Properties

Label 755.2.a.j.1.3
Level $755$
Weight $2$
Character 755.1
Self dual yes
Analytic conductor $6.029$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [755,2,Mod(1,755)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(755, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("755.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 755 = 5 \cdot 151 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 755.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,-2,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.02870535261\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 2 x^{14} - 22 x^{13} + 48 x^{12} + 171 x^{11} - 423 x^{10} - 527 x^{9} + 1641 x^{8} + 400 x^{7} + \cdots + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.12744\) of defining polynomial
Character \(\chi\) \(=\) 755.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.12744 q^{2} +2.55334 q^{3} +2.52599 q^{4} +1.00000 q^{5} -5.43206 q^{6} +2.60553 q^{7} -1.11901 q^{8} +3.51953 q^{9} -2.12744 q^{10} +3.86021 q^{11} +6.44970 q^{12} +2.63130 q^{13} -5.54309 q^{14} +2.55334 q^{15} -2.67136 q^{16} -6.79915 q^{17} -7.48758 q^{18} +3.02807 q^{19} +2.52599 q^{20} +6.65279 q^{21} -8.21236 q^{22} +2.56609 q^{23} -2.85720 q^{24} +1.00000 q^{25} -5.59792 q^{26} +1.32654 q^{27} +6.58153 q^{28} -3.99265 q^{29} -5.43206 q^{30} -2.40837 q^{31} +7.92116 q^{32} +9.85642 q^{33} +14.4648 q^{34} +2.60553 q^{35} +8.89030 q^{36} -1.36589 q^{37} -6.44202 q^{38} +6.71859 q^{39} -1.11901 q^{40} -8.52346 q^{41} -14.1534 q^{42} +4.38895 q^{43} +9.75085 q^{44} +3.51953 q^{45} -5.45920 q^{46} -7.24681 q^{47} -6.82088 q^{48} -0.211234 q^{49} -2.12744 q^{50} -17.3605 q^{51} +6.64663 q^{52} -3.11675 q^{53} -2.82213 q^{54} +3.86021 q^{55} -2.91560 q^{56} +7.73168 q^{57} +8.49410 q^{58} -1.36025 q^{59} +6.44970 q^{60} -12.1363 q^{61} +5.12365 q^{62} +9.17023 q^{63} -11.5091 q^{64} +2.63130 q^{65} -20.9689 q^{66} +11.4763 q^{67} -17.1746 q^{68} +6.55210 q^{69} -5.54309 q^{70} +11.9053 q^{71} -3.93838 q^{72} +4.34482 q^{73} +2.90584 q^{74} +2.55334 q^{75} +7.64887 q^{76} +10.0579 q^{77} -14.2934 q^{78} -0.434182 q^{79} -2.67136 q^{80} -7.17149 q^{81} +18.1331 q^{82} -3.33674 q^{83} +16.8049 q^{84} -6.79915 q^{85} -9.33722 q^{86} -10.1946 q^{87} -4.31961 q^{88} -9.70616 q^{89} -7.48758 q^{90} +6.85592 q^{91} +6.48192 q^{92} -6.14938 q^{93} +15.4171 q^{94} +3.02807 q^{95} +20.2254 q^{96} +14.0904 q^{97} +0.449387 q^{98} +13.5861 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 2 q^{2} + 5 q^{3} + 18 q^{4} + 15 q^{5} - 4 q^{6} + 11 q^{7} + 12 q^{8} + 10 q^{9} - 2 q^{10} + 2 q^{11} + 4 q^{12} + 11 q^{13} - 9 q^{14} + 5 q^{15} + 40 q^{16} + 25 q^{17} - 15 q^{18} - 3 q^{19}+ \cdots - 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.12744 −1.50433 −0.752163 0.658978i \(-0.770989\pi\)
−0.752163 + 0.658978i \(0.770989\pi\)
\(3\) 2.55334 1.47417 0.737085 0.675800i \(-0.236202\pi\)
0.737085 + 0.675800i \(0.236202\pi\)
\(4\) 2.52599 1.26299
\(5\) 1.00000 0.447214
\(6\) −5.43206 −2.21763
\(7\) 2.60553 0.984796 0.492398 0.870370i \(-0.336120\pi\)
0.492398 + 0.870370i \(0.336120\pi\)
\(8\) −1.11901 −0.395629
\(9\) 3.51953 1.17318
\(10\) −2.12744 −0.672755
\(11\) 3.86021 1.16390 0.581949 0.813225i \(-0.302290\pi\)
0.581949 + 0.813225i \(0.302290\pi\)
\(12\) 6.44970 1.86187
\(13\) 2.63130 0.729791 0.364895 0.931048i \(-0.381105\pi\)
0.364895 + 0.931048i \(0.381105\pi\)
\(14\) −5.54309 −1.48145
\(15\) 2.55334 0.659269
\(16\) −2.67136 −0.667840
\(17\) −6.79915 −1.64904 −0.824518 0.565836i \(-0.808554\pi\)
−0.824518 + 0.565836i \(0.808554\pi\)
\(18\) −7.48758 −1.76484
\(19\) 3.02807 0.694686 0.347343 0.937738i \(-0.387084\pi\)
0.347343 + 0.937738i \(0.387084\pi\)
\(20\) 2.52599 0.564828
\(21\) 6.65279 1.45176
\(22\) −8.21236 −1.75088
\(23\) 2.56609 0.535067 0.267534 0.963549i \(-0.413791\pi\)
0.267534 + 0.963549i \(0.413791\pi\)
\(24\) −2.85720 −0.583224
\(25\) 1.00000 0.200000
\(26\) −5.59792 −1.09784
\(27\) 1.32654 0.255293
\(28\) 6.58153 1.24379
\(29\) −3.99265 −0.741416 −0.370708 0.928750i \(-0.620885\pi\)
−0.370708 + 0.928750i \(0.620885\pi\)
\(30\) −5.43206 −0.991755
\(31\) −2.40837 −0.432556 −0.216278 0.976332i \(-0.569392\pi\)
−0.216278 + 0.976332i \(0.569392\pi\)
\(32\) 7.92116 1.40028
\(33\) 9.85642 1.71578
\(34\) 14.4648 2.48069
\(35\) 2.60553 0.440414
\(36\) 8.89030 1.48172
\(37\) −1.36589 −0.224551 −0.112275 0.993677i \(-0.535814\pi\)
−0.112275 + 0.993677i \(0.535814\pi\)
\(38\) −6.44202 −1.04503
\(39\) 6.71859 1.07584
\(40\) −1.11901 −0.176931
\(41\) −8.52346 −1.33114 −0.665570 0.746335i \(-0.731812\pi\)
−0.665570 + 0.746335i \(0.731812\pi\)
\(42\) −14.1534 −2.18391
\(43\) 4.38895 0.669309 0.334655 0.942341i \(-0.391380\pi\)
0.334655 + 0.942341i \(0.391380\pi\)
\(44\) 9.75085 1.47000
\(45\) 3.51953 0.524661
\(46\) −5.45920 −0.804915
\(47\) −7.24681 −1.05706 −0.528528 0.848916i \(-0.677256\pi\)
−0.528528 + 0.848916i \(0.677256\pi\)
\(48\) −6.82088 −0.984509
\(49\) −0.211234 −0.0301763
\(50\) −2.12744 −0.300865
\(51\) −17.3605 −2.43096
\(52\) 6.64663 0.921722
\(53\) −3.11675 −0.428119 −0.214059 0.976821i \(-0.568669\pi\)
−0.214059 + 0.976821i \(0.568669\pi\)
\(54\) −2.82213 −0.384044
\(55\) 3.86021 0.520511
\(56\) −2.91560 −0.389614
\(57\) 7.73168 1.02409
\(58\) 8.49410 1.11533
\(59\) −1.36025 −0.177089 −0.0885447 0.996072i \(-0.528222\pi\)
−0.0885447 + 0.996072i \(0.528222\pi\)
\(60\) 6.44970 0.832653
\(61\) −12.1363 −1.55389 −0.776944 0.629570i \(-0.783231\pi\)
−0.776944 + 0.629570i \(0.783231\pi\)
\(62\) 5.12365 0.650704
\(63\) 9.17023 1.15534
\(64\) −11.5091 −1.43863
\(65\) 2.63130 0.326372
\(66\) −20.9689 −2.58110
\(67\) 11.4763 1.40205 0.701026 0.713136i \(-0.252726\pi\)
0.701026 + 0.713136i \(0.252726\pi\)
\(68\) −17.1746 −2.08272
\(69\) 6.55210 0.788780
\(70\) −5.54309 −0.662526
\(71\) 11.9053 1.41290 0.706449 0.707764i \(-0.250296\pi\)
0.706449 + 0.707764i \(0.250296\pi\)
\(72\) −3.93838 −0.464143
\(73\) 4.34482 0.508522 0.254261 0.967136i \(-0.418168\pi\)
0.254261 + 0.967136i \(0.418168\pi\)
\(74\) 2.90584 0.337797
\(75\) 2.55334 0.294834
\(76\) 7.64887 0.877385
\(77\) 10.0579 1.14620
\(78\) −14.2934 −1.61841
\(79\) −0.434182 −0.0488493 −0.0244247 0.999702i \(-0.507775\pi\)
−0.0244247 + 0.999702i \(0.507775\pi\)
\(80\) −2.67136 −0.298667
\(81\) −7.17149 −0.796832
\(82\) 18.1331 2.00247
\(83\) −3.33674 −0.366255 −0.183128 0.983089i \(-0.558622\pi\)
−0.183128 + 0.983089i \(0.558622\pi\)
\(84\) 16.8049 1.83356
\(85\) −6.79915 −0.737471
\(86\) −9.33722 −1.00686
\(87\) −10.1946 −1.09297
\(88\) −4.31961 −0.460471
\(89\) −9.70616 −1.02885 −0.514425 0.857535i \(-0.671995\pi\)
−0.514425 + 0.857535i \(0.671995\pi\)
\(90\) −7.48758 −0.789261
\(91\) 6.85592 0.718695
\(92\) 6.48192 0.675787
\(93\) −6.14938 −0.637660
\(94\) 15.4171 1.59015
\(95\) 3.02807 0.310673
\(96\) 20.2254 2.06425
\(97\) 14.0904 1.43066 0.715331 0.698786i \(-0.246276\pi\)
0.715331 + 0.698786i \(0.246276\pi\)
\(98\) 0.449387 0.0453949
\(99\) 13.5861 1.36546
\(100\) 2.52599 0.252599
\(101\) −6.96453 −0.692996 −0.346498 0.938051i \(-0.612629\pi\)
−0.346498 + 0.938051i \(0.612629\pi\)
\(102\) 36.9334 3.65695
\(103\) 20.2580 1.99608 0.998042 0.0625543i \(-0.0199247\pi\)
0.998042 + 0.0625543i \(0.0199247\pi\)
\(104\) −2.94444 −0.288726
\(105\) 6.65279 0.649246
\(106\) 6.63069 0.644030
\(107\) 13.6211 1.31680 0.658399 0.752669i \(-0.271234\pi\)
0.658399 + 0.752669i \(0.271234\pi\)
\(108\) 3.35083 0.322433
\(109\) 15.4421 1.47909 0.739543 0.673109i \(-0.235042\pi\)
0.739543 + 0.673109i \(0.235042\pi\)
\(110\) −8.21236 −0.783017
\(111\) −3.48758 −0.331026
\(112\) −6.96030 −0.657686
\(113\) −0.332750 −0.0313024 −0.0156512 0.999878i \(-0.504982\pi\)
−0.0156512 + 0.999878i \(0.504982\pi\)
\(114\) −16.4487 −1.54056
\(115\) 2.56609 0.239289
\(116\) −10.0854 −0.936404
\(117\) 9.26094 0.856174
\(118\) 2.89384 0.266400
\(119\) −17.7154 −1.62396
\(120\) −2.85720 −0.260826
\(121\) 3.90123 0.354657
\(122\) 25.8191 2.33755
\(123\) −21.7633 −1.96233
\(124\) −6.08351 −0.546315
\(125\) 1.00000 0.0894427
\(126\) −19.5091 −1.73801
\(127\) −5.62503 −0.499141 −0.249570 0.968357i \(-0.580289\pi\)
−0.249570 + 0.968357i \(0.580289\pi\)
\(128\) 8.64247 0.763894
\(129\) 11.2065 0.986676
\(130\) −5.59792 −0.490970
\(131\) −13.3688 −1.16803 −0.584017 0.811741i \(-0.698520\pi\)
−0.584017 + 0.811741i \(0.698520\pi\)
\(132\) 24.8972 2.16702
\(133\) 7.88971 0.684125
\(134\) −24.4151 −2.10914
\(135\) 1.32654 0.114170
\(136\) 7.60830 0.652406
\(137\) 9.04633 0.772880 0.386440 0.922314i \(-0.373705\pi\)
0.386440 + 0.922314i \(0.373705\pi\)
\(138\) −13.9392 −1.18658
\(139\) −7.83821 −0.664828 −0.332414 0.943134i \(-0.607863\pi\)
−0.332414 + 0.943134i \(0.607863\pi\)
\(140\) 6.58153 0.556241
\(141\) −18.5035 −1.55828
\(142\) −25.3278 −2.12546
\(143\) 10.1574 0.849402
\(144\) −9.40193 −0.783494
\(145\) −3.99265 −0.331571
\(146\) −9.24332 −0.764983
\(147\) −0.539351 −0.0444849
\(148\) −3.45022 −0.283606
\(149\) −8.35930 −0.684821 −0.342410 0.939550i \(-0.611243\pi\)
−0.342410 + 0.939550i \(0.611243\pi\)
\(150\) −5.43206 −0.443526
\(151\) −1.00000 −0.0813788
\(152\) −3.38843 −0.274838
\(153\) −23.9298 −1.93461
\(154\) −21.3975 −1.72426
\(155\) −2.40837 −0.193445
\(156\) 16.9711 1.35877
\(157\) 5.71733 0.456292 0.228146 0.973627i \(-0.426734\pi\)
0.228146 + 0.973627i \(0.426734\pi\)
\(158\) 0.923696 0.0734853
\(159\) −7.95812 −0.631120
\(160\) 7.92116 0.626223
\(161\) 6.68602 0.526932
\(162\) 15.2569 1.19869
\(163\) −10.7609 −0.842855 −0.421428 0.906862i \(-0.638471\pi\)
−0.421428 + 0.906862i \(0.638471\pi\)
\(164\) −21.5302 −1.68122
\(165\) 9.85642 0.767321
\(166\) 7.09871 0.550967
\(167\) −8.29351 −0.641771 −0.320885 0.947118i \(-0.603980\pi\)
−0.320885 + 0.947118i \(0.603980\pi\)
\(168\) −7.44452 −0.574357
\(169\) −6.07627 −0.467405
\(170\) 14.4648 1.10940
\(171\) 10.6574 0.814990
\(172\) 11.0864 0.845334
\(173\) −24.0069 −1.82521 −0.912605 0.408842i \(-0.865933\pi\)
−0.912605 + 0.408842i \(0.865933\pi\)
\(174\) 21.6883 1.64419
\(175\) 2.60553 0.196959
\(176\) −10.3120 −0.777297
\(177\) −3.47318 −0.261060
\(178\) 20.6492 1.54773
\(179\) 11.8924 0.888881 0.444440 0.895808i \(-0.353403\pi\)
0.444440 + 0.895808i \(0.353403\pi\)
\(180\) 8.89030 0.662644
\(181\) −0.175932 −0.0130769 −0.00653846 0.999979i \(-0.502081\pi\)
−0.00653846 + 0.999979i \(0.502081\pi\)
\(182\) −14.5855 −1.08115
\(183\) −30.9879 −2.29070
\(184\) −2.87148 −0.211688
\(185\) −1.36589 −0.100422
\(186\) 13.0824 0.959249
\(187\) −26.2461 −1.91931
\(188\) −18.3053 −1.33505
\(189\) 3.45634 0.251412
\(190\) −6.44202 −0.467354
\(191\) 27.2502 1.97175 0.985876 0.167475i \(-0.0535613\pi\)
0.985876 + 0.167475i \(0.0535613\pi\)
\(192\) −29.3865 −2.12079
\(193\) −4.82078 −0.347008 −0.173504 0.984833i \(-0.555509\pi\)
−0.173504 + 0.984833i \(0.555509\pi\)
\(194\) −29.9764 −2.15218
\(195\) 6.71859 0.481128
\(196\) −0.533574 −0.0381124
\(197\) −10.8355 −0.771996 −0.385998 0.922500i \(-0.626143\pi\)
−0.385998 + 0.922500i \(0.626143\pi\)
\(198\) −28.9037 −2.05409
\(199\) 5.11188 0.362371 0.181186 0.983449i \(-0.442007\pi\)
0.181186 + 0.983449i \(0.442007\pi\)
\(200\) −1.11901 −0.0791258
\(201\) 29.3028 2.06686
\(202\) 14.8166 1.04249
\(203\) −10.4029 −0.730143
\(204\) −43.8525 −3.07029
\(205\) −8.52346 −0.595304
\(206\) −43.0977 −3.00276
\(207\) 9.03145 0.627729
\(208\) −7.02914 −0.487383
\(209\) 11.6890 0.808544
\(210\) −14.1534 −0.976676
\(211\) −6.01660 −0.414200 −0.207100 0.978320i \(-0.566403\pi\)
−0.207100 + 0.978320i \(0.566403\pi\)
\(212\) −7.87288 −0.540712
\(213\) 30.3982 2.08285
\(214\) −28.9780 −1.98089
\(215\) 4.38895 0.299324
\(216\) −1.48441 −0.101001
\(217\) −6.27506 −0.425979
\(218\) −32.8521 −2.22503
\(219\) 11.0938 0.749648
\(220\) 9.75085 0.657402
\(221\) −17.8906 −1.20345
\(222\) 7.41960 0.497971
\(223\) 16.7656 1.12271 0.561353 0.827577i \(-0.310281\pi\)
0.561353 + 0.827577i \(0.310281\pi\)
\(224\) 20.6388 1.37899
\(225\) 3.51953 0.234635
\(226\) 0.707904 0.0470891
\(227\) −22.0615 −1.46427 −0.732137 0.681157i \(-0.761477\pi\)
−0.732137 + 0.681157i \(0.761477\pi\)
\(228\) 19.5301 1.29341
\(229\) −16.9196 −1.11808 −0.559039 0.829141i \(-0.688830\pi\)
−0.559039 + 0.829141i \(0.688830\pi\)
\(230\) −5.45920 −0.359969
\(231\) 25.6812 1.68970
\(232\) 4.46780 0.293325
\(233\) −0.0701274 −0.00459420 −0.00229710 0.999997i \(-0.500731\pi\)
−0.00229710 + 0.999997i \(0.500731\pi\)
\(234\) −19.7021 −1.28796
\(235\) −7.24681 −0.472729
\(236\) −3.43597 −0.223663
\(237\) −1.10861 −0.0720122
\(238\) 37.6883 2.44297
\(239\) 17.8971 1.15767 0.578833 0.815446i \(-0.303508\pi\)
0.578833 + 0.815446i \(0.303508\pi\)
\(240\) −6.82088 −0.440286
\(241\) −30.4880 −1.96390 −0.981951 0.189135i \(-0.939432\pi\)
−0.981951 + 0.189135i \(0.939432\pi\)
\(242\) −8.29962 −0.533520
\(243\) −22.2909 −1.42996
\(244\) −30.6560 −1.96255
\(245\) −0.211234 −0.0134952
\(246\) 46.3000 2.95198
\(247\) 7.96775 0.506976
\(248\) 2.69498 0.171131
\(249\) −8.51983 −0.539923
\(250\) −2.12744 −0.134551
\(251\) 0.407597 0.0257273 0.0128636 0.999917i \(-0.495905\pi\)
0.0128636 + 0.999917i \(0.495905\pi\)
\(252\) 23.1639 1.45919
\(253\) 9.90566 0.622764
\(254\) 11.9669 0.750870
\(255\) −17.3605 −1.08716
\(256\) 4.63180 0.289488
\(257\) −9.60743 −0.599295 −0.299648 0.954050i \(-0.596869\pi\)
−0.299648 + 0.954050i \(0.596869\pi\)
\(258\) −23.8411 −1.48428
\(259\) −3.55886 −0.221137
\(260\) 6.64663 0.412206
\(261\) −14.0522 −0.869812
\(262\) 28.4412 1.75710
\(263\) 11.3293 0.698592 0.349296 0.937012i \(-0.386421\pi\)
0.349296 + 0.937012i \(0.386421\pi\)
\(264\) −11.0294 −0.678813
\(265\) −3.11675 −0.191461
\(266\) −16.7849 −1.02915
\(267\) −24.7831 −1.51670
\(268\) 28.9890 1.77078
\(269\) −14.1573 −0.863185 −0.431593 0.902069i \(-0.642048\pi\)
−0.431593 + 0.902069i \(0.642048\pi\)
\(270\) −2.82213 −0.171749
\(271\) −24.5420 −1.49082 −0.745411 0.666605i \(-0.767747\pi\)
−0.745411 + 0.666605i \(0.767747\pi\)
\(272\) 18.1630 1.10129
\(273\) 17.5055 1.05948
\(274\) −19.2455 −1.16266
\(275\) 3.86021 0.232779
\(276\) 16.5505 0.996225
\(277\) 19.0519 1.14472 0.572358 0.820004i \(-0.306029\pi\)
0.572358 + 0.820004i \(0.306029\pi\)
\(278\) 16.6753 1.00012
\(279\) −8.47633 −0.507464
\(280\) −2.91560 −0.174241
\(281\) −11.1117 −0.662867 −0.331434 0.943479i \(-0.607532\pi\)
−0.331434 + 0.943479i \(0.607532\pi\)
\(282\) 39.3651 2.34416
\(283\) 27.0500 1.60796 0.803978 0.594660i \(-0.202713\pi\)
0.803978 + 0.594660i \(0.202713\pi\)
\(284\) 30.0726 1.78448
\(285\) 7.73168 0.457985
\(286\) −21.6092 −1.27778
\(287\) −22.2081 −1.31090
\(288\) 27.8788 1.64277
\(289\) 29.2284 1.71932
\(290\) 8.49410 0.498791
\(291\) 35.9775 2.10904
\(292\) 10.9750 0.642261
\(293\) 15.8783 0.927620 0.463810 0.885935i \(-0.346482\pi\)
0.463810 + 0.885935i \(0.346482\pi\)
\(294\) 1.14744 0.0669198
\(295\) −1.36025 −0.0791968
\(296\) 1.52844 0.0888388
\(297\) 5.12073 0.297135
\(298\) 17.7839 1.03019
\(299\) 6.75216 0.390487
\(300\) 6.44970 0.372374
\(301\) 11.4355 0.659133
\(302\) 2.12744 0.122420
\(303\) −17.7828 −1.02159
\(304\) −8.08906 −0.463939
\(305\) −12.1363 −0.694920
\(306\) 50.9092 2.91028
\(307\) −32.1198 −1.83317 −0.916586 0.399837i \(-0.869067\pi\)
−0.916586 + 0.399837i \(0.869067\pi\)
\(308\) 25.4061 1.44765
\(309\) 51.7256 2.94257
\(310\) 5.12365 0.291004
\(311\) −8.50777 −0.482431 −0.241216 0.970472i \(-0.577546\pi\)
−0.241216 + 0.970472i \(0.577546\pi\)
\(312\) −7.51816 −0.425632
\(313\) 13.6919 0.773910 0.386955 0.922099i \(-0.373527\pi\)
0.386955 + 0.922099i \(0.373527\pi\)
\(314\) −12.1633 −0.686412
\(315\) 9.17023 0.516684
\(316\) −1.09674 −0.0616964
\(317\) −22.1162 −1.24217 −0.621084 0.783744i \(-0.713307\pi\)
−0.621084 + 0.783744i \(0.713307\pi\)
\(318\) 16.9304 0.949410
\(319\) −15.4125 −0.862932
\(320\) −11.5091 −0.643376
\(321\) 34.7792 1.94119
\(322\) −14.2241 −0.792678
\(323\) −20.5883 −1.14556
\(324\) −18.1151 −1.00639
\(325\) 2.63130 0.145958
\(326\) 22.8930 1.26793
\(327\) 39.4289 2.18042
\(328\) 9.53781 0.526638
\(329\) −18.8817 −1.04098
\(330\) −20.9689 −1.15430
\(331\) 5.17282 0.284324 0.142162 0.989843i \(-0.454595\pi\)
0.142162 + 0.989843i \(0.454595\pi\)
\(332\) −8.42858 −0.462578
\(333\) −4.80729 −0.263438
\(334\) 17.6439 0.965432
\(335\) 11.4763 0.627017
\(336\) −17.7720 −0.969541
\(337\) −28.5827 −1.55700 −0.778499 0.627646i \(-0.784018\pi\)
−0.778499 + 0.627646i \(0.784018\pi\)
\(338\) 12.9269 0.703129
\(339\) −0.849622 −0.0461451
\(340\) −17.1746 −0.931422
\(341\) −9.29681 −0.503450
\(342\) −22.6729 −1.22601
\(343\) −18.7891 −1.01451
\(344\) −4.91127 −0.264798
\(345\) 6.55210 0.352753
\(346\) 51.0732 2.74571
\(347\) 20.4069 1.09550 0.547749 0.836643i \(-0.315485\pi\)
0.547749 + 0.836643i \(0.315485\pi\)
\(348\) −25.7514 −1.38042
\(349\) −18.8070 −1.00671 −0.503357 0.864079i \(-0.667902\pi\)
−0.503357 + 0.864079i \(0.667902\pi\)
\(350\) −5.54309 −0.296291
\(351\) 3.49052 0.186310
\(352\) 30.5774 1.62978
\(353\) 27.7640 1.47773 0.738864 0.673855i \(-0.235363\pi\)
0.738864 + 0.673855i \(0.235363\pi\)
\(354\) 7.38896 0.392719
\(355\) 11.9053 0.631867
\(356\) −24.5176 −1.29943
\(357\) −45.2333 −2.39400
\(358\) −25.3004 −1.33717
\(359\) 21.5754 1.13871 0.569353 0.822093i \(-0.307194\pi\)
0.569353 + 0.822093i \(0.307194\pi\)
\(360\) −3.93838 −0.207571
\(361\) −9.83080 −0.517411
\(362\) 0.374284 0.0196719
\(363\) 9.96116 0.522825
\(364\) 17.3180 0.907708
\(365\) 4.34482 0.227418
\(366\) 65.9249 3.44595
\(367\) 0.913369 0.0476775 0.0238387 0.999716i \(-0.492411\pi\)
0.0238387 + 0.999716i \(0.492411\pi\)
\(368\) −6.85496 −0.357339
\(369\) −29.9986 −1.56166
\(370\) 2.90584 0.151068
\(371\) −8.12078 −0.421610
\(372\) −15.5333 −0.805362
\(373\) 35.6167 1.84416 0.922080 0.386998i \(-0.126488\pi\)
0.922080 + 0.386998i \(0.126488\pi\)
\(374\) 55.8370 2.88726
\(375\) 2.55334 0.131854
\(376\) 8.10923 0.418202
\(377\) −10.5058 −0.541078
\(378\) −7.35314 −0.378205
\(379\) −7.14559 −0.367044 −0.183522 0.983016i \(-0.558750\pi\)
−0.183522 + 0.983016i \(0.558750\pi\)
\(380\) 7.64887 0.392379
\(381\) −14.3626 −0.735818
\(382\) −57.9730 −2.96616
\(383\) −4.18015 −0.213596 −0.106798 0.994281i \(-0.534060\pi\)
−0.106798 + 0.994281i \(0.534060\pi\)
\(384\) 22.0671 1.12611
\(385\) 10.0579 0.512597
\(386\) 10.2559 0.522012
\(387\) 15.4471 0.785218
\(388\) 35.5922 1.80692
\(389\) 22.2373 1.12748 0.563738 0.825954i \(-0.309363\pi\)
0.563738 + 0.825954i \(0.309363\pi\)
\(390\) −14.2934 −0.723774
\(391\) −17.4472 −0.882345
\(392\) 0.236372 0.0119386
\(393\) −34.1350 −1.72188
\(394\) 23.0518 1.16133
\(395\) −0.434182 −0.0218461
\(396\) 34.3184 1.72457
\(397\) 18.9109 0.949110 0.474555 0.880226i \(-0.342609\pi\)
0.474555 + 0.880226i \(0.342609\pi\)
\(398\) −10.8752 −0.545124
\(399\) 20.1451 1.00852
\(400\) −2.67136 −0.133568
\(401\) 39.2798 1.96154 0.980770 0.195165i \(-0.0625241\pi\)
0.980770 + 0.195165i \(0.0625241\pi\)
\(402\) −62.3400 −3.10923
\(403\) −6.33713 −0.315675
\(404\) −17.5923 −0.875250
\(405\) −7.17149 −0.356354
\(406\) 22.1316 1.09837
\(407\) −5.27262 −0.261354
\(408\) 19.4266 0.961758
\(409\) −23.0528 −1.13989 −0.569943 0.821684i \(-0.693035\pi\)
−0.569943 + 0.821684i \(0.693035\pi\)
\(410\) 18.1331 0.895531
\(411\) 23.0983 1.13936
\(412\) 51.1716 2.52104
\(413\) −3.54416 −0.174397
\(414\) −19.2138 −0.944308
\(415\) −3.33674 −0.163794
\(416\) 20.8429 1.02191
\(417\) −20.0136 −0.980070
\(418\) −24.8676 −1.21631
\(419\) −14.8416 −0.725061 −0.362530 0.931972i \(-0.618087\pi\)
−0.362530 + 0.931972i \(0.618087\pi\)
\(420\) 16.8049 0.819993
\(421\) 9.08416 0.442735 0.221367 0.975190i \(-0.428948\pi\)
0.221367 + 0.975190i \(0.428948\pi\)
\(422\) 12.7999 0.623092
\(423\) −25.5054 −1.24011
\(424\) 3.48767 0.169376
\(425\) −6.79915 −0.329807
\(426\) −64.6703 −3.13329
\(427\) −31.6213 −1.53026
\(428\) 34.4067 1.66311
\(429\) 25.9352 1.25216
\(430\) −9.33722 −0.450281
\(431\) 0.460039 0.0221593 0.0110797 0.999939i \(-0.496473\pi\)
0.0110797 + 0.999939i \(0.496473\pi\)
\(432\) −3.54367 −0.170495
\(433\) −39.3903 −1.89298 −0.946488 0.322738i \(-0.895397\pi\)
−0.946488 + 0.322738i \(0.895397\pi\)
\(434\) 13.3498 0.640811
\(435\) −10.1946 −0.488792
\(436\) 39.0066 1.86808
\(437\) 7.77030 0.371704
\(438\) −23.6013 −1.12771
\(439\) 10.5825 0.505075 0.252538 0.967587i \(-0.418735\pi\)
0.252538 + 0.967587i \(0.418735\pi\)
\(440\) −4.31961 −0.205929
\(441\) −0.743444 −0.0354021
\(442\) 38.0611 1.81038
\(443\) −0.268262 −0.0127455 −0.00637275 0.999980i \(-0.502029\pi\)
−0.00637275 + 0.999980i \(0.502029\pi\)
\(444\) −8.80958 −0.418084
\(445\) −9.70616 −0.460116
\(446\) −35.6677 −1.68891
\(447\) −21.3441 −1.00954
\(448\) −29.9872 −1.41676
\(449\) −9.88369 −0.466440 −0.233220 0.972424i \(-0.574926\pi\)
−0.233220 + 0.972424i \(0.574926\pi\)
\(450\) −7.48758 −0.352968
\(451\) −32.9023 −1.54931
\(452\) −0.840522 −0.0395348
\(453\) −2.55334 −0.119966
\(454\) 46.9345 2.20274
\(455\) 6.85592 0.321410
\(456\) −8.65181 −0.405158
\(457\) 32.8158 1.53506 0.767529 0.641014i \(-0.221486\pi\)
0.767529 + 0.641014i \(0.221486\pi\)
\(458\) 35.9954 1.68195
\(459\) −9.01935 −0.420987
\(460\) 6.48192 0.302221
\(461\) 19.1507 0.891938 0.445969 0.895048i \(-0.352859\pi\)
0.445969 + 0.895048i \(0.352859\pi\)
\(462\) −54.6351 −2.54185
\(463\) −27.6639 −1.28565 −0.642824 0.766014i \(-0.722237\pi\)
−0.642824 + 0.766014i \(0.722237\pi\)
\(464\) 10.6658 0.495147
\(465\) −6.14938 −0.285170
\(466\) 0.149192 0.00691117
\(467\) 6.87738 0.318247 0.159124 0.987259i \(-0.449133\pi\)
0.159124 + 0.987259i \(0.449133\pi\)
\(468\) 23.3930 1.08134
\(469\) 29.9018 1.38074
\(470\) 15.4171 0.711139
\(471\) 14.5983 0.672653
\(472\) 1.52213 0.0700617
\(473\) 16.9423 0.779007
\(474\) 2.35851 0.108330
\(475\) 3.02807 0.138937
\(476\) −44.7488 −2.05106
\(477\) −10.9695 −0.502259
\(478\) −38.0749 −1.74151
\(479\) 30.7468 1.40486 0.702429 0.711754i \(-0.252099\pi\)
0.702429 + 0.711754i \(0.252099\pi\)
\(480\) 20.2254 0.923159
\(481\) −3.59406 −0.163875
\(482\) 64.8612 2.95435
\(483\) 17.0717 0.776788
\(484\) 9.85446 0.447930
\(485\) 14.0904 0.639812
\(486\) 47.4224 2.15112
\(487\) 17.9966 0.815504 0.407752 0.913093i \(-0.366313\pi\)
0.407752 + 0.913093i \(0.366313\pi\)
\(488\) 13.5806 0.614763
\(489\) −27.4761 −1.24251
\(490\) 0.449387 0.0203012
\(491\) 20.5368 0.926812 0.463406 0.886146i \(-0.346627\pi\)
0.463406 + 0.886146i \(0.346627\pi\)
\(492\) −54.9737 −2.47841
\(493\) 27.1466 1.22262
\(494\) −16.9509 −0.762657
\(495\) 13.5861 0.610651
\(496\) 6.43361 0.288878
\(497\) 31.0196 1.39142
\(498\) 18.1254 0.812219
\(499\) −29.1826 −1.30639 −0.653196 0.757189i \(-0.726572\pi\)
−0.653196 + 0.757189i \(0.726572\pi\)
\(500\) 2.52599 0.112966
\(501\) −21.1761 −0.946080
\(502\) −0.867136 −0.0387022
\(503\) −35.2746 −1.57282 −0.786409 0.617706i \(-0.788062\pi\)
−0.786409 + 0.617706i \(0.788062\pi\)
\(504\) −10.2616 −0.457086
\(505\) −6.96453 −0.309917
\(506\) −21.0737 −0.936839
\(507\) −15.5148 −0.689035
\(508\) −14.2088 −0.630412
\(509\) −5.84464 −0.259059 −0.129529 0.991576i \(-0.541347\pi\)
−0.129529 + 0.991576i \(0.541347\pi\)
\(510\) 36.9334 1.63544
\(511\) 11.3205 0.500791
\(512\) −27.1388 −1.19938
\(513\) 4.01686 0.177349
\(514\) 20.4392 0.901535
\(515\) 20.2580 0.892676
\(516\) 28.3074 1.24617
\(517\) −27.9742 −1.23030
\(518\) 7.57125 0.332662
\(519\) −61.2977 −2.69067
\(520\) −2.94444 −0.129122
\(521\) 5.44758 0.238663 0.119331 0.992854i \(-0.461925\pi\)
0.119331 + 0.992854i \(0.461925\pi\)
\(522\) 29.8953 1.30848
\(523\) −7.53899 −0.329657 −0.164829 0.986322i \(-0.552707\pi\)
−0.164829 + 0.986322i \(0.552707\pi\)
\(524\) −33.7694 −1.47522
\(525\) 6.65279 0.290351
\(526\) −24.1023 −1.05091
\(527\) 16.3748 0.713300
\(528\) −26.3300 −1.14587
\(529\) −16.4152 −0.713703
\(530\) 6.63069 0.288019
\(531\) −4.78744 −0.207757
\(532\) 19.9293 0.864046
\(533\) −22.4278 −0.971454
\(534\) 52.7245 2.28161
\(535\) 13.6211 0.588890
\(536\) −12.8421 −0.554692
\(537\) 30.3653 1.31036
\(538\) 30.1188 1.29851
\(539\) −0.815407 −0.0351221
\(540\) 3.35083 0.144197
\(541\) 40.1043 1.72422 0.862110 0.506722i \(-0.169143\pi\)
0.862110 + 0.506722i \(0.169143\pi\)
\(542\) 52.2116 2.24268
\(543\) −0.449214 −0.0192776
\(544\) −53.8572 −2.30911
\(545\) 15.4421 0.661467
\(546\) −37.2418 −1.59380
\(547\) −24.7785 −1.05945 −0.529727 0.848169i \(-0.677705\pi\)
−0.529727 + 0.848169i \(0.677705\pi\)
\(548\) 22.8509 0.976143
\(549\) −42.7139 −1.82299
\(550\) −8.21236 −0.350176
\(551\) −12.0900 −0.515051
\(552\) −7.33185 −0.312064
\(553\) −1.13127 −0.0481067
\(554\) −40.5316 −1.72202
\(555\) −3.48758 −0.148039
\(556\) −19.7992 −0.839674
\(557\) −15.6487 −0.663056 −0.331528 0.943445i \(-0.607564\pi\)
−0.331528 + 0.943445i \(0.607564\pi\)
\(558\) 18.0329 0.763392
\(559\) 11.5486 0.488456
\(560\) −6.96030 −0.294126
\(561\) −67.0153 −2.82939
\(562\) 23.6394 0.997168
\(563\) −8.37689 −0.353044 −0.176522 0.984297i \(-0.556485\pi\)
−0.176522 + 0.984297i \(0.556485\pi\)
\(564\) −46.7397 −1.96810
\(565\) −0.332750 −0.0139989
\(566\) −57.5472 −2.41889
\(567\) −18.6855 −0.784717
\(568\) −13.3221 −0.558984
\(569\) −27.5893 −1.15661 −0.578303 0.815822i \(-0.696285\pi\)
−0.578303 + 0.815822i \(0.696285\pi\)
\(570\) −16.4487 −0.688959
\(571\) 23.2913 0.974709 0.487355 0.873204i \(-0.337962\pi\)
0.487355 + 0.873204i \(0.337962\pi\)
\(572\) 25.6574 1.07279
\(573\) 69.5789 2.90670
\(574\) 47.2463 1.97202
\(575\) 2.56609 0.107013
\(576\) −40.5065 −1.68777
\(577\) −37.7795 −1.57278 −0.786390 0.617731i \(-0.788052\pi\)
−0.786390 + 0.617731i \(0.788052\pi\)
\(578\) −62.1816 −2.58641
\(579\) −12.3091 −0.511548
\(580\) −10.0854 −0.418772
\(581\) −8.69397 −0.360687
\(582\) −76.5399 −3.17268
\(583\) −12.0313 −0.498286
\(584\) −4.86188 −0.201186
\(585\) 9.26094 0.382893
\(586\) −33.7801 −1.39544
\(587\) −15.4233 −0.636586 −0.318293 0.947992i \(-0.603110\pi\)
−0.318293 + 0.947992i \(0.603110\pi\)
\(588\) −1.36240 −0.0561842
\(589\) −7.29270 −0.300491
\(590\) 2.89384 0.119138
\(591\) −27.6666 −1.13805
\(592\) 3.64878 0.149964
\(593\) 27.1534 1.11506 0.557529 0.830158i \(-0.311750\pi\)
0.557529 + 0.830158i \(0.311750\pi\)
\(594\) −10.8940 −0.446987
\(595\) −17.7154 −0.726259
\(596\) −21.1155 −0.864925
\(597\) 13.0523 0.534197
\(598\) −14.3648 −0.587420
\(599\) 36.2963 1.48303 0.741513 0.670938i \(-0.234109\pi\)
0.741513 + 0.670938i \(0.234109\pi\)
\(600\) −2.85720 −0.116645
\(601\) 34.1202 1.39179 0.695895 0.718143i \(-0.255008\pi\)
0.695895 + 0.718143i \(0.255008\pi\)
\(602\) −24.3284 −0.991551
\(603\) 40.3912 1.64486
\(604\) −2.52599 −0.102781
\(605\) 3.90123 0.158608
\(606\) 37.8318 1.53681
\(607\) 23.0592 0.935946 0.467973 0.883743i \(-0.344985\pi\)
0.467973 + 0.883743i \(0.344985\pi\)
\(608\) 23.9858 0.972754
\(609\) −26.5622 −1.07636
\(610\) 25.8191 1.04539
\(611\) −19.0685 −0.771429
\(612\) −60.4465 −2.44340
\(613\) −3.40514 −0.137532 −0.0687662 0.997633i \(-0.521906\pi\)
−0.0687662 + 0.997633i \(0.521906\pi\)
\(614\) 68.3328 2.75769
\(615\) −21.7633 −0.877579
\(616\) −11.2548 −0.453471
\(617\) 3.61313 0.145459 0.0727295 0.997352i \(-0.476829\pi\)
0.0727295 + 0.997352i \(0.476829\pi\)
\(618\) −110.043 −4.42658
\(619\) 10.8369 0.435574 0.217787 0.975996i \(-0.430116\pi\)
0.217787 + 0.975996i \(0.430116\pi\)
\(620\) −6.08351 −0.244320
\(621\) 3.40403 0.136599
\(622\) 18.0997 0.725733
\(623\) −25.2897 −1.01321
\(624\) −17.9478 −0.718486
\(625\) 1.00000 0.0400000
\(626\) −29.1286 −1.16421
\(627\) 29.8459 1.19193
\(628\) 14.4419 0.576295
\(629\) 9.28688 0.370292
\(630\) −19.5091 −0.777261
\(631\) −31.4947 −1.25379 −0.626893 0.779106i \(-0.715674\pi\)
−0.626893 + 0.779106i \(0.715674\pi\)
\(632\) 0.485853 0.0193262
\(633\) −15.3624 −0.610601
\(634\) 47.0507 1.86862
\(635\) −5.62503 −0.223222
\(636\) −20.1021 −0.797101
\(637\) −0.555819 −0.0220224
\(638\) 32.7890 1.29813
\(639\) 41.9011 1.65758
\(640\) 8.64247 0.341624
\(641\) 4.00732 0.158280 0.0791398 0.996864i \(-0.474783\pi\)
0.0791398 + 0.996864i \(0.474783\pi\)
\(642\) −73.9906 −2.92017
\(643\) 11.1296 0.438908 0.219454 0.975623i \(-0.429572\pi\)
0.219454 + 0.975623i \(0.429572\pi\)
\(644\) 16.8888 0.665513
\(645\) 11.2065 0.441255
\(646\) 43.8003 1.72330
\(647\) 24.4197 0.960038 0.480019 0.877258i \(-0.340630\pi\)
0.480019 + 0.877258i \(0.340630\pi\)
\(648\) 8.02495 0.315250
\(649\) −5.25085 −0.206114
\(650\) −5.59792 −0.219569
\(651\) −16.0224 −0.627966
\(652\) −27.1818 −1.06452
\(653\) 28.0387 1.09724 0.548620 0.836072i \(-0.315153\pi\)
0.548620 + 0.836072i \(0.315153\pi\)
\(654\) −83.8825 −3.28007
\(655\) −13.3688 −0.522361
\(656\) 22.7692 0.888988
\(657\) 15.2917 0.596587
\(658\) 40.1697 1.56598
\(659\) −28.3497 −1.10435 −0.552174 0.833729i \(-0.686202\pi\)
−0.552174 + 0.833729i \(0.686202\pi\)
\(660\) 24.8972 0.969122
\(661\) 5.24727 0.204095 0.102048 0.994780i \(-0.467461\pi\)
0.102048 + 0.994780i \(0.467461\pi\)
\(662\) −11.0048 −0.427715
\(663\) −45.6807 −1.77409
\(664\) 3.73384 0.144901
\(665\) 7.88971 0.305950
\(666\) 10.2272 0.396296
\(667\) −10.2455 −0.396707
\(668\) −20.9493 −0.810553
\(669\) 42.8081 1.65506
\(670\) −24.4151 −0.943237
\(671\) −46.8485 −1.80857
\(672\) 52.6978 2.03286
\(673\) 35.1032 1.35313 0.676565 0.736383i \(-0.263468\pi\)
0.676565 + 0.736383i \(0.263468\pi\)
\(674\) 60.8078 2.34223
\(675\) 1.32654 0.0510586
\(676\) −15.3486 −0.590330
\(677\) −24.0150 −0.922972 −0.461486 0.887148i \(-0.652683\pi\)
−0.461486 + 0.887148i \(0.652683\pi\)
\(678\) 1.80752 0.0694173
\(679\) 36.7129 1.40891
\(680\) 7.60830 0.291765
\(681\) −56.3305 −2.15859
\(682\) 19.7784 0.757353
\(683\) −21.9473 −0.839791 −0.419896 0.907572i \(-0.637933\pi\)
−0.419896 + 0.907572i \(0.637933\pi\)
\(684\) 26.9204 1.02933
\(685\) 9.04633 0.345643
\(686\) 39.9725 1.52616
\(687\) −43.2015 −1.64824
\(688\) −11.7245 −0.446991
\(689\) −8.20111 −0.312437
\(690\) −13.9392 −0.530656
\(691\) 22.1705 0.843406 0.421703 0.906734i \(-0.361432\pi\)
0.421703 + 0.906734i \(0.361432\pi\)
\(692\) −60.6411 −2.30523
\(693\) 35.3990 1.34470
\(694\) −43.4143 −1.64798
\(695\) −7.83821 −0.297320
\(696\) 11.4078 0.432412
\(697\) 57.9522 2.19510
\(698\) 40.0106 1.51442
\(699\) −0.179059 −0.00677263
\(700\) 6.58153 0.248758
\(701\) 41.5650 1.56989 0.784945 0.619565i \(-0.212691\pi\)
0.784945 + 0.619565i \(0.212691\pi\)
\(702\) −7.42587 −0.280271
\(703\) −4.13601 −0.155992
\(704\) −44.4274 −1.67442
\(705\) −18.5035 −0.696884
\(706\) −59.0661 −2.22298
\(707\) −18.1463 −0.682460
\(708\) −8.77320 −0.329717
\(709\) 30.1633 1.13281 0.566403 0.824128i \(-0.308334\pi\)
0.566403 + 0.824128i \(0.308334\pi\)
\(710\) −25.3278 −0.950534
\(711\) −1.52812 −0.0573089
\(712\) 10.8613 0.407043
\(713\) −6.18009 −0.231446
\(714\) 96.2310 3.60135
\(715\) 10.1574 0.379864
\(716\) 30.0401 1.12265
\(717\) 45.6973 1.70660
\(718\) −45.9003 −1.71299
\(719\) 0.118341 0.00441339 0.00220669 0.999998i \(-0.499298\pi\)
0.00220669 + 0.999998i \(0.499298\pi\)
\(720\) −9.40193 −0.350389
\(721\) 52.7828 1.96574
\(722\) 20.9144 0.778354
\(723\) −77.8461 −2.89513
\(724\) −0.444402 −0.0165161
\(725\) −3.99265 −0.148283
\(726\) −21.1917 −0.786499
\(727\) 31.1824 1.15649 0.578246 0.815862i \(-0.303737\pi\)
0.578246 + 0.815862i \(0.303737\pi\)
\(728\) −7.67182 −0.284337
\(729\) −35.4016 −1.31117
\(730\) −9.24332 −0.342111
\(731\) −29.8411 −1.10371
\(732\) −78.2752 −2.89313
\(733\) −7.16079 −0.264490 −0.132245 0.991217i \(-0.542219\pi\)
−0.132245 + 0.991217i \(0.542219\pi\)
\(734\) −1.94314 −0.0717225
\(735\) −0.539351 −0.0198943
\(736\) 20.3264 0.749243
\(737\) 44.3009 1.63184
\(738\) 63.8201 2.34925
\(739\) −31.8925 −1.17319 −0.586593 0.809882i \(-0.699531\pi\)
−0.586593 + 0.809882i \(0.699531\pi\)
\(740\) −3.45022 −0.126833
\(741\) 20.3444 0.747369
\(742\) 17.2764 0.634238
\(743\) 46.8778 1.71978 0.859890 0.510480i \(-0.170532\pi\)
0.859890 + 0.510480i \(0.170532\pi\)
\(744\) 6.88120 0.252277
\(745\) −8.35930 −0.306261
\(746\) −75.7722 −2.77422
\(747\) −11.7438 −0.429682
\(748\) −66.2975 −2.42408
\(749\) 35.4901 1.29678
\(750\) −5.43206 −0.198351
\(751\) 1.76497 0.0644049 0.0322024 0.999481i \(-0.489748\pi\)
0.0322024 + 0.999481i \(0.489748\pi\)
\(752\) 19.3588 0.705944
\(753\) 1.04073 0.0379264
\(754\) 22.3505 0.813958
\(755\) −1.00000 −0.0363937
\(756\) 8.73067 0.317531
\(757\) −18.6205 −0.676775 −0.338387 0.941007i \(-0.609881\pi\)
−0.338387 + 0.941007i \(0.609881\pi\)
\(758\) 15.2018 0.552154
\(759\) 25.2925 0.918059
\(760\) −3.38843 −0.122911
\(761\) 23.2657 0.843381 0.421690 0.906740i \(-0.361437\pi\)
0.421690 + 0.906740i \(0.361437\pi\)
\(762\) 30.5555 1.10691
\(763\) 40.2348 1.45660
\(764\) 68.8336 2.49031
\(765\) −23.9298 −0.865185
\(766\) 8.89301 0.321317
\(767\) −3.57922 −0.129238
\(768\) 11.8266 0.426754
\(769\) −12.3090 −0.443874 −0.221937 0.975061i \(-0.571238\pi\)
−0.221937 + 0.975061i \(0.571238\pi\)
\(770\) −21.3975 −0.771113
\(771\) −24.5310 −0.883463
\(772\) −12.1772 −0.438268
\(773\) 32.1410 1.15603 0.578016 0.816025i \(-0.303827\pi\)
0.578016 + 0.816025i \(0.303827\pi\)
\(774\) −32.8627 −1.18122
\(775\) −2.40837 −0.0865111
\(776\) −15.7672 −0.566011
\(777\) −9.08697 −0.325993
\(778\) −47.3084 −1.69609
\(779\) −25.8096 −0.924725
\(780\) 16.9711 0.607662
\(781\) 45.9570 1.64447
\(782\) 37.1179 1.32733
\(783\) −5.29641 −0.189278
\(784\) 0.564281 0.0201529
\(785\) 5.71733 0.204060
\(786\) 72.6200 2.59027
\(787\) −28.4217 −1.01312 −0.506561 0.862204i \(-0.669084\pi\)
−0.506561 + 0.862204i \(0.669084\pi\)
\(788\) −27.3703 −0.975027
\(789\) 28.9274 1.02984
\(790\) 0.923696 0.0328636
\(791\) −0.866988 −0.0308265
\(792\) −15.2030 −0.540215
\(793\) −31.9341 −1.13401
\(794\) −40.2317 −1.42777
\(795\) −7.95812 −0.282245
\(796\) 12.9125 0.457673
\(797\) 35.1465 1.24495 0.622477 0.782638i \(-0.286127\pi\)
0.622477 + 0.782638i \(0.286127\pi\)
\(798\) −42.8574 −1.51714
\(799\) 49.2721 1.74312
\(800\) 7.92116 0.280055
\(801\) −34.1611 −1.20702
\(802\) −83.5654 −2.95080
\(803\) 16.7719 0.591868
\(804\) 74.0187 2.61044
\(805\) 6.68602 0.235651
\(806\) 13.4819 0.474878
\(807\) −36.1483 −1.27248
\(808\) 7.79336 0.274169
\(809\) 18.8754 0.663624 0.331812 0.943345i \(-0.392340\pi\)
0.331812 + 0.943345i \(0.392340\pi\)
\(810\) 15.2569 0.536073
\(811\) −48.6416 −1.70804 −0.854018 0.520243i \(-0.825841\pi\)
−0.854018 + 0.520243i \(0.825841\pi\)
\(812\) −26.2777 −0.922167
\(813\) −62.6641 −2.19772
\(814\) 11.2172 0.393162
\(815\) −10.7609 −0.376936
\(816\) 46.3762 1.62349
\(817\) 13.2901 0.464960
\(818\) 49.0433 1.71476
\(819\) 24.1296 0.843157
\(820\) −21.5302 −0.751866
\(821\) −1.02623 −0.0358156 −0.0179078 0.999840i \(-0.505701\pi\)
−0.0179078 + 0.999840i \(0.505701\pi\)
\(822\) −49.1403 −1.71396
\(823\) 42.4724 1.48049 0.740247 0.672335i \(-0.234709\pi\)
0.740247 + 0.672335i \(0.234709\pi\)
\(824\) −22.6689 −0.789708
\(825\) 9.85642 0.343157
\(826\) 7.53999 0.262350
\(827\) −29.2421 −1.01685 −0.508424 0.861107i \(-0.669772\pi\)
−0.508424 + 0.861107i \(0.669772\pi\)
\(828\) 22.8133 0.792818
\(829\) −27.7155 −0.962598 −0.481299 0.876556i \(-0.659835\pi\)
−0.481299 + 0.876556i \(0.659835\pi\)
\(830\) 7.09871 0.246400
\(831\) 48.6458 1.68750
\(832\) −30.2838 −1.04990
\(833\) 1.43621 0.0497617
\(834\) 42.5777 1.47434
\(835\) −8.29351 −0.287009
\(836\) 29.5262 1.02119
\(837\) −3.19480 −0.110428
\(838\) 31.5746 1.09073
\(839\) 34.3966 1.18750 0.593751 0.804649i \(-0.297646\pi\)
0.593751 + 0.804649i \(0.297646\pi\)
\(840\) −7.44452 −0.256860
\(841\) −13.0588 −0.450303
\(842\) −19.3260 −0.666017
\(843\) −28.3719 −0.977179
\(844\) −15.1979 −0.523132
\(845\) −6.07627 −0.209030
\(846\) 54.2611 1.86553
\(847\) 10.1648 0.349265
\(848\) 8.32596 0.285915
\(849\) 69.0678 2.37040
\(850\) 14.4648 0.496137
\(851\) −3.50500 −0.120150
\(852\) 76.7856 2.63063
\(853\) −19.1054 −0.654157 −0.327079 0.944997i \(-0.606064\pi\)
−0.327079 + 0.944997i \(0.606064\pi\)
\(854\) 67.2724 2.30201
\(855\) 10.6574 0.364475
\(856\) −15.2421 −0.520964
\(857\) 22.4004 0.765182 0.382591 0.923918i \(-0.375032\pi\)
0.382591 + 0.923918i \(0.375032\pi\)
\(858\) −55.1755 −1.88366
\(859\) 6.67865 0.227873 0.113936 0.993488i \(-0.463654\pi\)
0.113936 + 0.993488i \(0.463654\pi\)
\(860\) 11.0864 0.378045
\(861\) −56.7047 −1.93249
\(862\) −0.978705 −0.0333348
\(863\) −22.9271 −0.780447 −0.390224 0.920720i \(-0.627602\pi\)
−0.390224 + 0.920720i \(0.627602\pi\)
\(864\) 10.5077 0.357481
\(865\) −24.0069 −0.816259
\(866\) 83.8004 2.84765
\(867\) 74.6300 2.53457
\(868\) −15.8507 −0.538009
\(869\) −1.67604 −0.0568556
\(870\) 21.6883 0.735302
\(871\) 30.1975 1.02320
\(872\) −17.2798 −0.585169
\(873\) 49.5916 1.67842
\(874\) −16.5308 −0.559164
\(875\) 2.60553 0.0880829
\(876\) 28.0228 0.946801
\(877\) 44.4195 1.49994 0.749969 0.661472i \(-0.230068\pi\)
0.749969 + 0.661472i \(0.230068\pi\)
\(878\) −22.5136 −0.759797
\(879\) 40.5427 1.36747
\(880\) −10.3120 −0.347618
\(881\) −15.7568 −0.530862 −0.265431 0.964130i \(-0.585514\pi\)
−0.265431 + 0.964130i \(0.585514\pi\)
\(882\) 1.58163 0.0532563
\(883\) 6.57822 0.221375 0.110687 0.993855i \(-0.464695\pi\)
0.110687 + 0.993855i \(0.464695\pi\)
\(884\) −45.1914 −1.51995
\(885\) −3.47318 −0.116750
\(886\) 0.570710 0.0191734
\(887\) −7.59189 −0.254911 −0.127455 0.991844i \(-0.540681\pi\)
−0.127455 + 0.991844i \(0.540681\pi\)
\(888\) 3.90262 0.130963
\(889\) −14.6562 −0.491552
\(890\) 20.6492 0.692164
\(891\) −27.6835 −0.927431
\(892\) 42.3496 1.41797
\(893\) −21.9438 −0.734322
\(894\) 45.4083 1.51868
\(895\) 11.8924 0.397520
\(896\) 22.5182 0.752280
\(897\) 17.2405 0.575645
\(898\) 21.0269 0.701678
\(899\) 9.61576 0.320703
\(900\) 8.89030 0.296343
\(901\) 21.1913 0.705983
\(902\) 69.9977 2.33067
\(903\) 29.1988 0.971674
\(904\) 0.372349 0.0123842
\(905\) −0.175932 −0.00584818
\(906\) 5.43206 0.180468
\(907\) −29.7885 −0.989110 −0.494555 0.869146i \(-0.664669\pi\)
−0.494555 + 0.869146i \(0.664669\pi\)
\(908\) −55.7271 −1.84937
\(909\) −24.5119 −0.813008
\(910\) −14.5855 −0.483506
\(911\) −14.4593 −0.479058 −0.239529 0.970889i \(-0.576993\pi\)
−0.239529 + 0.970889i \(0.576993\pi\)
\(912\) −20.6541 −0.683925
\(913\) −12.8805 −0.426284
\(914\) −69.8135 −2.30923
\(915\) −30.9879 −1.02443
\(916\) −42.7387 −1.41213
\(917\) −34.8327 −1.15028
\(918\) 19.1881 0.633302
\(919\) −50.2535 −1.65771 −0.828854 0.559464i \(-0.811007\pi\)
−0.828854 + 0.559464i \(0.811007\pi\)
\(920\) −2.87148 −0.0946698
\(921\) −82.0126 −2.70241
\(922\) −40.7420 −1.34177
\(923\) 31.3264 1.03112
\(924\) 64.8703 2.13408
\(925\) −1.36589 −0.0449102
\(926\) 58.8531 1.93403
\(927\) 71.2988 2.34176
\(928\) −31.6264 −1.03819
\(929\) 24.5042 0.803955 0.401978 0.915650i \(-0.368323\pi\)
0.401978 + 0.915650i \(0.368323\pi\)
\(930\) 13.0824 0.428989
\(931\) −0.639630 −0.0209630
\(932\) −0.177141 −0.00580245
\(933\) −21.7232 −0.711186
\(934\) −14.6312 −0.478747
\(935\) −26.2461 −0.858341
\(936\) −10.3631 −0.338727
\(937\) −15.1200 −0.493948 −0.246974 0.969022i \(-0.579436\pi\)
−0.246974 + 0.969022i \(0.579436\pi\)
\(938\) −63.6141 −2.07708
\(939\) 34.9599 1.14087
\(940\) −18.3053 −0.597055
\(941\) −34.4769 −1.12391 −0.561957 0.827167i \(-0.689951\pi\)
−0.561957 + 0.827167i \(0.689951\pi\)
\(942\) −31.0569 −1.01189
\(943\) −21.8720 −0.712250
\(944\) 3.63371 0.118267
\(945\) 3.45634 0.112435
\(946\) −36.0437 −1.17188
\(947\) −34.9014 −1.13414 −0.567072 0.823668i \(-0.691924\pi\)
−0.567072 + 0.823668i \(0.691924\pi\)
\(948\) −2.80035 −0.0909510
\(949\) 11.4325 0.371115
\(950\) −6.44202 −0.209007
\(951\) −56.4700 −1.83117
\(952\) 19.8236 0.642487
\(953\) −13.7273 −0.444672 −0.222336 0.974970i \(-0.571368\pi\)
−0.222336 + 0.974970i \(0.571368\pi\)
\(954\) 23.3369 0.755561
\(955\) 27.2502 0.881795
\(956\) 45.2078 1.46213
\(957\) −39.3532 −1.27211
\(958\) −65.4119 −2.11336
\(959\) 23.5705 0.761130
\(960\) −29.3865 −0.948446
\(961\) −25.1998 −0.812896
\(962\) 7.64614 0.246521
\(963\) 47.9398 1.54484
\(964\) −77.0122 −2.48040
\(965\) −4.82078 −0.155186
\(966\) −36.3189 −1.16854
\(967\) −27.1956 −0.874552 −0.437276 0.899327i \(-0.644057\pi\)
−0.437276 + 0.899327i \(0.644057\pi\)
\(968\) −4.36551 −0.140313
\(969\) −52.5688 −1.68875
\(970\) −29.9764 −0.962485
\(971\) 0.904766 0.0290353 0.0145177 0.999895i \(-0.495379\pi\)
0.0145177 + 0.999895i \(0.495379\pi\)
\(972\) −56.3064 −1.80603
\(973\) −20.4227 −0.654720
\(974\) −38.2866 −1.22678
\(975\) 6.71859 0.215167
\(976\) 32.4203 1.03775
\(977\) −33.4445 −1.06998 −0.534992 0.844857i \(-0.679685\pi\)
−0.534992 + 0.844857i \(0.679685\pi\)
\(978\) 58.4537 1.86914
\(979\) −37.4678 −1.19748
\(980\) −0.533574 −0.0170444
\(981\) 54.3490 1.73523
\(982\) −43.6907 −1.39423
\(983\) 13.3334 0.425270 0.212635 0.977132i \(-0.431796\pi\)
0.212635 + 0.977132i \(0.431796\pi\)
\(984\) 24.3533 0.776353
\(985\) −10.8355 −0.345247
\(986\) −57.7527 −1.83922
\(987\) −48.2115 −1.53459
\(988\) 20.1264 0.640308
\(989\) 11.2625 0.358125
\(990\) −28.9037 −0.918618
\(991\) 15.4382 0.490412 0.245206 0.969471i \(-0.421144\pi\)
0.245206 + 0.969471i \(0.421144\pi\)
\(992\) −19.0771 −0.605698
\(993\) 13.2079 0.419141
\(994\) −65.9922 −2.09314
\(995\) 5.11188 0.162057
\(996\) −21.5210 −0.681919
\(997\) −7.80480 −0.247181 −0.123590 0.992333i \(-0.539441\pi\)
−0.123590 + 0.992333i \(0.539441\pi\)
\(998\) 62.0841 1.96524
\(999\) −1.81191 −0.0573262
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 755.2.a.j.1.3 15
3.2 odd 2 6795.2.a.bh.1.13 15
5.4 even 2 3775.2.a.q.1.13 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
755.2.a.j.1.3 15 1.1 even 1 trivial
3775.2.a.q.1.13 15 5.4 even 2
6795.2.a.bh.1.13 15 3.2 odd 2