i \(-0.651852\pi\)
−0.459167 + 0.888350i \(0.651852\pi\)
\(684\) −0.500000 + 0.866025i −0.0191180 + 0.0331133i
\(685\) 6.00000 0.229248
\(686\) 0 0
\(687\) 12.0000 0.457829
\(688\) 4.00000 0.152499
\(689\) 0 0
\(690\) 12.0000 0.456832
\(691\) 19.0000 0.722794 0.361397 0.932412i \(-0.382300\pi\)
0.361397 + 0.932412i \(0.382300\pi\)
\(692\) 2.00000 + 3.46410i 0.0760286 + 0.131685i
\(693\) 0 0
\(694\) −10.0000 + 17.3205i −0.379595 + 0.657477i
\(695\) −3.00000 −0.113796
\(696\) −54.0000 −2.04686
\(697\) 28.0000 + 48.4974i 1.06058 + 1.83697i
\(698\) 2.00000 0.0757011
\(699\) −24.0000 41.5692i −0.907763 1.57229i
\(700\) 0 0
\(701\) −6.50000 11.2583i −0.245502 0.425221i 0.716771 0.697309i \(-0.245619\pi\)
−0.962273 + 0.272087i \(0.912286\pi\)
\(702\) 0 0
\(703\) 5.00000 + 8.66025i 0.188579 + 0.326628i
\(704\) 10.5000 + 18.1865i 0.395734 + 0.685431i
\(705\) 4.00000 0.150649
\(706\) 14.0000 24.2487i 0.526897 0.912612i
\(707\) 0 0
\(708\) 1.00000 1.73205i 0.0375823 0.0650945i
\(709\) −8.50000 + 14.7224i −0.319224 + 0.552913i −0.980326 0.197383i \(-0.936756\pi\)
0.661102 + 0.750296i \(0.270089\pi\)
\(710\) 1.50000 + 2.59808i 0.0562940 + 0.0975041i
\(711\) 16.0000 0.600047
\(712\) −3.00000 + 5.19615i −0.112430 + 0.194734i
\(713\) −12.0000 + 20.7846i −0.449404 + 0.778390i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 4.00000 + 6.92820i 0.149383 + 0.258738i
\(718\) −5.50000 9.52628i −0.205258 0.355518i
\(719\) −3.50000 + 6.06218i −0.130528 + 0.226081i −0.923880 0.382682i \(-0.875001\pi\)
0.793352 + 0.608763i \(0.208334\pi\)
\(720\) 0.500000 0.866025i 0.0186339 0.0322749i
\(721\) 0 0
\(722\) −9.00000 15.5885i −0.334945 0.580142i
\(723\) 17.0000 29.4449i 0.632237 1.09507i
\(724\) 3.50000 + 6.06218i 0.130076 + 0.225299i
\(725\) −4.50000 + 7.79423i −0.167126 + 0.289470i
\(726\) −4.00000 −0.148454
\(727\) −4.00000 −0.148352 −0.0741759 0.997245i \(-0.523633\pi\)
−0.0741759 + 0.997245i \(0.523633\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 1.00000 1.73205i 0.0370117 0.0641061i
\(731\) −32.0000 −1.18356
\(732\) −9.00000 15.5885i −0.332650 0.576166i
\(733\) −9.00000 + 15.5885i −0.332423 + 0.575773i −0.982986 0.183679i \(-0.941199\pi\)
0.650564 + 0.759452i \(0.274533\pi\)
\(734\) 12.0000 + 20.7846i 0.442928 + 0.767174i
\(735\) 14.0000 0.516398
\(736\) −30.0000 −1.10581
\(737\) 12.0000 + 20.7846i 0.442026 + 0.765611i
\(738\) −3.50000 6.06218i −0.128837 0.223152i
\(739\) −6.00000 10.3923i −0.220714 0.382287i 0.734311 0.678813i \(-0.237505\pi\)
−0.955025 + 0.296526i \(0.904172\pi\)
\(740\) 5.00000 + 8.66025i 0.183804 + 0.318357i
\(741\) 0 0
\(742\) 0 0
\(743\) −11.0000 + 19.0526i −0.403551 + 0.698971i −0.994152 0.107993i \(-0.965557\pi\)
0.590601 + 0.806964i \(0.298891\pi\)
\(744\) 12.0000 + 20.7846i 0.439941 + 0.762001i
\(745\) −1.50000 + 2.59808i −0.0549557 + 0.0951861i
\(746\) 16.0000 0.585802
\(747\) −6.00000 −0.219529
\(748\) −12.0000 20.7846i −0.438763 0.759961i
\(749\) 0 0
\(750\) −1.00000 1.73205i −0.0365148 0.0632456i
\(751\) −17.5000 + 30.3109i −0.638584 + 1.10606i 0.347160 + 0.937806i \(0.387146\pi\)
−0.985744 + 0.168254i \(0.946187\pi\)
\(752\) 2.00000 0.0729325
\(753\) 12.0000 + 20.7846i 0.437304 + 0.757433i
\(754\) 0 0
\(755\) 9.50000 7.79423i 0.345740 0.283661i
\(756\) 0 0
\(757\) −16.0000 27.7128i −0.581530 1.00724i −0.995298 0.0968571i \(-0.969121\pi\)
0.413768 0.910382i \(-0.364212\pi\)
\(758\) 23.0000 0.835398
\(759\) −18.0000 + 31.1769i −0.653359 + 1.13165i
\(760\) 1.50000 + 2.59808i 0.0544107 + 0.0942421i
\(761\) −3.50000 6.06218i −0.126875 0.219754i 0.795589 0.605836i \(-0.207161\pi\)
−0.922464 + 0.386082i \(0.873828\pi\)
\(762\) 8.00000 + 13.8564i 0.289809 + 0.501965i
\(763\) 0 0
\(764\) 11.0000 0.397966
\(765\) −4.00000 + 6.92820i −0.144620 + 0.250490i
\(766\) −8.00000 13.8564i −0.289052 0.500652i
\(767\) 0 0
\(768\) −17.0000 + 29.4449i −0.613435 + 1.06250i
\(769\) 3.50000 6.06218i 0.126213 0.218608i −0.795993 0.605305i \(-0.793051\pi\)
0.922207 + 0.386698i \(0.126384\pi\)
\(770\) 0 0
\(771\) 30.0000 + 51.9615i 1.08042 + 1.87135i
\(772\) 2.00000 + 3.46410i 0.0719816 + 0.124676i
\(773\) −3.00000 5.19615i −0.107903 0.186893i 0.807018 0.590527i \(-0.201080\pi\)
−0.914920 + 0.403634i \(0.867747\pi\)
\(774\) 4.00000 0.143777
\(775\) 4.00000 0.143684
\(776\) 21.0000 + 36.3731i 0.753856 + 1.30572i
\(777\) 0 0
\(778\) 17.5000 + 30.3109i 0.627405 + 1.08670i
\(779\) 7.00000 0.250801
\(780\) 0 0
\(781\) −9.00000 −0.322045
\(782\) −48.0000 −1.71648
\(783\) 36.0000 1.28654
\(784\) 7.00000 0.250000
\(785\) 5.00000 8.66025i 0.178458 0.309098i
\(786\) −21.0000 36.3731i −0.749045 1.29738i
\(787\) −14.0000 + 24.2487i −0.499046 + 0.864373i −0.999999 0.00110111i \(-0.999650\pi\)
0.500953 + 0.865474i \(0.332983\pi\)
\(788\) 12.0000 + 20.7846i 0.427482 + 0.740421i
\(789\) 24.0000 41.5692i 0.854423 1.47990i
\(790\) 8.00000 13.8564i 0.284627 0.492989i
\(791\) 0 0
\(792\) 4.50000 + 7.79423i 0.159901 + 0.276956i
\(793\) 0 0
\(794\) 7.00000 12.1244i 0.248421 0.430277i
\(795\) −4.00000 6.92820i −0.141865 0.245718i
\(796\) −1.00000 −0.0354441
\(797\) 3.00000 5.19615i 0.106265 0.184057i −0.807989 0.589197i \(-0.799444\pi\)
0.914255 + 0.405140i \(0.132777\pi\)
\(798\) 0 0
\(799\) −16.0000 −0.566039
\(800\) 2.50000 + 4.33013i 0.0883883 + 0.153093i
\(801\) −1.00000 + 1.73205i −0.0353333 + 0.0611990i
\(802\) 7.50000 12.9904i 0.264834 0.458706i
\(803\) 3.00000 + 5.19615i 0.105868 + 0.183368i
\(804\) −8.00000 + 13.8564i −0.282138 + 0.488678i
\(805\) 0 0
\(806\) 0 0
\(807\) 19.0000 + 32.9090i 0.668832 + 1.15845i
\(808\) −51.0000 −1.79417
\(809\) −3.00000 5.19615i −0.105474 0.182687i 0.808458 0.588555i \(-0.200303\pi\)
−0.913932 + 0.405868i \(0.866969\pi\)
\(810\) −5.50000 + 9.52628i −0.193250 + 0.334719i
\(811\) 13.5000 + 23.3827i 0.474049 + 0.821077i 0.999559 0.0297106i \(-0.00945858\pi\)
−0.525509 + 0.850788i \(0.676125\pi\)
\(812\) 0 0
\(813\) 19.0000 + 32.9090i 0.666359 + 1.15417i
\(814\) 30.0000 1.05150
\(815\) 4.00000 0.140114
\(816\) −8.00000 + 13.8564i −0.280056 + 0.485071i
\(817\) −2.00000 + 3.46410i −0.0699711 + 0.121194i
\(818\) 1.50000 + 2.59808i 0.0524463 + 0.0908396i
\(819\) 0 0
\(820\) 7.00000 0.244451
\(821\) −22.5000 + 38.9711i −0.785255 + 1.36010i 0.143591 + 0.989637i \(0.454135\pi\)
−0.928846 + 0.370465i \(0.879198\pi\)
\(822\) 12.0000 0.418548
\(823\) 16.0000 0.557725 0.278862 0.960331i \(-0.410043\pi\)
0.278862 + 0.960331i \(0.410043\pi\)
\(824\) −9.00000 15.5885i −0.313530 0.543050i
\(825\) 6.00000 0.208893
\(826\) 0 0
\(827\) 44.0000 1.53003 0.765015 0.644013i \(-0.222732\pi\)
0.765015 + 0.644013i \(0.222732\pi\)
\(828\) −6.00000 −0.208514
\(829\) −13.5000 + 23.3827i −0.468874 + 0.812114i −0.999367 0.0355753i \(-0.988674\pi\)
0.530493 + 0.847690i \(0.322007\pi\)
\(830\) −3.00000 + 5.19615i −0.104132 + 0.180361i
\(831\) −30.0000 + 51.9615i −1.04069 + 1.80253i
\(832\) 0 0
\(833\) −56.0000 −1.94029
\(834\) −6.00000 −0.207763
\(835\) 9.00000 15.5885i 0.311458 0.539461i
\(836\) −3.00000 −0.103757
\(837\) −8.00000 13.8564i −0.276520 0.478947i
\(838\) −12.0000 −0.414533
\(839\) −35.0000 −1.20833 −0.604167 0.796858i \(-0.706494\pi\)
−0.604167 + 0.796858i \(0.706494\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) 7.00000 0.241236
\(843\) −15.0000 25.9808i −0.516627 0.894825i
\(844\) 6.50000 11.2583i 0.223739 0.387528i
\(845\) 6.50000 11.2583i 0.223607 0.387298i
\(846\) 2.00000 0.0687614
\(847\) 0 0
\(848\) −2.00000 3.46410i −0.0686803 0.118958i
\(849\) −52.0000 −1.78464
\(850\) 4.00000 + 6.92820i 0.137199 + 0.237635i
\(851\) −30.0000 + 51.9615i −1.02839 + 1.78122i
\(852\) −3.00000 5.19615i −0.102778 0.178017i
\(853\) 38.0000 1.30110 0.650548 0.759465i \(-0.274539\pi\)
0.650548 + 0.759465i \(0.274539\pi\)
\(854\) 0 0
\(855\) 0.500000 + 0.866025i 0.0170996 + 0.0296174i
\(856\) −24.0000 −0.820303
\(857\) 24.0000 41.5692i 0.819824 1.41998i −0.0859870 0.996296i \(-0.527404\pi\)
0.905811 0.423681i \(-0.139262\pi\)
\(858\) 0 0
\(859\) −7.50000 + 12.9904i −0.255897 + 0.443226i −0.965139 0.261739i \(-0.915704\pi\)
0.709242 + 0.704965i \(0.249037\pi\)
\(860\) −2.00000 + 3.46410i −0.0681994 + 0.118125i
\(861\) 0 0
\(862\) −29.0000 −0.987744
\(863\) −7.00000 + 12.1244i −0.238283 + 0.412718i −0.960222 0.279239i \(-0.909918\pi\)
0.721939 + 0.691957i \(0.243251\pi\)
\(864\) 10.0000 17.3205i 0.340207 0.589256i
\(865\) 4.00000 0.136004
\(866\) 10.0000 + 17.3205i 0.339814 + 0.588575i
\(867\) 47.0000 81.4064i 1.59620 2.76471i
\(868\) 0 0
\(869\) 24.0000 + 41.5692i 0.814144 + 1.41014i
\(870\) −9.00000 + 15.5885i −0.305129 + 0.528498i
\(871\) 0 0
\(872\) 27.0000 46.7654i 0.914335 1.58368i
\(873\) 7.00000 + 12.1244i 0.236914 + 0.410347i
\(874\) −3.00000 + 5.19615i −0.101477 + 0.175762i
\(875\) 0 0
\(876\) −2.00000 + 3.46410i −0.0675737 + 0.117041i
\(877\) 10.0000 0.337676 0.168838 0.985644i \(-0.445999\pi\)
0.168838 + 0.985644i \(0.445999\pi\)
\(878\) 1.00000 0.0337484
\(879\) 0 0
\(880\) 3.00000 0.101130
\(881\) 7.00000 12.1244i 0.235836 0.408480i −0.723679 0.690136i \(-0.757551\pi\)
0.959515 + 0.281656i \(0.0908839\pi\)
\(882\) 7.00000 0.235702
\(883\) −13.0000 22.5167i −0.437485 0.757746i 0.560010 0.828486i \(-0.310797\pi\)
−0.997495 + 0.0707399i \(0.977464\pi\)
\(884\) 0 0
\(885\) −1.00000 1.73205i −0.0336146 0.0582223i
\(886\) −20.0000 −0.671913
\(887\) 18.0000 0.604381 0.302190 0.953248i \(-0.402282\pi\)
0.302190 + 0.953248i \(0.402282\pi\)
\(888\) 30.0000 + 51.9615i 1.00673 + 1.74371i
\(889\) 0 0
\(890\) 1.00000 + 1.73205i 0.0335201 + 0.0580585i
\(891\) −16.5000 28.5788i −0.552771 0.957427i
\(892\) 13.0000 22.5167i 0.435272 0.753914i
\(893\) −1.00000 + 1.73205i −0.0334637 + 0.0579609i
\(894\) −3.00000 + 5.19615i −0.100335 + 0.173785i
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 5.00000 0.166852
\(899\) −18.0000 31.1769i −0.600334 1.03981i
\(900\) 0.500000 + 0.866025i 0.0166667 + 0.0288675i
\(901\) 16.0000 + 27.7128i 0.533037 + 0.923248i
\(902\) 10.5000 18.1865i 0.349612 0.605545i
\(903\) 0 0
\(904\) −6.00000 10.3923i −0.199557 0.345643i
\(905\) 7.00000 0.232688
\(906\) 19.0000 15.5885i 0.631233 0.517892i
\(907\) −8.00000 −0.265636 −0.132818 0.991140i \(-0.542403\pi\)
−0.132818 + 0.991140i \(0.542403\pi\)
\(908\) −12.0000 20.7846i −0.398234 0.689761i
\(909\) −17.0000 −0.563854
\(910\) 0 0
\(911\) −28.0000 48.4974i −0.927681 1.60679i −0.787191 0.616709i \(-0.788465\pi\)
−0.140490 0.990082i \(-0.544868\pi\)
\(912\) 1.00000 + 1.73205i 0.0331133 + 0.0573539i
\(913\) −9.00000 15.5885i −0.297857 0.515903i
\(914\) −22.0000 −0.727695
\(915\) −18.0000 −0.595062
\(916\) −3.00000 + 5.19615i −0.0991228 + 0.171686i
\(917\) 0 0
\(918\) 16.0000 27.7128i 0.528079 0.914659i
\(919\) 16.0000 27.7128i 0.527791 0.914161i −0.471684 0.881768i \(-0.656354\pi\)
0.999475 0.0323936i \(-0.0103130\pi\)
\(920\) −9.00000 + 15.5885i −0.296721 + 0.513936i
\(921\) 14.0000 + 24.2487i 0.461316 + 0.799022i
\(922\) −2.50000 4.33013i −0.0823331 0.142605i
\(923\) 0 0
\(924\) 0 0
\(925\) 10.0000 0.328798
\(926\) 34.0000 1.11731
\(927\) −3.00000 5.19615i −0.0985329 0.170664i
\(928\) 22.5000 38.9711i 0.738599 1.27929i
\(929\) 6.50000 + 11.2583i 0.213258 + 0.369374i 0.952732 0.303811i \(-0.0982592\pi\)
−0.739474 + 0.673185i \(0.764926\pi\)
\(930\) 8.00000 0.262330
\(931\) −3.50000 + 6.06218i −0.114708 + 0.198680i
\(932\) 24.0000 0.786146
\(933\) −38.0000 −1.24406
\(934\) 18.0000 0.588978
\(935\) −24.0000 −0.784884
\(936\) 0 0
\(937\) 29.0000 + 50.2295i 0.947389 + 1.64093i 0.750896 + 0.660420i \(0.229622\pi\)
0.196492 + 0.980505i \(0.437045\pi\)
\(938\) 0 0
\(939\) 6.00000 + 10.3923i 0.195803 + 0.339140i
\(940\) −1.00000 + 1.73205i −0.0326164 + 0.0564933i
\(941\) −3.50000 + 6.06218i −0.114097 + 0.197621i −0.917418 0.397924i \(-0.869731\pi\)
0.803322 + 0.595545i \(0.203064\pi\)
\(942\) 10.0000 17.3205i 0.325818 0.564333i
\(943\) 21.0000 + 36.3731i 0.683854 + 1.18447i
\(944\) −0.500000 0.866025i −0.0162736 0.0281867i
\(945\) 0 0
\(946\) 6.00000 + 10.3923i 0.195077 + 0.337883i
\(947\) −40.0000 −1.29983 −0.649913 0.760009i \(-0.725195\pi\)
−0.649913 + 0.760009i \(0.725195\pi\)
\(948\) −16.0000 + 27.7128i −0.519656 + 0.900070i
\(949\) 0 0
\(950\) 1.00000 0.0324443
\(951\) −6.00000 10.3923i −0.194563 0.336994i
\(952\) 0 0
\(953\) 19.0000 32.9090i 0.615470 1.06603i −0.374831 0.927093i \(-0.622299\pi\)
0.990302 0.138933i \(-0.0443673\pi\)
\(954\) −2.00000 3.46410i −0.0647524 0.112154i
\(955\) 5.50000 9.52628i 0.177976 0.308263i
\(956\) −4.00000 −0.129369
\(957\) −27.0000 46.7654i −0.872786 1.51171i
\(958\) −2.50000 4.33013i −0.0807713 0.139900i
\(959\) 0 0
\(960\) 7.00000 + 12.1244i 0.225924 + 0.391312i
\(961\) 7.50000 12.9904i 0.241935 0.419045i
\(962\) 0 0
\(963\) −8.00000 −0.257796
\(964\) 8.50000 + 14.7224i 0.273767 + 0.474178i
\(965\) 4.00000 0.128765
\(966\) 0 0
\(967\) 25.0000 43.3013i 0.803946 1.39247i −0.113055 0.993589i \(-0.536064\pi\)
0.917000 0.398886i \(-0.130603\pi\)
\(968\) 3.00000 5.19615i 0.0964237 0.167011i
\(969\) −8.00000 13.8564i −0.256997 0.445132i
\(970\) 14.0000 0.449513
\(971\) 3.00000 0.0962746 0.0481373 0.998841i \(-0.484672\pi\)
0.0481373 + 0.998841i \(0.484672\pi\)
\(972\) 5.00000 8.66025i 0.160375 0.277778i
\(973\) 0 0
\(974\) 2.00000 0.0640841
\(975\) 0 0
\(976\) −9.00000 −0.288083
\(977\) 5.00000 8.66025i 0.159964 0.277066i −0.774891 0.632094i \(-0.782195\pi\)
0.934856 + 0.355028i \(0.115529\pi\)
\(978\) 8.00000 0.255812
\(979\) −6.00000 −0.191761
\(980\) −3.50000 + 6.06218i −0.111803 + 0.193649i
\(981\) 9.00000 15.5885i 0.287348 0.497701i
\(982\) −7.50000 + 12.9904i −0.239335 + 0.414540i
\(983\) 9.00000 15.5885i 0.287055 0.497195i −0.686050 0.727554i \(-0.740657\pi\)
0.973106 + 0.230360i \(0.0739903\pi\)
\(984\) 42.0000 1.33891
\(985\) 24.0000 0.764704
\(986\) 36.0000 62.3538i 1.14647 1.98575i
\(987\) 0 0
\(988\) 0 0
\(989\) −24.0000 −0.763156
\(990\) 3.00000 0.0953463
\(991\) −14.5000 + 25.1147i −0.460608 + 0.797796i −0.998991 0.0449040i \(-0.985702\pi\)
0.538384 + 0.842700i \(0.319035\pi\)
\(992\) −20.0000 −0.635001
\(993\) −40.0000 −1.26936
\(994\) 0 0
\(995\) −0.500000 + 0.866025i −0.0158511 + 0.0274549i
\(996\) 6.00000 10.3923i 0.190117 0.329293i
\(997\) 34.0000 1.07679 0.538395 0.842692i \(-0.319031\pi\)
0.538395 + 0.842692i \(0.319031\pi\)
\(998\) 3.00000 0.0949633
\(999\) −20.0000 34.6410i −0.632772 1.09599i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 755.2.e.a.636.1 yes 2
151.118 even 3 inner 755.2.e.a.571.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
755.2.e.a.571.1 2 151.118 even 3 inner
755.2.e.a.636.1 yes 2 1.1 even 1 trivial