Properties

Label 755.2.a.j.1.9
Level $755$
Weight $2$
Character 755.1
Self dual yes
Analytic conductor $6.029$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [755,2,Mod(1,755)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(755, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("755.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 755 = 5 \cdot 151 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 755.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,-2,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.02870535261\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 2 x^{14} - 22 x^{13} + 48 x^{12} + 171 x^{11} - 423 x^{10} - 527 x^{9} + 1641 x^{8} + 400 x^{7} + \cdots + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-0.0966636\) of defining polynomial
Character \(\chi\) \(=\) 755.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.0966636 q^{2} -1.19614 q^{3} -1.99066 q^{4} +1.00000 q^{5} -0.115623 q^{6} +2.27227 q^{7} -0.385751 q^{8} -1.56924 q^{9} +0.0966636 q^{10} +1.59018 q^{11} +2.38111 q^{12} +0.511125 q^{13} +0.219645 q^{14} -1.19614 q^{15} +3.94402 q^{16} -4.87901 q^{17} -0.151689 q^{18} -2.76804 q^{19} -1.99066 q^{20} -2.71795 q^{21} +0.153712 q^{22} +0.727885 q^{23} +0.461413 q^{24} +1.00000 q^{25} +0.0494071 q^{26} +5.46547 q^{27} -4.52330 q^{28} +7.79700 q^{29} -0.115623 q^{30} +10.2709 q^{31} +1.15275 q^{32} -1.90208 q^{33} -0.471623 q^{34} +2.27227 q^{35} +3.12383 q^{36} +6.19960 q^{37} -0.267568 q^{38} -0.611378 q^{39} -0.385751 q^{40} +7.54761 q^{41} -0.262727 q^{42} +6.41231 q^{43} -3.16550 q^{44} -1.56924 q^{45} +0.0703600 q^{46} +1.87248 q^{47} -4.71761 q^{48} -1.83681 q^{49} +0.0966636 q^{50} +5.83599 q^{51} -1.01747 q^{52} +6.64777 q^{53} +0.528311 q^{54} +1.59018 q^{55} -0.876529 q^{56} +3.31096 q^{57} +0.753686 q^{58} -9.62671 q^{59} +2.38111 q^{60} -10.7110 q^{61} +0.992824 q^{62} -3.56574 q^{63} -7.77662 q^{64} +0.511125 q^{65} -0.183862 q^{66} +7.88901 q^{67} +9.71244 q^{68} -0.870654 q^{69} +0.219645 q^{70} -0.985313 q^{71} +0.605338 q^{72} +14.1335 q^{73} +0.599275 q^{74} -1.19614 q^{75} +5.51021 q^{76} +3.61331 q^{77} -0.0590980 q^{78} -5.80342 q^{79} +3.94402 q^{80} -1.82974 q^{81} +0.729579 q^{82} -12.6138 q^{83} +5.41051 q^{84} -4.87901 q^{85} +0.619837 q^{86} -9.32632 q^{87} -0.613413 q^{88} +16.8464 q^{89} -0.151689 q^{90} +1.16141 q^{91} -1.44897 q^{92} -12.2855 q^{93} +0.181000 q^{94} -2.76804 q^{95} -1.37885 q^{96} +1.32171 q^{97} -0.177553 q^{98} -2.49538 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 2 q^{2} + 5 q^{3} + 18 q^{4} + 15 q^{5} - 4 q^{6} + 11 q^{7} + 12 q^{8} + 10 q^{9} - 2 q^{10} + 2 q^{11} + 4 q^{12} + 11 q^{13} - 9 q^{14} + 5 q^{15} + 40 q^{16} + 25 q^{17} - 15 q^{18} - 3 q^{19}+ \cdots - 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0966636 0.0683515 0.0341757 0.999416i \(-0.489119\pi\)
0.0341757 + 0.999416i \(0.489119\pi\)
\(3\) −1.19614 −0.690593 −0.345296 0.938494i \(-0.612222\pi\)
−0.345296 + 0.938494i \(0.612222\pi\)
\(4\) −1.99066 −0.995328
\(5\) 1.00000 0.447214
\(6\) −0.115623 −0.0472030
\(7\) 2.27227 0.858835 0.429418 0.903106i \(-0.358719\pi\)
0.429418 + 0.903106i \(0.358719\pi\)
\(8\) −0.385751 −0.136384
\(9\) −1.56924 −0.523081
\(10\) 0.0966636 0.0305677
\(11\) 1.59018 0.479457 0.239729 0.970840i \(-0.422942\pi\)
0.239729 + 0.970840i \(0.422942\pi\)
\(12\) 2.38111 0.687367
\(13\) 0.511125 0.141760 0.0708802 0.997485i \(-0.477419\pi\)
0.0708802 + 0.997485i \(0.477419\pi\)
\(14\) 0.219645 0.0587027
\(15\) −1.19614 −0.308843
\(16\) 3.94402 0.986006
\(17\) −4.87901 −1.18333 −0.591667 0.806182i \(-0.701530\pi\)
−0.591667 + 0.806182i \(0.701530\pi\)
\(18\) −0.151689 −0.0357534
\(19\) −2.76804 −0.635031 −0.317516 0.948253i \(-0.602849\pi\)
−0.317516 + 0.948253i \(0.602849\pi\)
\(20\) −1.99066 −0.445124
\(21\) −2.71795 −0.593106
\(22\) 0.153712 0.0327716
\(23\) 0.727885 0.151774 0.0758872 0.997116i \(-0.475821\pi\)
0.0758872 + 0.997116i \(0.475821\pi\)
\(24\) 0.461413 0.0941856
\(25\) 1.00000 0.200000
\(26\) 0.0494071 0.00968954
\(27\) 5.46547 1.05183
\(28\) −4.52330 −0.854823
\(29\) 7.79700 1.44787 0.723933 0.689870i \(-0.242332\pi\)
0.723933 + 0.689870i \(0.242332\pi\)
\(30\) −0.115623 −0.0211098
\(31\) 10.2709 1.84471 0.922356 0.386342i \(-0.126262\pi\)
0.922356 + 0.386342i \(0.126262\pi\)
\(32\) 1.15275 0.203779
\(33\) −1.90208 −0.331110
\(34\) −0.471623 −0.0808827
\(35\) 2.27227 0.384083
\(36\) 3.12383 0.520638
\(37\) 6.19960 1.01921 0.509604 0.860409i \(-0.329792\pi\)
0.509604 + 0.860409i \(0.329792\pi\)
\(38\) −0.267568 −0.0434053
\(39\) −0.611378 −0.0978988
\(40\) −0.385751 −0.0609926
\(41\) 7.54761 1.17874 0.589369 0.807864i \(-0.299376\pi\)
0.589369 + 0.807864i \(0.299376\pi\)
\(42\) −0.262727 −0.0405397
\(43\) 6.41231 0.977868 0.488934 0.872321i \(-0.337386\pi\)
0.488934 + 0.872321i \(0.337386\pi\)
\(44\) −3.16550 −0.477217
\(45\) −1.56924 −0.233929
\(46\) 0.0703600 0.0103740
\(47\) 1.87248 0.273129 0.136564 0.990631i \(-0.456394\pi\)
0.136564 + 0.990631i \(0.456394\pi\)
\(48\) −4.71761 −0.680929
\(49\) −1.83681 −0.262402
\(50\) 0.0966636 0.0136703
\(51\) 5.83599 0.817203
\(52\) −1.01747 −0.141098
\(53\) 6.64777 0.913141 0.456571 0.889687i \(-0.349078\pi\)
0.456571 + 0.889687i \(0.349078\pi\)
\(54\) 0.528311 0.0718941
\(55\) 1.59018 0.214420
\(56\) −0.876529 −0.117131
\(57\) 3.31096 0.438548
\(58\) 0.753686 0.0989638
\(59\) −9.62671 −1.25329 −0.626645 0.779305i \(-0.715572\pi\)
−0.626645 + 0.779305i \(0.715572\pi\)
\(60\) 2.38111 0.307400
\(61\) −10.7110 −1.37140 −0.685698 0.727886i \(-0.740503\pi\)
−0.685698 + 0.727886i \(0.740503\pi\)
\(62\) 0.992824 0.126089
\(63\) −3.56574 −0.449241
\(64\) −7.77662 −0.972077
\(65\) 0.511125 0.0633972
\(66\) −0.183862 −0.0226318
\(67\) 7.88901 0.963796 0.481898 0.876227i \(-0.339948\pi\)
0.481898 + 0.876227i \(0.339948\pi\)
\(68\) 9.71244 1.17781
\(69\) −0.870654 −0.104814
\(70\) 0.219645 0.0262526
\(71\) −0.985313 −0.116935 −0.0584675 0.998289i \(-0.518621\pi\)
−0.0584675 + 0.998289i \(0.518621\pi\)
\(72\) 0.605338 0.0713397
\(73\) 14.1335 1.65421 0.827103 0.562050i \(-0.189987\pi\)
0.827103 + 0.562050i \(0.189987\pi\)
\(74\) 0.599275 0.0696643
\(75\) −1.19614 −0.138119
\(76\) 5.51021 0.632064
\(77\) 3.61331 0.411775
\(78\) −0.0590980 −0.00669153
\(79\) −5.80342 −0.652935 −0.326468 0.945208i \(-0.605858\pi\)
−0.326468 + 0.945208i \(0.605858\pi\)
\(80\) 3.94402 0.440955
\(81\) −1.82974 −0.203305
\(82\) 0.729579 0.0805685
\(83\) −12.6138 −1.38455 −0.692273 0.721635i \(-0.743391\pi\)
−0.692273 + 0.721635i \(0.743391\pi\)
\(84\) 5.41051 0.590335
\(85\) −4.87901 −0.529203
\(86\) 0.619837 0.0668387
\(87\) −9.32632 −0.999886
\(88\) −0.613413 −0.0653901
\(89\) 16.8464 1.78571 0.892855 0.450344i \(-0.148699\pi\)
0.892855 + 0.450344i \(0.148699\pi\)
\(90\) −0.151689 −0.0159894
\(91\) 1.16141 0.121749
\(92\) −1.44897 −0.151065
\(93\) −12.2855 −1.27394
\(94\) 0.181000 0.0186687
\(95\) −2.76804 −0.283995
\(96\) −1.37885 −0.140728
\(97\) 1.32171 0.134199 0.0670997 0.997746i \(-0.478625\pi\)
0.0670997 + 0.997746i \(0.478625\pi\)
\(98\) −0.177553 −0.0179355
\(99\) −2.49538 −0.250795
\(100\) −1.99066 −0.199066
\(101\) −8.82633 −0.878253 −0.439126 0.898425i \(-0.644712\pi\)
−0.439126 + 0.898425i \(0.644712\pi\)
\(102\) 0.564128 0.0558570
\(103\) −6.47124 −0.637631 −0.318815 0.947817i \(-0.603285\pi\)
−0.318815 + 0.947817i \(0.603285\pi\)
\(104\) −0.197167 −0.0193338
\(105\) −2.71795 −0.265245
\(106\) 0.642597 0.0624146
\(107\) 5.79841 0.560553 0.280277 0.959919i \(-0.409574\pi\)
0.280277 + 0.959919i \(0.409574\pi\)
\(108\) −10.8799 −1.04692
\(109\) −11.8131 −1.13149 −0.565743 0.824582i \(-0.691411\pi\)
−0.565743 + 0.824582i \(0.691411\pi\)
\(110\) 0.153712 0.0146559
\(111\) −7.41560 −0.703857
\(112\) 8.96187 0.846817
\(113\) 17.9838 1.69177 0.845885 0.533365i \(-0.179073\pi\)
0.845885 + 0.533365i \(0.179073\pi\)
\(114\) 0.320050 0.0299754
\(115\) 0.727885 0.0678756
\(116\) −15.5211 −1.44110
\(117\) −0.802079 −0.0741523
\(118\) −0.930552 −0.0856643
\(119\) −11.0864 −1.01629
\(120\) 0.461413 0.0421211
\(121\) −8.47133 −0.770121
\(122\) −1.03536 −0.0937370
\(123\) −9.02801 −0.814029
\(124\) −20.4459 −1.83609
\(125\) 1.00000 0.0894427
\(126\) −0.344677 −0.0307063
\(127\) 6.49484 0.576324 0.288162 0.957582i \(-0.406956\pi\)
0.288162 + 0.957582i \(0.406956\pi\)
\(128\) −3.05721 −0.270222
\(129\) −7.67003 −0.675308
\(130\) 0.0494071 0.00433329
\(131\) −17.7180 −1.54803 −0.774015 0.633168i \(-0.781754\pi\)
−0.774015 + 0.633168i \(0.781754\pi\)
\(132\) 3.78639 0.329563
\(133\) −6.28971 −0.545387
\(134\) 0.762580 0.0658769
\(135\) 5.46547 0.470392
\(136\) 1.88209 0.161387
\(137\) 2.15258 0.183907 0.0919536 0.995763i \(-0.470689\pi\)
0.0919536 + 0.995763i \(0.470689\pi\)
\(138\) −0.0841605 −0.00716422
\(139\) 18.6282 1.58002 0.790011 0.613092i \(-0.210075\pi\)
0.790011 + 0.613092i \(0.210075\pi\)
\(140\) −4.52330 −0.382289
\(141\) −2.23975 −0.188621
\(142\) −0.0952438 −0.00799269
\(143\) 0.812780 0.0679681
\(144\) −6.18914 −0.515761
\(145\) 7.79700 0.647506
\(146\) 1.36620 0.113067
\(147\) 2.19709 0.181213
\(148\) −12.3413 −1.01445
\(149\) 0.719970 0.0589822 0.0294911 0.999565i \(-0.490611\pi\)
0.0294911 + 0.999565i \(0.490611\pi\)
\(150\) −0.115623 −0.00944061
\(151\) −1.00000 −0.0813788
\(152\) 1.06777 0.0866078
\(153\) 7.65636 0.618980
\(154\) 0.349275 0.0281454
\(155\) 10.2709 0.824980
\(156\) 1.21704 0.0974414
\(157\) 20.0909 1.60343 0.801715 0.597707i \(-0.203921\pi\)
0.801715 + 0.597707i \(0.203921\pi\)
\(158\) −0.560979 −0.0446291
\(159\) −7.95168 −0.630609
\(160\) 1.15275 0.0911326
\(161\) 1.65395 0.130349
\(162\) −0.176869 −0.0138962
\(163\) −11.7359 −0.919224 −0.459612 0.888120i \(-0.652012\pi\)
−0.459612 + 0.888120i \(0.652012\pi\)
\(164\) −15.0247 −1.17323
\(165\) −1.90208 −0.148077
\(166\) −1.21930 −0.0946358
\(167\) −11.8796 −0.919267 −0.459634 0.888109i \(-0.652019\pi\)
−0.459634 + 0.888109i \(0.652019\pi\)
\(168\) 1.04845 0.0808899
\(169\) −12.7388 −0.979904
\(170\) −0.471623 −0.0361718
\(171\) 4.34372 0.332173
\(172\) −12.7647 −0.973299
\(173\) −11.9977 −0.912169 −0.456084 0.889937i \(-0.650749\pi\)
−0.456084 + 0.889937i \(0.650749\pi\)
\(174\) −0.901515 −0.0683437
\(175\) 2.27227 0.171767
\(176\) 6.27171 0.472748
\(177\) 11.5149 0.865514
\(178\) 1.62843 0.122056
\(179\) 13.7491 1.02766 0.513828 0.857893i \(-0.328227\pi\)
0.513828 + 0.857893i \(0.328227\pi\)
\(180\) 3.12383 0.232836
\(181\) 18.4750 1.37324 0.686619 0.727017i \(-0.259094\pi\)
0.686619 + 0.727017i \(0.259094\pi\)
\(182\) 0.112266 0.00832172
\(183\) 12.8118 0.947077
\(184\) −0.280782 −0.0206996
\(185\) 6.19960 0.455803
\(186\) −1.18756 −0.0870760
\(187\) −7.75851 −0.567358
\(188\) −3.72745 −0.271853
\(189\) 12.4190 0.903348
\(190\) −0.267568 −0.0194114
\(191\) −7.50204 −0.542829 −0.271414 0.962463i \(-0.587491\pi\)
−0.271414 + 0.962463i \(0.587491\pi\)
\(192\) 9.30194 0.671310
\(193\) 24.8318 1.78743 0.893715 0.448635i \(-0.148090\pi\)
0.893715 + 0.448635i \(0.148090\pi\)
\(194\) 0.127761 0.00917272
\(195\) −0.611378 −0.0437817
\(196\) 3.65646 0.261176
\(197\) −5.22821 −0.372495 −0.186247 0.982503i \(-0.559633\pi\)
−0.186247 + 0.982503i \(0.559633\pi\)
\(198\) −0.241212 −0.0171422
\(199\) −18.5508 −1.31503 −0.657514 0.753442i \(-0.728392\pi\)
−0.657514 + 0.753442i \(0.728392\pi\)
\(200\) −0.385751 −0.0272767
\(201\) −9.43638 −0.665591
\(202\) −0.853185 −0.0600299
\(203\) 17.7168 1.24348
\(204\) −11.6175 −0.813385
\(205\) 7.54761 0.527148
\(206\) −0.625534 −0.0435830
\(207\) −1.14223 −0.0793904
\(208\) 2.01589 0.139777
\(209\) −4.40167 −0.304470
\(210\) −0.262727 −0.0181299
\(211\) −14.6039 −1.00537 −0.502686 0.864469i \(-0.667655\pi\)
−0.502686 + 0.864469i \(0.667655\pi\)
\(212\) −13.2334 −0.908875
\(213\) 1.17857 0.0807546
\(214\) 0.560495 0.0383147
\(215\) 6.41231 0.437316
\(216\) −2.10831 −0.143452
\(217\) 23.3382 1.58430
\(218\) −1.14189 −0.0773387
\(219\) −16.9057 −1.14238
\(220\) −3.16550 −0.213418
\(221\) −2.49378 −0.167750
\(222\) −0.716818 −0.0481097
\(223\) 16.1119 1.07893 0.539465 0.842008i \(-0.318626\pi\)
0.539465 + 0.842008i \(0.318626\pi\)
\(224\) 2.61934 0.175012
\(225\) −1.56924 −0.104616
\(226\) 1.73838 0.115635
\(227\) −17.7995 −1.18139 −0.590696 0.806894i \(-0.701147\pi\)
−0.590696 + 0.806894i \(0.701147\pi\)
\(228\) −6.59099 −0.436499
\(229\) 15.0937 0.997417 0.498708 0.866770i \(-0.333808\pi\)
0.498708 + 0.866770i \(0.333808\pi\)
\(230\) 0.0703600 0.00463940
\(231\) −4.32203 −0.284369
\(232\) −3.00770 −0.197465
\(233\) −25.9661 −1.70110 −0.850549 0.525895i \(-0.823730\pi\)
−0.850549 + 0.525895i \(0.823730\pi\)
\(234\) −0.0775319 −0.00506842
\(235\) 1.87248 0.122147
\(236\) 19.1635 1.24744
\(237\) 6.94171 0.450913
\(238\) −1.07165 −0.0694649
\(239\) −12.1956 −0.788870 −0.394435 0.918924i \(-0.629060\pi\)
−0.394435 + 0.918924i \(0.629060\pi\)
\(240\) −4.71761 −0.304521
\(241\) −10.6823 −0.688109 −0.344055 0.938950i \(-0.611801\pi\)
−0.344055 + 0.938950i \(0.611801\pi\)
\(242\) −0.818869 −0.0526389
\(243\) −14.2078 −0.911429
\(244\) 21.3218 1.36499
\(245\) −1.83681 −0.117350
\(246\) −0.872680 −0.0556401
\(247\) −1.41481 −0.0900223
\(248\) −3.96202 −0.251588
\(249\) 15.0879 0.956158
\(250\) 0.0966636 0.00611354
\(251\) 20.2113 1.27572 0.637862 0.770151i \(-0.279819\pi\)
0.637862 + 0.770151i \(0.279819\pi\)
\(252\) 7.09816 0.447142
\(253\) 1.15747 0.0727694
\(254\) 0.627814 0.0393926
\(255\) 5.83599 0.365464
\(256\) 15.2577 0.953607
\(257\) −7.75398 −0.483680 −0.241840 0.970316i \(-0.577751\pi\)
−0.241840 + 0.970316i \(0.577751\pi\)
\(258\) −0.741413 −0.0461583
\(259\) 14.0871 0.875331
\(260\) −1.01747 −0.0631010
\(261\) −12.2354 −0.757352
\(262\) −1.71269 −0.105810
\(263\) −12.7590 −0.786756 −0.393378 0.919377i \(-0.628694\pi\)
−0.393378 + 0.919377i \(0.628694\pi\)
\(264\) 0.733730 0.0451579
\(265\) 6.64777 0.408369
\(266\) −0.607986 −0.0372780
\(267\) −20.1506 −1.23320
\(268\) −15.7043 −0.959293
\(269\) 3.70890 0.226136 0.113068 0.993587i \(-0.463932\pi\)
0.113068 + 0.993587i \(0.463932\pi\)
\(270\) 0.528311 0.0321520
\(271\) −18.5078 −1.12427 −0.562134 0.827047i \(-0.690019\pi\)
−0.562134 + 0.827047i \(0.690019\pi\)
\(272\) −19.2430 −1.16678
\(273\) −1.38921 −0.0840789
\(274\) 0.208076 0.0125703
\(275\) 1.59018 0.0958914
\(276\) 1.73317 0.104325
\(277\) 32.2642 1.93857 0.969284 0.245944i \(-0.0790980\pi\)
0.969284 + 0.245944i \(0.0790980\pi\)
\(278\) 1.80067 0.107997
\(279\) −16.1176 −0.964934
\(280\) −0.876529 −0.0523826
\(281\) −9.20114 −0.548894 −0.274447 0.961602i \(-0.588495\pi\)
−0.274447 + 0.961602i \(0.588495\pi\)
\(282\) −0.216502 −0.0128925
\(283\) 12.3214 0.732432 0.366216 0.930530i \(-0.380653\pi\)
0.366216 + 0.930530i \(0.380653\pi\)
\(284\) 1.96142 0.116389
\(285\) 3.31096 0.196125
\(286\) 0.0785662 0.00464572
\(287\) 17.1502 1.01234
\(288\) −1.80894 −0.106593
\(289\) 6.80478 0.400281
\(290\) 0.753686 0.0442580
\(291\) −1.58095 −0.0926771
\(292\) −28.1350 −1.64648
\(293\) −9.07694 −0.530280 −0.265140 0.964210i \(-0.585418\pi\)
−0.265140 + 0.964210i \(0.585418\pi\)
\(294\) 0.212378 0.0123862
\(295\) −9.62671 −0.560489
\(296\) −2.39150 −0.139003
\(297\) 8.69107 0.504307
\(298\) 0.0695949 0.00403152
\(299\) 0.372040 0.0215156
\(300\) 2.38111 0.137473
\(301\) 14.5705 0.839827
\(302\) −0.0966636 −0.00556236
\(303\) 10.5575 0.606515
\(304\) −10.9172 −0.626145
\(305\) −10.7110 −0.613307
\(306\) 0.740092 0.0423082
\(307\) 11.6591 0.665420 0.332710 0.943029i \(-0.392037\pi\)
0.332710 + 0.943029i \(0.392037\pi\)
\(308\) −7.19286 −0.409851
\(309\) 7.74053 0.440343
\(310\) 0.992824 0.0563886
\(311\) −7.33067 −0.415684 −0.207842 0.978162i \(-0.566644\pi\)
−0.207842 + 0.978162i \(0.566644\pi\)
\(312\) 0.235840 0.0133518
\(313\) 6.71834 0.379743 0.189872 0.981809i \(-0.439193\pi\)
0.189872 + 0.981809i \(0.439193\pi\)
\(314\) 1.94206 0.109597
\(315\) −3.56574 −0.200907
\(316\) 11.5526 0.649885
\(317\) 14.3752 0.807393 0.403696 0.914893i \(-0.367725\pi\)
0.403696 + 0.914893i \(0.367725\pi\)
\(318\) −0.768638 −0.0431031
\(319\) 12.3986 0.694190
\(320\) −7.77662 −0.434726
\(321\) −6.93572 −0.387114
\(322\) 0.159876 0.00890957
\(323\) 13.5053 0.751454
\(324\) 3.64238 0.202355
\(325\) 0.511125 0.0283521
\(326\) −1.13443 −0.0628303
\(327\) 14.1301 0.781396
\(328\) −2.91150 −0.160761
\(329\) 4.25476 0.234572
\(330\) −0.183862 −0.0101213
\(331\) 15.5871 0.856747 0.428374 0.903602i \(-0.359087\pi\)
0.428374 + 0.903602i \(0.359087\pi\)
\(332\) 25.1098 1.37808
\(333\) −9.72868 −0.533128
\(334\) −1.14832 −0.0628333
\(335\) 7.88901 0.431023
\(336\) −10.7197 −0.584806
\(337\) −7.86878 −0.428640 −0.214320 0.976764i \(-0.568753\pi\)
−0.214320 + 0.976764i \(0.568753\pi\)
\(338\) −1.23137 −0.0669779
\(339\) −21.5111 −1.16832
\(340\) 9.71244 0.526731
\(341\) 16.3326 0.884460
\(342\) 0.419880 0.0227045
\(343\) −20.0796 −1.08420
\(344\) −2.47355 −0.133365
\(345\) −0.870654 −0.0468744
\(346\) −1.15974 −0.0623481
\(347\) −9.31806 −0.500220 −0.250110 0.968217i \(-0.580467\pi\)
−0.250110 + 0.968217i \(0.580467\pi\)
\(348\) 18.5655 0.995215
\(349\) 25.0571 1.34128 0.670639 0.741784i \(-0.266020\pi\)
0.670639 + 0.741784i \(0.266020\pi\)
\(350\) 0.219645 0.0117405
\(351\) 2.79353 0.149108
\(352\) 1.83307 0.0977031
\(353\) 13.5445 0.720903 0.360452 0.932778i \(-0.382623\pi\)
0.360452 + 0.932778i \(0.382623\pi\)
\(354\) 1.11307 0.0591591
\(355\) −0.985313 −0.0522950
\(356\) −33.5353 −1.77737
\(357\) 13.2609 0.701843
\(358\) 1.32904 0.0702418
\(359\) −6.76969 −0.357290 −0.178645 0.983914i \(-0.557171\pi\)
−0.178645 + 0.983914i \(0.557171\pi\)
\(360\) 0.605338 0.0319041
\(361\) −11.3380 −0.596735
\(362\) 1.78586 0.0938629
\(363\) 10.1329 0.531840
\(364\) −2.31197 −0.121180
\(365\) 14.1335 0.739784
\(366\) 1.23844 0.0647341
\(367\) −1.38006 −0.0720384 −0.0360192 0.999351i \(-0.511468\pi\)
−0.0360192 + 0.999351i \(0.511468\pi\)
\(368\) 2.87080 0.149651
\(369\) −11.8440 −0.616576
\(370\) 0.599275 0.0311548
\(371\) 15.1055 0.784238
\(372\) 24.4562 1.26799
\(373\) 11.0544 0.572373 0.286187 0.958174i \(-0.407612\pi\)
0.286187 + 0.958174i \(0.407612\pi\)
\(374\) −0.749965 −0.0387798
\(375\) −1.19614 −0.0617685
\(376\) −0.722309 −0.0372503
\(377\) 3.98524 0.205250
\(378\) 1.20046 0.0617452
\(379\) −2.04480 −0.105034 −0.0525170 0.998620i \(-0.516724\pi\)
−0.0525170 + 0.998620i \(0.516724\pi\)
\(380\) 5.51021 0.282668
\(381\) −7.76875 −0.398005
\(382\) −0.725174 −0.0371031
\(383\) −29.5699 −1.51095 −0.755475 0.655177i \(-0.772594\pi\)
−0.755475 + 0.655177i \(0.772594\pi\)
\(384\) 3.65685 0.186613
\(385\) 3.61331 0.184151
\(386\) 2.40033 0.122173
\(387\) −10.0625 −0.511504
\(388\) −2.63107 −0.133572
\(389\) −20.4711 −1.03792 −0.518962 0.854797i \(-0.673682\pi\)
−0.518962 + 0.854797i \(0.673682\pi\)
\(390\) −0.0590980 −0.00299254
\(391\) −3.55136 −0.179600
\(392\) 0.708552 0.0357873
\(393\) 21.1933 1.06906
\(394\) −0.505378 −0.0254606
\(395\) −5.80342 −0.292002
\(396\) 4.96744 0.249623
\(397\) −8.54840 −0.429032 −0.214516 0.976720i \(-0.568817\pi\)
−0.214516 + 0.976720i \(0.568817\pi\)
\(398\) −1.79318 −0.0898841
\(399\) 7.52339 0.376641
\(400\) 3.94402 0.197201
\(401\) −4.04137 −0.201816 −0.100908 0.994896i \(-0.532175\pi\)
−0.100908 + 0.994896i \(0.532175\pi\)
\(402\) −0.912154 −0.0454941
\(403\) 5.24972 0.261507
\(404\) 17.5702 0.874150
\(405\) −1.82974 −0.0909206
\(406\) 1.71257 0.0849936
\(407\) 9.85847 0.488666
\(408\) −2.25124 −0.111453
\(409\) −3.23377 −0.159900 −0.0799499 0.996799i \(-0.525476\pi\)
−0.0799499 + 0.996799i \(0.525476\pi\)
\(410\) 0.729579 0.0360313
\(411\) −2.57479 −0.127005
\(412\) 12.8820 0.634652
\(413\) −21.8744 −1.07637
\(414\) −0.110412 −0.00542645
\(415\) −12.6138 −0.619188
\(416\) 0.589197 0.0288877
\(417\) −22.2820 −1.09115
\(418\) −0.425482 −0.0208110
\(419\) −2.26889 −0.110843 −0.0554214 0.998463i \(-0.517650\pi\)
−0.0554214 + 0.998463i \(0.517650\pi\)
\(420\) 5.41051 0.264006
\(421\) 11.4331 0.557215 0.278607 0.960405i \(-0.410127\pi\)
0.278607 + 0.960405i \(0.410127\pi\)
\(422\) −1.41166 −0.0687186
\(423\) −2.93837 −0.142868
\(424\) −2.56438 −0.124538
\(425\) −4.87901 −0.236667
\(426\) 0.113925 0.00551969
\(427\) −24.3381 −1.17780
\(428\) −11.5426 −0.557935
\(429\) −0.972200 −0.0469383
\(430\) 0.619837 0.0298912
\(431\) −1.47623 −0.0711073 −0.0355536 0.999368i \(-0.511319\pi\)
−0.0355536 + 0.999368i \(0.511319\pi\)
\(432\) 21.5559 1.03711
\(433\) 17.6811 0.849701 0.424850 0.905264i \(-0.360327\pi\)
0.424850 + 0.905264i \(0.360327\pi\)
\(434\) 2.25596 0.108289
\(435\) −9.32632 −0.447163
\(436\) 23.5157 1.12620
\(437\) −2.01481 −0.0963815
\(438\) −1.63417 −0.0780836
\(439\) 6.07846 0.290109 0.145055 0.989424i \(-0.453664\pi\)
0.145055 + 0.989424i \(0.453664\pi\)
\(440\) −0.613413 −0.0292433
\(441\) 2.88241 0.137257
\(442\) −0.241058 −0.0114660
\(443\) 33.7945 1.60563 0.802813 0.596231i \(-0.203336\pi\)
0.802813 + 0.596231i \(0.203336\pi\)
\(444\) 14.7619 0.700569
\(445\) 16.8464 0.798594
\(446\) 1.55743 0.0737465
\(447\) −0.861186 −0.0407327
\(448\) −17.6705 −0.834855
\(449\) 29.4543 1.39003 0.695017 0.718993i \(-0.255397\pi\)
0.695017 + 0.718993i \(0.255397\pi\)
\(450\) −0.151689 −0.00715068
\(451\) 12.0021 0.565155
\(452\) −35.7995 −1.68387
\(453\) 1.19614 0.0561997
\(454\) −1.72056 −0.0807499
\(455\) 1.16141 0.0544478
\(456\) −1.27721 −0.0598108
\(457\) 32.3364 1.51263 0.756316 0.654206i \(-0.226997\pi\)
0.756316 + 0.654206i \(0.226997\pi\)
\(458\) 1.45901 0.0681749
\(459\) −26.6661 −1.24467
\(460\) −1.44897 −0.0675585
\(461\) 23.0033 1.07137 0.535686 0.844417i \(-0.320053\pi\)
0.535686 + 0.844417i \(0.320053\pi\)
\(462\) −0.417783 −0.0194370
\(463\) 19.3557 0.899535 0.449767 0.893146i \(-0.351507\pi\)
0.449767 + 0.893146i \(0.351507\pi\)
\(464\) 30.7516 1.42761
\(465\) −12.2855 −0.569725
\(466\) −2.50998 −0.116273
\(467\) −19.2813 −0.892231 −0.446115 0.894975i \(-0.647193\pi\)
−0.446115 + 0.894975i \(0.647193\pi\)
\(468\) 1.59666 0.0738058
\(469\) 17.9259 0.827742
\(470\) 0.181000 0.00834891
\(471\) −24.0316 −1.10732
\(472\) 3.71351 0.170928
\(473\) 10.1967 0.468846
\(474\) 0.671011 0.0308205
\(475\) −2.76804 −0.127006
\(476\) 22.0692 1.01154
\(477\) −10.4320 −0.477647
\(478\) −1.17887 −0.0539204
\(479\) −36.0658 −1.64789 −0.823944 0.566671i \(-0.808231\pi\)
−0.823944 + 0.566671i \(0.808231\pi\)
\(480\) −1.37885 −0.0629355
\(481\) 3.16877 0.144483
\(482\) −1.03259 −0.0470333
\(483\) −1.97836 −0.0900183
\(484\) 16.8635 0.766523
\(485\) 1.32171 0.0600158
\(486\) −1.37337 −0.0622975
\(487\) −8.25037 −0.373860 −0.186930 0.982373i \(-0.559854\pi\)
−0.186930 + 0.982373i \(0.559854\pi\)
\(488\) 4.13176 0.187036
\(489\) 14.0378 0.634810
\(490\) −0.177553 −0.00802102
\(491\) −32.4302 −1.46355 −0.731777 0.681544i \(-0.761309\pi\)
−0.731777 + 0.681544i \(0.761309\pi\)
\(492\) 17.9717 0.810226
\(493\) −38.0417 −1.71331
\(494\) −0.136761 −0.00615316
\(495\) −2.49538 −0.112159
\(496\) 40.5087 1.81890
\(497\) −2.23889 −0.100428
\(498\) 1.45845 0.0653548
\(499\) 30.2011 1.35199 0.675993 0.736908i \(-0.263715\pi\)
0.675993 + 0.736908i \(0.263715\pi\)
\(500\) −1.99066 −0.0890248
\(501\) 14.2096 0.634840
\(502\) 1.95369 0.0871976
\(503\) 27.7054 1.23532 0.617662 0.786443i \(-0.288080\pi\)
0.617662 + 0.786443i \(0.288080\pi\)
\(504\) 1.37549 0.0612691
\(505\) −8.82633 −0.392767
\(506\) 0.111885 0.00497389
\(507\) 15.2374 0.676715
\(508\) −12.9290 −0.573631
\(509\) −35.0506 −1.55359 −0.776795 0.629754i \(-0.783156\pi\)
−0.776795 + 0.629754i \(0.783156\pi\)
\(510\) 0.564128 0.0249800
\(511\) 32.1152 1.42069
\(512\) 7.58928 0.335402
\(513\) −15.1286 −0.667944
\(514\) −0.749527 −0.0330602
\(515\) −6.47124 −0.285157
\(516\) 15.2684 0.672154
\(517\) 2.97757 0.130953
\(518\) 1.36171 0.0598302
\(519\) 14.3510 0.629937
\(520\) −0.197167 −0.00864634
\(521\) −14.7846 −0.647726 −0.323863 0.946104i \(-0.604982\pi\)
−0.323863 + 0.946104i \(0.604982\pi\)
\(522\) −1.18272 −0.0517661
\(523\) −11.3221 −0.495082 −0.247541 0.968877i \(-0.579623\pi\)
−0.247541 + 0.968877i \(0.579623\pi\)
\(524\) 35.2705 1.54080
\(525\) −2.71795 −0.118621
\(526\) −1.23333 −0.0537759
\(527\) −50.1120 −2.18291
\(528\) −7.50185 −0.326476
\(529\) −22.4702 −0.976965
\(530\) 0.642597 0.0279126
\(531\) 15.1067 0.655573
\(532\) 12.5207 0.542839
\(533\) 3.85777 0.167099
\(534\) −1.94783 −0.0842910
\(535\) 5.79841 0.250687
\(536\) −3.04319 −0.131446
\(537\) −16.4459 −0.709692
\(538\) 0.358515 0.0154567
\(539\) −2.92086 −0.125810
\(540\) −10.8799 −0.468195
\(541\) 15.5789 0.669790 0.334895 0.942255i \(-0.391299\pi\)
0.334895 + 0.942255i \(0.391299\pi\)
\(542\) −1.78903 −0.0768453
\(543\) −22.0988 −0.948349
\(544\) −5.62426 −0.241138
\(545\) −11.8131 −0.506016
\(546\) −0.134286 −0.00574692
\(547\) 40.8523 1.74672 0.873359 0.487077i \(-0.161937\pi\)
0.873359 + 0.487077i \(0.161937\pi\)
\(548\) −4.28504 −0.183048
\(549\) 16.8081 0.717352
\(550\) 0.153712 0.00655432
\(551\) −21.5824 −0.919440
\(552\) 0.335856 0.0142950
\(553\) −13.1869 −0.560764
\(554\) 3.11877 0.132504
\(555\) −7.41560 −0.314775
\(556\) −37.0823 −1.57264
\(557\) −11.1921 −0.474224 −0.237112 0.971482i \(-0.576201\pi\)
−0.237112 + 0.971482i \(0.576201\pi\)
\(558\) −1.55798 −0.0659547
\(559\) 3.27749 0.138623
\(560\) 8.96187 0.378708
\(561\) 9.28028 0.391814
\(562\) −0.889415 −0.0375177
\(563\) 35.9528 1.51523 0.757615 0.652701i \(-0.226364\pi\)
0.757615 + 0.652701i \(0.226364\pi\)
\(564\) 4.45856 0.187739
\(565\) 17.9838 0.756583
\(566\) 1.19103 0.0500628
\(567\) −4.15766 −0.174605
\(568\) 0.380085 0.0159480
\(569\) 19.2740 0.808009 0.404005 0.914757i \(-0.367618\pi\)
0.404005 + 0.914757i \(0.367618\pi\)
\(570\) 0.320050 0.0134054
\(571\) −14.4897 −0.606376 −0.303188 0.952931i \(-0.598051\pi\)
−0.303188 + 0.952931i \(0.598051\pi\)
\(572\) −1.61797 −0.0676505
\(573\) 8.97351 0.374874
\(574\) 1.65780 0.0691951
\(575\) 0.727885 0.0303549
\(576\) 12.2034 0.508476
\(577\) 23.8990 0.994929 0.497465 0.867484i \(-0.334264\pi\)
0.497465 + 0.867484i \(0.334264\pi\)
\(578\) 0.657774 0.0273598
\(579\) −29.7023 −1.23439
\(580\) −15.5211 −0.644480
\(581\) −28.6619 −1.18910
\(582\) −0.152821 −0.00633462
\(583\) 10.5711 0.437812
\(584\) −5.45203 −0.225607
\(585\) −0.802079 −0.0331619
\(586\) −0.877409 −0.0362454
\(587\) −29.1268 −1.20219 −0.601096 0.799177i \(-0.705269\pi\)
−0.601096 + 0.799177i \(0.705269\pi\)
\(588\) −4.37365 −0.180366
\(589\) −28.4303 −1.17145
\(590\) −0.930552 −0.0383102
\(591\) 6.25368 0.257242
\(592\) 24.4514 1.00494
\(593\) −6.03778 −0.247942 −0.123971 0.992286i \(-0.539563\pi\)
−0.123971 + 0.992286i \(0.539563\pi\)
\(594\) 0.840110 0.0344701
\(595\) −11.0864 −0.454499
\(596\) −1.43321 −0.0587067
\(597\) 22.1893 0.908149
\(598\) 0.0359627 0.00147062
\(599\) −5.02575 −0.205347 −0.102673 0.994715i \(-0.532740\pi\)
−0.102673 + 0.994715i \(0.532740\pi\)
\(600\) 0.461413 0.0188371
\(601\) −22.4024 −0.913815 −0.456907 0.889514i \(-0.651043\pi\)
−0.456907 + 0.889514i \(0.651043\pi\)
\(602\) 1.40843 0.0574034
\(603\) −12.3798 −0.504144
\(604\) 1.99066 0.0809987
\(605\) −8.47133 −0.344409
\(606\) 1.02053 0.0414562
\(607\) −31.5451 −1.28038 −0.640188 0.768218i \(-0.721144\pi\)
−0.640188 + 0.768218i \(0.721144\pi\)
\(608\) −3.19084 −0.129406
\(609\) −21.1919 −0.858738
\(610\) −1.03536 −0.0419205
\(611\) 0.957068 0.0387188
\(612\) −15.2412 −0.616089
\(613\) −5.61406 −0.226750 −0.113375 0.993552i \(-0.536166\pi\)
−0.113375 + 0.993552i \(0.536166\pi\)
\(614\) 1.12701 0.0454825
\(615\) −9.02801 −0.364045
\(616\) −1.39384 −0.0561593
\(617\) −27.1765 −1.09408 −0.547042 0.837105i \(-0.684246\pi\)
−0.547042 + 0.837105i \(0.684246\pi\)
\(618\) 0.748227 0.0300981
\(619\) 15.7632 0.633576 0.316788 0.948496i \(-0.397396\pi\)
0.316788 + 0.948496i \(0.397396\pi\)
\(620\) −20.4459 −0.821126
\(621\) 3.97823 0.159641
\(622\) −0.708608 −0.0284126
\(623\) 38.2794 1.53363
\(624\) −2.41129 −0.0965288
\(625\) 1.00000 0.0400000
\(626\) 0.649419 0.0259560
\(627\) 5.26503 0.210265
\(628\) −39.9941 −1.59594
\(629\) −30.2479 −1.20606
\(630\) −0.344677 −0.0137323
\(631\) −20.2509 −0.806177 −0.403088 0.915161i \(-0.632063\pi\)
−0.403088 + 0.915161i \(0.632063\pi\)
\(632\) 2.23867 0.0890497
\(633\) 17.4683 0.694303
\(634\) 1.38956 0.0551865
\(635\) 6.49484 0.257740
\(636\) 15.8291 0.627663
\(637\) −0.938839 −0.0371982
\(638\) 1.19850 0.0474489
\(639\) 1.54620 0.0611666
\(640\) −3.05721 −0.120847
\(641\) −7.29725 −0.288224 −0.144112 0.989561i \(-0.546033\pi\)
−0.144112 + 0.989561i \(0.546033\pi\)
\(642\) −0.670432 −0.0264598
\(643\) 26.1640 1.03181 0.515904 0.856646i \(-0.327456\pi\)
0.515904 + 0.856646i \(0.327456\pi\)
\(644\) −3.29244 −0.129740
\(645\) −7.67003 −0.302007
\(646\) 1.30547 0.0513630
\(647\) −10.6515 −0.418753 −0.209377 0.977835i \(-0.567143\pi\)
−0.209377 + 0.977835i \(0.567143\pi\)
\(648\) 0.705825 0.0277274
\(649\) −15.3082 −0.600899
\(650\) 0.0494071 0.00193791
\(651\) −27.9159 −1.09411
\(652\) 23.3621 0.914930
\(653\) −34.4823 −1.34940 −0.674699 0.738093i \(-0.735727\pi\)
−0.674699 + 0.738093i \(0.735727\pi\)
\(654\) 1.36587 0.0534096
\(655\) −17.7180 −0.692300
\(656\) 29.7680 1.16224
\(657\) −22.1790 −0.865285
\(658\) 0.411280 0.0160334
\(659\) 8.44721 0.329057 0.164528 0.986372i \(-0.447390\pi\)
0.164528 + 0.986372i \(0.447390\pi\)
\(660\) 3.78639 0.147385
\(661\) 13.6095 0.529350 0.264675 0.964338i \(-0.414735\pi\)
0.264675 + 0.964338i \(0.414735\pi\)
\(662\) 1.50671 0.0585599
\(663\) 2.98292 0.115847
\(664\) 4.86580 0.188829
\(665\) −6.28971 −0.243905
\(666\) −0.940409 −0.0364401
\(667\) 5.67532 0.219749
\(668\) 23.6481 0.914973
\(669\) −19.2721 −0.745102
\(670\) 0.762580 0.0294610
\(671\) −17.0323 −0.657526
\(672\) −3.13311 −0.120862
\(673\) −12.0350 −0.463917 −0.231958 0.972726i \(-0.574513\pi\)
−0.231958 + 0.972726i \(0.574513\pi\)
\(674\) −0.760624 −0.0292981
\(675\) 5.46547 0.210366
\(676\) 25.3585 0.975326
\(677\) 19.2527 0.739942 0.369971 0.929043i \(-0.379368\pi\)
0.369971 + 0.929043i \(0.379368\pi\)
\(678\) −2.07934 −0.0798567
\(679\) 3.00328 0.115255
\(680\) 1.88209 0.0721747
\(681\) 21.2907 0.815862
\(682\) 1.57877 0.0604541
\(683\) 3.72985 0.142719 0.0713593 0.997451i \(-0.477266\pi\)
0.0713593 + 0.997451i \(0.477266\pi\)
\(684\) −8.64686 −0.330621
\(685\) 2.15258 0.0822458
\(686\) −1.94096 −0.0741063
\(687\) −18.0542 −0.688809
\(688\) 25.2903 0.964183
\(689\) 3.39784 0.129447
\(690\) −0.0841605 −0.00320394
\(691\) 6.13982 0.233570 0.116785 0.993157i \(-0.462741\pi\)
0.116785 + 0.993157i \(0.462741\pi\)
\(692\) 23.8833 0.907907
\(693\) −5.67016 −0.215392
\(694\) −0.900717 −0.0341907
\(695\) 18.6282 0.706608
\(696\) 3.59764 0.136368
\(697\) −36.8249 −1.39484
\(698\) 2.42211 0.0916783
\(699\) 31.0592 1.17477
\(700\) −4.52330 −0.170965
\(701\) −28.3951 −1.07247 −0.536233 0.844070i \(-0.680153\pi\)
−0.536233 + 0.844070i \(0.680153\pi\)
\(702\) 0.270033 0.0101917
\(703\) −17.1607 −0.647228
\(704\) −12.3662 −0.466069
\(705\) −2.23975 −0.0843537
\(706\) 1.30926 0.0492748
\(707\) −20.0558 −0.754275
\(708\) −22.9222 −0.861470
\(709\) 25.4749 0.956730 0.478365 0.878161i \(-0.341230\pi\)
0.478365 + 0.878161i \(0.341230\pi\)
\(710\) −0.0952438 −0.00357444
\(711\) 9.10698 0.341538
\(712\) −6.49850 −0.243542
\(713\) 7.47605 0.279980
\(714\) 1.28185 0.0479720
\(715\) 0.812780 0.0303962
\(716\) −27.3697 −1.02285
\(717\) 14.5877 0.544788
\(718\) −0.654382 −0.0244213
\(719\) 13.1315 0.489723 0.244861 0.969558i \(-0.421258\pi\)
0.244861 + 0.969558i \(0.421258\pi\)
\(720\) −6.18914 −0.230656
\(721\) −14.7044 −0.547620
\(722\) −1.09597 −0.0407877
\(723\) 12.7776 0.475203
\(724\) −36.7774 −1.36682
\(725\) 7.79700 0.289573
\(726\) 0.979484 0.0363521
\(727\) −43.0674 −1.59728 −0.798640 0.601809i \(-0.794447\pi\)
−0.798640 + 0.601809i \(0.794447\pi\)
\(728\) −0.448015 −0.0166046
\(729\) 22.4837 0.832731
\(730\) 1.36620 0.0505653
\(731\) −31.2857 −1.15714
\(732\) −25.5039 −0.942652
\(733\) 20.7114 0.764992 0.382496 0.923957i \(-0.375065\pi\)
0.382496 + 0.923957i \(0.375065\pi\)
\(734\) −0.133401 −0.00492393
\(735\) 2.19709 0.0810408
\(736\) 0.839066 0.0309284
\(737\) 12.5449 0.462099
\(738\) −1.14489 −0.0421439
\(739\) −8.52181 −0.313480 −0.156740 0.987640i \(-0.550098\pi\)
−0.156740 + 0.987640i \(0.550098\pi\)
\(740\) −12.3413 −0.453674
\(741\) 1.69232 0.0621688
\(742\) 1.46015 0.0536038
\(743\) 23.3471 0.856520 0.428260 0.903656i \(-0.359127\pi\)
0.428260 + 0.903656i \(0.359127\pi\)
\(744\) 4.73914 0.173745
\(745\) 0.719970 0.0263777
\(746\) 1.06855 0.0391225
\(747\) 19.7942 0.724231
\(748\) 15.4445 0.564708
\(749\) 13.1755 0.481423
\(750\) −0.115623 −0.00422197
\(751\) −19.3870 −0.707441 −0.353721 0.935351i \(-0.615084\pi\)
−0.353721 + 0.935351i \(0.615084\pi\)
\(752\) 7.38509 0.269306
\(753\) −24.1756 −0.881006
\(754\) 0.385227 0.0140292
\(755\) −1.00000 −0.0363937
\(756\) −24.7219 −0.899128
\(757\) −18.5063 −0.672624 −0.336312 0.941751i \(-0.609180\pi\)
−0.336312 + 0.941751i \(0.609180\pi\)
\(758\) −0.197657 −0.00717923
\(759\) −1.38450 −0.0502540
\(760\) 1.06777 0.0387322
\(761\) 18.9370 0.686465 0.343233 0.939250i \(-0.388478\pi\)
0.343233 + 0.939250i \(0.388478\pi\)
\(762\) −0.750955 −0.0272042
\(763\) −26.8424 −0.971760
\(764\) 14.9340 0.540293
\(765\) 7.65636 0.276816
\(766\) −2.85833 −0.103276
\(767\) −4.92045 −0.177667
\(768\) −18.2504 −0.658555
\(769\) −10.0819 −0.363561 −0.181780 0.983339i \(-0.558186\pi\)
−0.181780 + 0.983339i \(0.558186\pi\)
\(770\) 0.349275 0.0125870
\(771\) 9.27486 0.334026
\(772\) −49.4315 −1.77908
\(773\) 50.3202 1.80989 0.904945 0.425528i \(-0.139911\pi\)
0.904945 + 0.425528i \(0.139911\pi\)
\(774\) −0.972675 −0.0349621
\(775\) 10.2709 0.368942
\(776\) −0.509851 −0.0183026
\(777\) −16.8502 −0.604498
\(778\) −1.97881 −0.0709437
\(779\) −20.8921 −0.748536
\(780\) 1.21704 0.0435771
\(781\) −1.56682 −0.0560654
\(782\) −0.343287 −0.0122759
\(783\) 42.6142 1.52291
\(784\) −7.24443 −0.258730
\(785\) 20.0909 0.717075
\(786\) 2.04862 0.0730717
\(787\) −7.40414 −0.263929 −0.131965 0.991254i \(-0.542129\pi\)
−0.131965 + 0.991254i \(0.542129\pi\)
\(788\) 10.4076 0.370754
\(789\) 15.2616 0.543328
\(790\) −0.560979 −0.0199587
\(791\) 40.8639 1.45295
\(792\) 0.962595 0.0342043
\(793\) −5.47463 −0.194410
\(794\) −0.826319 −0.0293250
\(795\) −7.95168 −0.282017
\(796\) 36.9282 1.30888
\(797\) −44.6027 −1.57991 −0.789953 0.613167i \(-0.789895\pi\)
−0.789953 + 0.613167i \(0.789895\pi\)
\(798\) 0.727238 0.0257439
\(799\) −9.13583 −0.323203
\(800\) 1.15275 0.0407557
\(801\) −26.4360 −0.934072
\(802\) −0.390654 −0.0137945
\(803\) 22.4749 0.793121
\(804\) 18.7846 0.662481
\(805\) 1.65395 0.0582940
\(806\) 0.507457 0.0178744
\(807\) −4.43637 −0.156168
\(808\) 3.40477 0.119779
\(809\) −1.69501 −0.0595935 −0.0297968 0.999556i \(-0.509486\pi\)
−0.0297968 + 0.999556i \(0.509486\pi\)
\(810\) −0.176869 −0.00621455
\(811\) 19.1531 0.672556 0.336278 0.941763i \(-0.390832\pi\)
0.336278 + 0.941763i \(0.390832\pi\)
\(812\) −35.2682 −1.23767
\(813\) 22.1379 0.776411
\(814\) 0.952955 0.0334011
\(815\) −11.7359 −0.411090
\(816\) 23.0173 0.805767
\(817\) −17.7495 −0.620976
\(818\) −0.312588 −0.0109294
\(819\) −1.82254 −0.0636846
\(820\) −15.0247 −0.524685
\(821\) 20.1450 0.703067 0.351534 0.936175i \(-0.385660\pi\)
0.351534 + 0.936175i \(0.385660\pi\)
\(822\) −0.248888 −0.00868098
\(823\) −45.3823 −1.58193 −0.790964 0.611863i \(-0.790421\pi\)
−0.790964 + 0.611863i \(0.790421\pi\)
\(824\) 2.49629 0.0869624
\(825\) −1.90208 −0.0662219
\(826\) −2.11446 −0.0735715
\(827\) 13.0922 0.455262 0.227631 0.973748i \(-0.426902\pi\)
0.227631 + 0.973748i \(0.426902\pi\)
\(828\) 2.27379 0.0790195
\(829\) −35.9478 −1.24852 −0.624260 0.781217i \(-0.714599\pi\)
−0.624260 + 0.781217i \(0.714599\pi\)
\(830\) −1.21930 −0.0423224
\(831\) −38.5926 −1.33876
\(832\) −3.97482 −0.137802
\(833\) 8.96183 0.310509
\(834\) −2.15385 −0.0745819
\(835\) −11.8796 −0.411109
\(836\) 8.76222 0.303048
\(837\) 56.1353 1.94032
\(838\) −0.219319 −0.00757626
\(839\) 36.7395 1.26839 0.634194 0.773174i \(-0.281332\pi\)
0.634194 + 0.773174i \(0.281332\pi\)
\(840\) 1.04845 0.0361751
\(841\) 31.7932 1.09632
\(842\) 1.10516 0.0380865
\(843\) 11.0059 0.379062
\(844\) 29.0713 1.00067
\(845\) −12.7388 −0.438226
\(846\) −0.284033 −0.00976527
\(847\) −19.2491 −0.661407
\(848\) 26.2190 0.900363
\(849\) −14.7382 −0.505812
\(850\) −0.471623 −0.0161765
\(851\) 4.51259 0.154690
\(852\) −2.34614 −0.0803773
\(853\) −6.34618 −0.217289 −0.108644 0.994081i \(-0.534651\pi\)
−0.108644 + 0.994081i \(0.534651\pi\)
\(854\) −2.35261 −0.0805046
\(855\) 4.34372 0.148552
\(856\) −2.23674 −0.0764503
\(857\) −40.1034 −1.36991 −0.684953 0.728587i \(-0.740177\pi\)
−0.684953 + 0.728587i \(0.740177\pi\)
\(858\) −0.0939763 −0.00320830
\(859\) −36.4285 −1.24293 −0.621463 0.783444i \(-0.713461\pi\)
−0.621463 + 0.783444i \(0.713461\pi\)
\(860\) −12.7647 −0.435273
\(861\) −20.5140 −0.699117
\(862\) −0.142697 −0.00486029
\(863\) 23.0286 0.783902 0.391951 0.919986i \(-0.371800\pi\)
0.391951 + 0.919986i \(0.371800\pi\)
\(864\) 6.30029 0.214340
\(865\) −11.9977 −0.407934
\(866\) 1.70912 0.0580783
\(867\) −8.13948 −0.276431
\(868\) −46.4584 −1.57690
\(869\) −9.22847 −0.313055
\(870\) −0.901515 −0.0305642
\(871\) 4.03227 0.136628
\(872\) 4.55690 0.154316
\(873\) −2.07409 −0.0701972
\(874\) −0.194759 −0.00658782
\(875\) 2.27227 0.0768166
\(876\) 33.6535 1.13705
\(877\) 8.60574 0.290595 0.145298 0.989388i \(-0.453586\pi\)
0.145298 + 0.989388i \(0.453586\pi\)
\(878\) 0.587566 0.0198294
\(879\) 10.8573 0.366208
\(880\) 6.27171 0.211419
\(881\) −51.2334 −1.72610 −0.863049 0.505120i \(-0.831448\pi\)
−0.863049 + 0.505120i \(0.831448\pi\)
\(882\) 0.278624 0.00938174
\(883\) −1.97334 −0.0664080 −0.0332040 0.999449i \(-0.510571\pi\)
−0.0332040 + 0.999449i \(0.510571\pi\)
\(884\) 4.96427 0.166966
\(885\) 11.5149 0.387069
\(886\) 3.26670 0.109747
\(887\) −51.9823 −1.74540 −0.872698 0.488261i \(-0.837631\pi\)
−0.872698 + 0.488261i \(0.837631\pi\)
\(888\) 2.86058 0.0959946
\(889\) 14.7580 0.494967
\(890\) 1.62843 0.0545851
\(891\) −2.90962 −0.0974758
\(892\) −32.0732 −1.07389
\(893\) −5.18308 −0.173445
\(894\) −0.0832454 −0.00278414
\(895\) 13.7491 0.459582
\(896\) −6.94679 −0.232076
\(897\) −0.445013 −0.0148585
\(898\) 2.84716 0.0950109
\(899\) 80.0823 2.67090
\(900\) 3.12383 0.104128
\(901\) −32.4346 −1.08055
\(902\) 1.16016 0.0386292
\(903\) −17.4283 −0.579979
\(904\) −6.93726 −0.230730
\(905\) 18.4750 0.614131
\(906\) 0.115623 0.00384133
\(907\) −38.1905 −1.26810 −0.634048 0.773294i \(-0.718608\pi\)
−0.634048 + 0.773294i \(0.718608\pi\)
\(908\) 35.4326 1.17587
\(909\) 13.8507 0.459398
\(910\) 0.112266 0.00372159
\(911\) 20.6233 0.683281 0.341641 0.939831i \(-0.389017\pi\)
0.341641 + 0.939831i \(0.389017\pi\)
\(912\) 13.0585 0.432411
\(913\) −20.0582 −0.663831
\(914\) 3.12575 0.103391
\(915\) 12.8118 0.423546
\(916\) −30.0463 −0.992757
\(917\) −40.2600 −1.32950
\(918\) −2.57764 −0.0850748
\(919\) 31.3088 1.03278 0.516391 0.856353i \(-0.327275\pi\)
0.516391 + 0.856353i \(0.327275\pi\)
\(920\) −0.280782 −0.00925712
\(921\) −13.9459 −0.459535
\(922\) 2.22358 0.0732298
\(923\) −0.503618 −0.0165768
\(924\) 8.60368 0.283040
\(925\) 6.19960 0.203841
\(926\) 1.87099 0.0614845
\(927\) 10.1550 0.333533
\(928\) 8.98796 0.295044
\(929\) −42.3558 −1.38965 −0.694824 0.719180i \(-0.744518\pi\)
−0.694824 + 0.719180i \(0.744518\pi\)
\(930\) −1.18756 −0.0389416
\(931\) 5.08436 0.166633
\(932\) 51.6897 1.69315
\(933\) 8.76852 0.287068
\(934\) −1.86380 −0.0609853
\(935\) −7.75851 −0.253730
\(936\) 0.309403 0.0101132
\(937\) −54.0586 −1.76602 −0.883009 0.469356i \(-0.844486\pi\)
−0.883009 + 0.469356i \(0.844486\pi\)
\(938\) 1.73278 0.0565774
\(939\) −8.03609 −0.262248
\(940\) −3.72745 −0.121576
\(941\) −22.7532 −0.741733 −0.370866 0.928686i \(-0.620939\pi\)
−0.370866 + 0.928686i \(0.620939\pi\)
\(942\) −2.32298 −0.0756867
\(943\) 5.49379 0.178902
\(944\) −37.9680 −1.23575
\(945\) 12.4190 0.403990
\(946\) 0.985651 0.0320463
\(947\) −14.9319 −0.485222 −0.242611 0.970124i \(-0.578004\pi\)
−0.242611 + 0.970124i \(0.578004\pi\)
\(948\) −13.8186 −0.448806
\(949\) 7.22400 0.234501
\(950\) −0.267568 −0.00868106
\(951\) −17.1948 −0.557580
\(952\) 4.27660 0.138605
\(953\) 48.5632 1.57312 0.786558 0.617516i \(-0.211861\pi\)
0.786558 + 0.617516i \(0.211861\pi\)
\(954\) −1.00839 −0.0326479
\(955\) −7.50204 −0.242760
\(956\) 24.2773 0.785184
\(957\) −14.8305 −0.479403
\(958\) −3.48625 −0.112636
\(959\) 4.89123 0.157946
\(960\) 9.30194 0.300219
\(961\) 74.4917 2.40296
\(962\) 0.306304 0.00987565
\(963\) −9.09912 −0.293215
\(964\) 21.2648 0.684895
\(965\) 24.8318 0.799363
\(966\) −0.191235 −0.00615289
\(967\) 11.6167 0.373567 0.186783 0.982401i \(-0.440194\pi\)
0.186783 + 0.982401i \(0.440194\pi\)
\(968\) 3.26782 0.105032
\(969\) −16.1542 −0.518949
\(970\) 0.127761 0.00410217
\(971\) −43.4080 −1.39303 −0.696515 0.717543i \(-0.745267\pi\)
−0.696515 + 0.717543i \(0.745267\pi\)
\(972\) 28.2828 0.907170
\(973\) 42.3282 1.35698
\(974\) −0.797511 −0.0255539
\(975\) −0.611378 −0.0195798
\(976\) −42.2442 −1.35221
\(977\) 61.8457 1.97862 0.989309 0.145835i \(-0.0465870\pi\)
0.989309 + 0.145835i \(0.0465870\pi\)
\(978\) 1.35694 0.0433902
\(979\) 26.7887 0.856172
\(980\) 3.65646 0.116801
\(981\) 18.5376 0.591859
\(982\) −3.13482 −0.100036
\(983\) −27.4281 −0.874820 −0.437410 0.899262i \(-0.644104\pi\)
−0.437410 + 0.899262i \(0.644104\pi\)
\(984\) 3.48257 0.111020
\(985\) −5.22821 −0.166585
\(986\) −3.67724 −0.117107
\(987\) −5.08930 −0.161994
\(988\) 2.81640 0.0896017
\(989\) 4.66742 0.148415
\(990\) −0.241212 −0.00766623
\(991\) −21.4283 −0.680693 −0.340347 0.940300i \(-0.610544\pi\)
−0.340347 + 0.940300i \(0.610544\pi\)
\(992\) 11.8398 0.375913
\(993\) −18.6444 −0.591664
\(994\) −0.216419 −0.00686440
\(995\) −18.5508 −0.588098
\(996\) −30.0349 −0.951691
\(997\) −42.9189 −1.35926 −0.679628 0.733557i \(-0.737859\pi\)
−0.679628 + 0.733557i \(0.737859\pi\)
\(998\) 2.91935 0.0924103
\(999\) 33.8837 1.07203
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 755.2.a.j.1.9 15
3.2 odd 2 6795.2.a.bh.1.7 15
5.4 even 2 3775.2.a.q.1.7 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
755.2.a.j.1.9 15 1.1 even 1 trivial
3775.2.a.q.1.7 15 5.4 even 2
6795.2.a.bh.1.7 15 3.2 odd 2