Properties

Label 755.2.a.j.1.15
Level $755$
Weight $2$
Character 755.1
Self dual yes
Analytic conductor $6.029$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [755,2,Mod(1,755)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(755, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("755.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 755 = 5 \cdot 151 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 755.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,-2,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.02870535261\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 2 x^{14} - 22 x^{13} + 48 x^{12} + 171 x^{11} - 423 x^{10} - 527 x^{9} + 1641 x^{8} + 400 x^{7} + \cdots + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.15
Root \(-2.68739\) of defining polynomial
Character \(\chi\) \(=\) 755.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.68739 q^{2} -2.24250 q^{3} +5.22206 q^{4} +1.00000 q^{5} -6.02646 q^{6} +4.36035 q^{7} +8.65893 q^{8} +2.02879 q^{9} +2.68739 q^{10} -3.66815 q^{11} -11.7105 q^{12} -1.55634 q^{13} +11.7180 q^{14} -2.24250 q^{15} +12.8258 q^{16} -4.96026 q^{17} +5.45216 q^{18} +4.96247 q^{19} +5.22206 q^{20} -9.77808 q^{21} -9.85776 q^{22} +0.669094 q^{23} -19.4176 q^{24} +1.00000 q^{25} -4.18250 q^{26} +2.17793 q^{27} +22.7700 q^{28} +1.54861 q^{29} -6.02646 q^{30} +0.257397 q^{31} +17.1500 q^{32} +8.22583 q^{33} -13.3301 q^{34} +4.36035 q^{35} +10.5945 q^{36} +7.73344 q^{37} +13.3361 q^{38} +3.49009 q^{39} +8.65893 q^{40} -6.42744 q^{41} -26.2775 q^{42} -10.0061 q^{43} -19.1553 q^{44} +2.02879 q^{45} +1.79812 q^{46} -12.7698 q^{47} -28.7618 q^{48} +12.0127 q^{49} +2.68739 q^{50} +11.1234 q^{51} -8.12731 q^{52} +8.41253 q^{53} +5.85293 q^{54} -3.66815 q^{55} +37.7560 q^{56} -11.1283 q^{57} +4.16171 q^{58} -12.5321 q^{59} -11.7105 q^{60} +2.04436 q^{61} +0.691725 q^{62} +8.84626 q^{63} +20.4372 q^{64} -1.55634 q^{65} +22.1060 q^{66} +5.84404 q^{67} -25.9028 q^{68} -1.50044 q^{69} +11.7180 q^{70} +2.52657 q^{71} +17.5672 q^{72} -9.55113 q^{73} +20.7828 q^{74} -2.24250 q^{75} +25.9143 q^{76} -15.9944 q^{77} +9.37924 q^{78} -14.1668 q^{79} +12.8258 q^{80} -10.9704 q^{81} -17.2730 q^{82} +8.19796 q^{83} -51.0617 q^{84} -4.96026 q^{85} -26.8904 q^{86} -3.47275 q^{87} -31.7623 q^{88} -10.6656 q^{89} +5.45216 q^{90} -6.78620 q^{91} +3.49405 q^{92} -0.577211 q^{93} -34.3173 q^{94} +4.96247 q^{95} -38.4589 q^{96} +8.31172 q^{97} +32.2827 q^{98} -7.44193 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 2 q^{2} + 5 q^{3} + 18 q^{4} + 15 q^{5} - 4 q^{6} + 11 q^{7} + 12 q^{8} + 10 q^{9} - 2 q^{10} + 2 q^{11} + 4 q^{12} + 11 q^{13} - 9 q^{14} + 5 q^{15} + 40 q^{16} + 25 q^{17} - 15 q^{18} - 3 q^{19}+ \cdots - 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.68739 1.90027 0.950136 0.311837i \(-0.100944\pi\)
0.950136 + 0.311837i \(0.100944\pi\)
\(3\) −2.24250 −1.29471 −0.647353 0.762190i \(-0.724124\pi\)
−0.647353 + 0.762190i \(0.724124\pi\)
\(4\) 5.22206 2.61103
\(5\) 1.00000 0.447214
\(6\) −6.02646 −2.46029
\(7\) 4.36035 1.64806 0.824029 0.566547i \(-0.191721\pi\)
0.824029 + 0.566547i \(0.191721\pi\)
\(8\) 8.65893 3.06139
\(9\) 2.02879 0.676265
\(10\) 2.68739 0.849827
\(11\) −3.66815 −1.10599 −0.552995 0.833185i \(-0.686515\pi\)
−0.552995 + 0.833185i \(0.686515\pi\)
\(12\) −11.7105 −3.38052
\(13\) −1.55634 −0.431652 −0.215826 0.976432i \(-0.569244\pi\)
−0.215826 + 0.976432i \(0.569244\pi\)
\(14\) 11.7180 3.13176
\(15\) −2.24250 −0.579010
\(16\) 12.8258 3.20645
\(17\) −4.96026 −1.20304 −0.601520 0.798858i \(-0.705438\pi\)
−0.601520 + 0.798858i \(0.705438\pi\)
\(18\) 5.45216 1.28509
\(19\) 4.96247 1.13847 0.569234 0.822175i \(-0.307240\pi\)
0.569234 + 0.822175i \(0.307240\pi\)
\(20\) 5.22206 1.16769
\(21\) −9.77808 −2.13375
\(22\) −9.85776 −2.10168
\(23\) 0.669094 0.139516 0.0697579 0.997564i \(-0.477777\pi\)
0.0697579 + 0.997564i \(0.477777\pi\)
\(24\) −19.4176 −3.96361
\(25\) 1.00000 0.200000
\(26\) −4.18250 −0.820255
\(27\) 2.17793 0.419142
\(28\) 22.7700 4.30313
\(29\) 1.54861 0.287569 0.143785 0.989609i \(-0.454073\pi\)
0.143785 + 0.989609i \(0.454073\pi\)
\(30\) −6.02646 −1.10028
\(31\) 0.257397 0.0462298 0.0231149 0.999733i \(-0.492642\pi\)
0.0231149 + 0.999733i \(0.492642\pi\)
\(32\) 17.1500 3.03173
\(33\) 8.22583 1.43193
\(34\) −13.3301 −2.28610
\(35\) 4.36035 0.737034
\(36\) 10.5945 1.76575
\(37\) 7.73344 1.27137 0.635685 0.771949i \(-0.280718\pi\)
0.635685 + 0.771949i \(0.280718\pi\)
\(38\) 13.3361 2.16340
\(39\) 3.49009 0.558862
\(40\) 8.65893 1.36910
\(41\) −6.42744 −1.00380 −0.501899 0.864926i \(-0.667365\pi\)
−0.501899 + 0.864926i \(0.667365\pi\)
\(42\) −26.2775 −4.05471
\(43\) −10.0061 −1.52592 −0.762961 0.646444i \(-0.776255\pi\)
−0.762961 + 0.646444i \(0.776255\pi\)
\(44\) −19.1553 −2.88777
\(45\) 2.02879 0.302435
\(46\) 1.79812 0.265118
\(47\) −12.7698 −1.86266 −0.931330 0.364175i \(-0.881351\pi\)
−0.931330 + 0.364175i \(0.881351\pi\)
\(48\) −28.7618 −4.15141
\(49\) 12.0127 1.71610
\(50\) 2.68739 0.380054
\(51\) 11.1234 1.55758
\(52\) −8.12731 −1.12706
\(53\) 8.41253 1.15555 0.577775 0.816196i \(-0.303921\pi\)
0.577775 + 0.816196i \(0.303921\pi\)
\(54\) 5.85293 0.796483
\(55\) −3.66815 −0.494614
\(56\) 37.7560 5.04536
\(57\) −11.1283 −1.47398
\(58\) 4.16171 0.546459
\(59\) −12.5321 −1.63154 −0.815769 0.578377i \(-0.803686\pi\)
−0.815769 + 0.578377i \(0.803686\pi\)
\(60\) −11.7105 −1.51181
\(61\) 2.04436 0.261754 0.130877 0.991399i \(-0.458221\pi\)
0.130877 + 0.991399i \(0.458221\pi\)
\(62\) 0.691725 0.0878491
\(63\) 8.84626 1.11452
\(64\) 20.4372 2.55465
\(65\) −1.55634 −0.193040
\(66\) 22.1060 2.72106
\(67\) 5.84404 0.713963 0.356981 0.934111i \(-0.383806\pi\)
0.356981 + 0.934111i \(0.383806\pi\)
\(68\) −25.9028 −3.14117
\(69\) −1.50044 −0.180632
\(70\) 11.7180 1.40056
\(71\) 2.52657 0.299849 0.149924 0.988697i \(-0.452097\pi\)
0.149924 + 0.988697i \(0.452097\pi\)
\(72\) 17.5672 2.07031
\(73\) −9.55113 −1.11788 −0.558938 0.829210i \(-0.688791\pi\)
−0.558938 + 0.829210i \(0.688791\pi\)
\(74\) 20.7828 2.41595
\(75\) −2.24250 −0.258941
\(76\) 25.9143 2.97258
\(77\) −15.9944 −1.82274
\(78\) 9.37924 1.06199
\(79\) −14.1668 −1.59389 −0.796947 0.604049i \(-0.793553\pi\)
−0.796947 + 0.604049i \(0.793553\pi\)
\(80\) 12.8258 1.43397
\(81\) −10.9704 −1.21893
\(82\) −17.2730 −1.90749
\(83\) 8.19796 0.899843 0.449921 0.893068i \(-0.351452\pi\)
0.449921 + 0.893068i \(0.351452\pi\)
\(84\) −51.0617 −5.57129
\(85\) −4.96026 −0.538016
\(86\) −26.8904 −2.89967
\(87\) −3.47275 −0.372318
\(88\) −31.7623 −3.38587
\(89\) −10.6656 −1.13055 −0.565276 0.824902i \(-0.691230\pi\)
−0.565276 + 0.824902i \(0.691230\pi\)
\(90\) 5.45216 0.574708
\(91\) −6.78620 −0.711387
\(92\) 3.49405 0.364280
\(93\) −0.577211 −0.0598540
\(94\) −34.3173 −3.53956
\(95\) 4.96247 0.509139
\(96\) −38.4589 −3.92520
\(97\) 8.31172 0.843927 0.421964 0.906613i \(-0.361341\pi\)
0.421964 + 0.906613i \(0.361341\pi\)
\(98\) 32.2827 3.26105
\(99\) −7.44193 −0.747942
\(100\) 5.22206 0.522206
\(101\) −5.48623 −0.545900 −0.272950 0.962028i \(-0.587999\pi\)
−0.272950 + 0.962028i \(0.587999\pi\)
\(102\) 29.8928 2.95983
\(103\) −5.86789 −0.578180 −0.289090 0.957302i \(-0.593353\pi\)
−0.289090 + 0.957302i \(0.593353\pi\)
\(104\) −13.4763 −1.32146
\(105\) −9.77808 −0.954243
\(106\) 22.6078 2.19586
\(107\) −11.3157 −1.09393 −0.546965 0.837155i \(-0.684217\pi\)
−0.546965 + 0.837155i \(0.684217\pi\)
\(108\) 11.3733 1.09439
\(109\) 20.5560 1.96891 0.984453 0.175647i \(-0.0562017\pi\)
0.984453 + 0.175647i \(0.0562017\pi\)
\(110\) −9.85776 −0.939900
\(111\) −17.3422 −1.64605
\(112\) 55.9250 5.28441
\(113\) 7.52896 0.708265 0.354132 0.935195i \(-0.384776\pi\)
0.354132 + 0.935195i \(0.384776\pi\)
\(114\) −29.9061 −2.80097
\(115\) 0.669094 0.0623933
\(116\) 8.08692 0.750852
\(117\) −3.15750 −0.291911
\(118\) −33.6786 −3.10037
\(119\) −21.6285 −1.98268
\(120\) −19.4176 −1.77258
\(121\) 2.45535 0.223214
\(122\) 5.49400 0.497404
\(123\) 14.4135 1.29962
\(124\) 1.34414 0.120707
\(125\) 1.00000 0.0894427
\(126\) 23.7733 2.11790
\(127\) −6.42621 −0.570234 −0.285117 0.958493i \(-0.592032\pi\)
−0.285117 + 0.958493i \(0.592032\pi\)
\(128\) 20.6227 1.82281
\(129\) 22.4388 1.97562
\(130\) −4.18250 −0.366829
\(131\) −15.4958 −1.35387 −0.676937 0.736041i \(-0.736693\pi\)
−0.676937 + 0.736041i \(0.736693\pi\)
\(132\) 42.9558 3.73882
\(133\) 21.6381 1.87626
\(134\) 15.7052 1.35672
\(135\) 2.17793 0.187446
\(136\) −42.9505 −3.68298
\(137\) 17.7263 1.51446 0.757230 0.653148i \(-0.226552\pi\)
0.757230 + 0.653148i \(0.226552\pi\)
\(138\) −4.03227 −0.343250
\(139\) −13.9341 −1.18188 −0.590938 0.806717i \(-0.701242\pi\)
−0.590938 + 0.806717i \(0.701242\pi\)
\(140\) 22.7700 1.92442
\(141\) 28.6362 2.41160
\(142\) 6.78988 0.569794
\(143\) 5.70890 0.477402
\(144\) 26.0209 2.16841
\(145\) 1.54861 0.128605
\(146\) −25.6676 −2.12427
\(147\) −26.9384 −2.22184
\(148\) 40.3845 3.31958
\(149\) 1.32148 0.108260 0.0541300 0.998534i \(-0.482761\pi\)
0.0541300 + 0.998534i \(0.482761\pi\)
\(150\) −6.02646 −0.492059
\(151\) −1.00000 −0.0813788
\(152\) 42.9697 3.48530
\(153\) −10.0633 −0.813574
\(154\) −42.9833 −3.46369
\(155\) 0.257397 0.0206746
\(156\) 18.2255 1.45921
\(157\) 15.0978 1.20494 0.602469 0.798142i \(-0.294184\pi\)
0.602469 + 0.798142i \(0.294184\pi\)
\(158\) −38.0718 −3.02883
\(159\) −18.8651 −1.49610
\(160\) 17.1500 1.35583
\(161\) 2.91749 0.229930
\(162\) −29.4817 −2.31630
\(163\) 19.4034 1.51979 0.759896 0.650044i \(-0.225250\pi\)
0.759896 + 0.650044i \(0.225250\pi\)
\(164\) −33.5645 −2.62094
\(165\) 8.22583 0.640380
\(166\) 22.0311 1.70995
\(167\) −1.65789 −0.128292 −0.0641458 0.997941i \(-0.520432\pi\)
−0.0641458 + 0.997941i \(0.520432\pi\)
\(168\) −84.6677 −6.53226
\(169\) −10.5778 −0.813677
\(170\) −13.3301 −1.02238
\(171\) 10.0678 0.769907
\(172\) −52.2527 −3.98423
\(173\) 7.82396 0.594845 0.297422 0.954746i \(-0.403873\pi\)
0.297422 + 0.954746i \(0.403873\pi\)
\(174\) −9.33263 −0.707505
\(175\) 4.36035 0.329612
\(176\) −47.0470 −3.54630
\(177\) 28.1032 2.11236
\(178\) −28.6627 −2.14836
\(179\) 11.9486 0.893077 0.446539 0.894764i \(-0.352657\pi\)
0.446539 + 0.894764i \(0.352657\pi\)
\(180\) 10.5945 0.789667
\(181\) −8.73869 −0.649542 −0.324771 0.945793i \(-0.605287\pi\)
−0.324771 + 0.945793i \(0.605287\pi\)
\(182\) −18.2372 −1.35183
\(183\) −4.58448 −0.338895
\(184\) 5.79364 0.427113
\(185\) 7.73344 0.568574
\(186\) −1.55119 −0.113739
\(187\) 18.1950 1.33055
\(188\) −66.6844 −4.86346
\(189\) 9.49652 0.690770
\(190\) 13.3361 0.967502
\(191\) −16.6183 −1.20246 −0.601230 0.799076i \(-0.705323\pi\)
−0.601230 + 0.799076i \(0.705323\pi\)
\(192\) −45.8304 −3.30753
\(193\) 1.10778 0.0797396 0.0398698 0.999205i \(-0.487306\pi\)
0.0398698 + 0.999205i \(0.487306\pi\)
\(194\) 22.3368 1.60369
\(195\) 3.49009 0.249931
\(196\) 62.7309 4.48078
\(197\) 1.15265 0.0821226 0.0410613 0.999157i \(-0.486926\pi\)
0.0410613 + 0.999157i \(0.486926\pi\)
\(198\) −19.9994 −1.42129
\(199\) 27.6806 1.96222 0.981111 0.193444i \(-0.0619657\pi\)
0.981111 + 0.193444i \(0.0619657\pi\)
\(200\) 8.65893 0.612279
\(201\) −13.1052 −0.924372
\(202\) −14.7436 −1.03736
\(203\) 6.75248 0.473931
\(204\) 58.0869 4.06690
\(205\) −6.42744 −0.448912
\(206\) −15.7693 −1.09870
\(207\) 1.35745 0.0943496
\(208\) −19.9613 −1.38407
\(209\) −18.2031 −1.25914
\(210\) −26.2775 −1.81332
\(211\) −0.168136 −0.0115750 −0.00578748 0.999983i \(-0.501842\pi\)
−0.00578748 + 0.999983i \(0.501842\pi\)
\(212\) 43.9308 3.01718
\(213\) −5.66583 −0.388216
\(214\) −30.4097 −2.07876
\(215\) −10.0061 −0.682413
\(216\) 18.8585 1.28316
\(217\) 1.12234 0.0761894
\(218\) 55.2419 3.74146
\(219\) 21.4184 1.44732
\(220\) −19.1553 −1.29145
\(221\) 7.71986 0.519294
\(222\) −46.6053 −3.12794
\(223\) −17.3112 −1.15924 −0.579622 0.814885i \(-0.696800\pi\)
−0.579622 + 0.814885i \(0.696800\pi\)
\(224\) 74.7802 4.99646
\(225\) 2.02879 0.135253
\(226\) 20.2332 1.34589
\(227\) 21.3695 1.41834 0.709172 0.705035i \(-0.249069\pi\)
0.709172 + 0.705035i \(0.249069\pi\)
\(228\) −58.1128 −3.84861
\(229\) −4.63441 −0.306250 −0.153125 0.988207i \(-0.548934\pi\)
−0.153125 + 0.988207i \(0.548934\pi\)
\(230\) 1.79812 0.118564
\(231\) 35.8675 2.35991
\(232\) 13.4093 0.880363
\(233\) 20.1793 1.32199 0.660996 0.750389i \(-0.270134\pi\)
0.660996 + 0.750389i \(0.270134\pi\)
\(234\) −8.48543 −0.554710
\(235\) −12.7698 −0.833007
\(236\) −65.4433 −4.26000
\(237\) 31.7691 2.06363
\(238\) −58.1242 −3.76763
\(239\) −9.21562 −0.596109 −0.298054 0.954549i \(-0.596338\pi\)
−0.298054 + 0.954549i \(0.596338\pi\)
\(240\) −28.7618 −1.85657
\(241\) −5.96336 −0.384134 −0.192067 0.981382i \(-0.561519\pi\)
−0.192067 + 0.981382i \(0.561519\pi\)
\(242\) 6.59849 0.424167
\(243\) 18.0673 1.15902
\(244\) 10.6758 0.683448
\(245\) 12.0127 0.767462
\(246\) 38.7347 2.46964
\(247\) −7.72330 −0.491422
\(248\) 2.22878 0.141528
\(249\) −18.3839 −1.16503
\(250\) 2.68739 0.169965
\(251\) 1.43579 0.0906263 0.0453132 0.998973i \(-0.485571\pi\)
0.0453132 + 0.998973i \(0.485571\pi\)
\(252\) 46.1957 2.91006
\(253\) −2.45434 −0.154303
\(254\) −17.2697 −1.08360
\(255\) 11.1234 0.696572
\(256\) 14.5468 0.909176
\(257\) 31.5332 1.96698 0.983492 0.180951i \(-0.0579175\pi\)
0.983492 + 0.180951i \(0.0579175\pi\)
\(258\) 60.3017 3.75422
\(259\) 33.7205 2.09529
\(260\) −8.12731 −0.504035
\(261\) 3.14181 0.194473
\(262\) −41.6432 −2.57273
\(263\) −3.66593 −0.226051 −0.113025 0.993592i \(-0.536054\pi\)
−0.113025 + 0.993592i \(0.536054\pi\)
\(264\) 71.2268 4.38371
\(265\) 8.41253 0.516778
\(266\) 58.1501 3.56541
\(267\) 23.9176 1.46373
\(268\) 30.5179 1.86418
\(269\) 26.4543 1.61295 0.806473 0.591271i \(-0.201374\pi\)
0.806473 + 0.591271i \(0.201374\pi\)
\(270\) 5.85293 0.356198
\(271\) 19.6830 1.19566 0.597829 0.801624i \(-0.296030\pi\)
0.597829 + 0.801624i \(0.296030\pi\)
\(272\) −63.6193 −3.85748
\(273\) 15.2180 0.921038
\(274\) 47.6375 2.87788
\(275\) −3.66815 −0.221198
\(276\) −7.83539 −0.471635
\(277\) −5.98163 −0.359401 −0.179701 0.983721i \(-0.557513\pi\)
−0.179701 + 0.983721i \(0.557513\pi\)
\(278\) −37.4464 −2.24588
\(279\) 0.522205 0.0312636
\(280\) 37.7560 2.25635
\(281\) −12.0703 −0.720055 −0.360028 0.932942i \(-0.617233\pi\)
−0.360028 + 0.932942i \(0.617233\pi\)
\(282\) 76.9565 4.58269
\(283\) 18.1059 1.07629 0.538143 0.842854i \(-0.319126\pi\)
0.538143 + 0.842854i \(0.319126\pi\)
\(284\) 13.1939 0.782914
\(285\) −11.1283 −0.659185
\(286\) 15.3420 0.907194
\(287\) −28.0259 −1.65432
\(288\) 34.7939 2.05025
\(289\) 7.60418 0.447304
\(290\) 4.16171 0.244384
\(291\) −18.6390 −1.09264
\(292\) −49.8766 −2.91881
\(293\) −6.10149 −0.356453 −0.178227 0.983989i \(-0.557036\pi\)
−0.178227 + 0.983989i \(0.557036\pi\)
\(294\) −72.3940 −4.22210
\(295\) −12.5321 −0.729646
\(296\) 66.9633 3.89216
\(297\) −7.98897 −0.463567
\(298\) 3.55134 0.205723
\(299\) −1.04134 −0.0602222
\(300\) −11.7105 −0.676104
\(301\) −43.6303 −2.51481
\(302\) −2.68739 −0.154642
\(303\) 12.3029 0.706781
\(304\) 63.6476 3.65044
\(305\) 2.04436 0.117060
\(306\) −27.0441 −1.54601
\(307\) −12.7488 −0.727610 −0.363805 0.931475i \(-0.618523\pi\)
−0.363805 + 0.931475i \(0.618523\pi\)
\(308\) −83.5240 −4.75922
\(309\) 13.1587 0.748574
\(310\) 0.691725 0.0392873
\(311\) 16.9795 0.962820 0.481410 0.876495i \(-0.340125\pi\)
0.481410 + 0.876495i \(0.340125\pi\)
\(312\) 30.2205 1.71090
\(313\) 19.1732 1.08373 0.541866 0.840465i \(-0.317718\pi\)
0.541866 + 0.840465i \(0.317718\pi\)
\(314\) 40.5738 2.28971
\(315\) 8.84626 0.498430
\(316\) −73.9801 −4.16171
\(317\) 13.5363 0.760273 0.380137 0.924930i \(-0.375877\pi\)
0.380137 + 0.924930i \(0.375877\pi\)
\(318\) −50.6978 −2.84299
\(319\) −5.68053 −0.318049
\(320\) 20.4372 1.14248
\(321\) 25.3754 1.41632
\(322\) 7.84042 0.436929
\(323\) −24.6151 −1.36962
\(324\) −57.2880 −3.18266
\(325\) −1.55634 −0.0863303
\(326\) 52.1445 2.88802
\(327\) −46.0967 −2.54916
\(328\) −55.6547 −3.07302
\(329\) −55.6807 −3.06977
\(330\) 22.1060 1.21689
\(331\) 16.2226 0.891676 0.445838 0.895114i \(-0.352906\pi\)
0.445838 + 0.895114i \(0.352906\pi\)
\(332\) 42.8102 2.34952
\(333\) 15.6896 0.859782
\(334\) −4.45540 −0.243789
\(335\) 5.84404 0.319294
\(336\) −125.412 −6.84176
\(337\) −30.6411 −1.66913 −0.834563 0.550912i \(-0.814280\pi\)
−0.834563 + 0.550912i \(0.814280\pi\)
\(338\) −28.4267 −1.54621
\(339\) −16.8837 −0.916995
\(340\) −25.9028 −1.40478
\(341\) −0.944170 −0.0511297
\(342\) 27.0562 1.46303
\(343\) 21.8571 1.18017
\(344\) −86.6425 −4.67145
\(345\) −1.50044 −0.0807810
\(346\) 21.0260 1.13037
\(347\) 9.53223 0.511717 0.255858 0.966714i \(-0.417642\pi\)
0.255858 + 0.966714i \(0.417642\pi\)
\(348\) −18.1349 −0.972133
\(349\) 3.24465 0.173682 0.0868410 0.996222i \(-0.472323\pi\)
0.0868410 + 0.996222i \(0.472323\pi\)
\(350\) 11.7180 0.626352
\(351\) −3.38960 −0.180923
\(352\) −62.9090 −3.35306
\(353\) 22.9666 1.22239 0.611194 0.791481i \(-0.290690\pi\)
0.611194 + 0.791481i \(0.290690\pi\)
\(354\) 75.5242 4.01406
\(355\) 2.52657 0.134096
\(356\) −55.6965 −2.95191
\(357\) 48.5018 2.56699
\(358\) 32.1104 1.69709
\(359\) −23.1190 −1.22018 −0.610088 0.792334i \(-0.708866\pi\)
−0.610088 + 0.792334i \(0.708866\pi\)
\(360\) 17.5672 0.925872
\(361\) 5.62612 0.296112
\(362\) −23.4843 −1.23431
\(363\) −5.50613 −0.288997
\(364\) −35.4380 −1.85745
\(365\) −9.55113 −0.499929
\(366\) −12.3203 −0.643992
\(367\) −15.2229 −0.794630 −0.397315 0.917682i \(-0.630058\pi\)
−0.397315 + 0.917682i \(0.630058\pi\)
\(368\) 8.58166 0.447350
\(369\) −13.0400 −0.678833
\(370\) 20.7828 1.08044
\(371\) 36.6816 1.90441
\(372\) −3.01423 −0.156281
\(373\) −11.9013 −0.616228 −0.308114 0.951349i \(-0.599698\pi\)
−0.308114 + 0.951349i \(0.599698\pi\)
\(374\) 48.8970 2.52841
\(375\) −2.24250 −0.115802
\(376\) −110.572 −5.70234
\(377\) −2.41016 −0.124130
\(378\) 25.5209 1.31265
\(379\) −4.38825 −0.225409 −0.112705 0.993629i \(-0.535951\pi\)
−0.112705 + 0.993629i \(0.535951\pi\)
\(380\) 25.9143 1.32938
\(381\) 14.4108 0.738286
\(382\) −44.6599 −2.28500
\(383\) 7.23777 0.369833 0.184916 0.982754i \(-0.440799\pi\)
0.184916 + 0.982754i \(0.440799\pi\)
\(384\) −46.2464 −2.36000
\(385\) −15.9944 −0.815152
\(386\) 2.97703 0.151527
\(387\) −20.3004 −1.03193
\(388\) 43.4043 2.20352
\(389\) 7.85847 0.398440 0.199220 0.979955i \(-0.436159\pi\)
0.199220 + 0.979955i \(0.436159\pi\)
\(390\) 9.37924 0.474936
\(391\) −3.31888 −0.167843
\(392\) 104.017 5.25365
\(393\) 34.7493 1.75287
\(394\) 3.09761 0.156055
\(395\) −14.1668 −0.712811
\(396\) −38.8622 −1.95290
\(397\) −2.13209 −0.107006 −0.0535032 0.998568i \(-0.517039\pi\)
−0.0535032 + 0.998568i \(0.517039\pi\)
\(398\) 74.3884 3.72876
\(399\) −48.5234 −2.42921
\(400\) 12.8258 0.641290
\(401\) −12.4391 −0.621177 −0.310588 0.950545i \(-0.600526\pi\)
−0.310588 + 0.950545i \(0.600526\pi\)
\(402\) −35.2189 −1.75656
\(403\) −0.400597 −0.0199552
\(404\) −28.6494 −1.42536
\(405\) −10.9704 −0.545122
\(406\) 18.1465 0.900597
\(407\) −28.3674 −1.40612
\(408\) 96.3165 4.76838
\(409\) −15.0838 −0.745846 −0.372923 0.927862i \(-0.621644\pi\)
−0.372923 + 0.927862i \(0.621644\pi\)
\(410\) −17.2730 −0.853054
\(411\) −39.7512 −1.96078
\(412\) −30.6425 −1.50965
\(413\) −54.6443 −2.68887
\(414\) 3.64801 0.179290
\(415\) 8.19796 0.402422
\(416\) −26.6913 −1.30865
\(417\) 31.2472 1.53018
\(418\) −48.9188 −2.39270
\(419\) 24.5966 1.20162 0.600812 0.799390i \(-0.294844\pi\)
0.600812 + 0.799390i \(0.294844\pi\)
\(420\) −51.0617 −2.49156
\(421\) −31.2859 −1.52478 −0.762390 0.647118i \(-0.775974\pi\)
−0.762390 + 0.647118i \(0.775974\pi\)
\(422\) −0.451847 −0.0219956
\(423\) −25.9072 −1.25965
\(424\) 72.8435 3.53759
\(425\) −4.96026 −0.240608
\(426\) −15.2263 −0.737716
\(427\) 8.91415 0.431386
\(428\) −59.0913 −2.85629
\(429\) −12.8022 −0.618096
\(430\) −26.8904 −1.29677
\(431\) 11.2799 0.543333 0.271666 0.962392i \(-0.412425\pi\)
0.271666 + 0.962392i \(0.412425\pi\)
\(432\) 27.9336 1.34396
\(433\) 28.3466 1.36225 0.681126 0.732166i \(-0.261490\pi\)
0.681126 + 0.732166i \(0.261490\pi\)
\(434\) 3.01616 0.144781
\(435\) −3.47275 −0.166506
\(436\) 107.345 5.14087
\(437\) 3.32036 0.158834
\(438\) 57.5595 2.75030
\(439\) −30.6946 −1.46497 −0.732487 0.680781i \(-0.761641\pi\)
−0.732487 + 0.680781i \(0.761641\pi\)
\(440\) −31.7623 −1.51421
\(441\) 24.3713 1.16054
\(442\) 20.7463 0.986800
\(443\) 18.8874 0.897367 0.448683 0.893691i \(-0.351893\pi\)
0.448683 + 0.893691i \(0.351893\pi\)
\(444\) −90.5621 −4.29789
\(445\) −10.6656 −0.505599
\(446\) −46.5220 −2.20288
\(447\) −2.96342 −0.140165
\(448\) 89.1135 4.21022
\(449\) 32.8560 1.55057 0.775286 0.631610i \(-0.217606\pi\)
0.775286 + 0.631610i \(0.217606\pi\)
\(450\) 5.45216 0.257017
\(451\) 23.5768 1.11019
\(452\) 39.3167 1.84930
\(453\) 2.24250 0.105362
\(454\) 57.4282 2.69524
\(455\) −6.78620 −0.318142
\(456\) −96.3594 −4.51244
\(457\) 0.971427 0.0454414 0.0227207 0.999742i \(-0.492767\pi\)
0.0227207 + 0.999742i \(0.492767\pi\)
\(458\) −12.4545 −0.581959
\(459\) −10.8031 −0.504244
\(460\) 3.49405 0.162911
\(461\) −39.7472 −1.85121 −0.925607 0.378487i \(-0.876445\pi\)
−0.925607 + 0.378487i \(0.876445\pi\)
\(462\) 96.3899 4.48447
\(463\) 24.9119 1.15775 0.578876 0.815416i \(-0.303491\pi\)
0.578876 + 0.815416i \(0.303491\pi\)
\(464\) 19.8621 0.922076
\(465\) −0.577211 −0.0267675
\(466\) 54.2298 2.51214
\(467\) −1.40035 −0.0648004 −0.0324002 0.999475i \(-0.510315\pi\)
−0.0324002 + 0.999475i \(0.510315\pi\)
\(468\) −16.4886 −0.762188
\(469\) 25.4821 1.17665
\(470\) −34.3173 −1.58294
\(471\) −33.8569 −1.56004
\(472\) −108.514 −4.99478
\(473\) 36.7041 1.68766
\(474\) 85.3760 3.92145
\(475\) 4.96247 0.227694
\(476\) −112.945 −5.17684
\(477\) 17.0673 0.781458
\(478\) −24.7659 −1.13277
\(479\) −0.236189 −0.0107917 −0.00539587 0.999985i \(-0.501718\pi\)
−0.00539587 + 0.999985i \(0.501718\pi\)
\(480\) −38.4589 −1.75540
\(481\) −12.0359 −0.548789
\(482\) −16.0259 −0.729958
\(483\) −6.54245 −0.297692
\(484\) 12.8220 0.582819
\(485\) 8.31172 0.377416
\(486\) 48.5538 2.20244
\(487\) −6.91742 −0.313458 −0.156729 0.987642i \(-0.550095\pi\)
−0.156729 + 0.987642i \(0.550095\pi\)
\(488\) 17.7020 0.801332
\(489\) −43.5121 −1.96769
\(490\) 32.2827 1.45839
\(491\) 11.8160 0.533248 0.266624 0.963801i \(-0.414092\pi\)
0.266624 + 0.963801i \(0.414092\pi\)
\(492\) 75.2682 3.39335
\(493\) −7.68150 −0.345957
\(494\) −20.7555 −0.933835
\(495\) −7.44193 −0.334490
\(496\) 3.30131 0.148233
\(497\) 11.0167 0.494168
\(498\) −49.4047 −2.21388
\(499\) 28.7161 1.28551 0.642755 0.766072i \(-0.277791\pi\)
0.642755 + 0.766072i \(0.277791\pi\)
\(500\) 5.22206 0.233538
\(501\) 3.71782 0.166100
\(502\) 3.85853 0.172215
\(503\) −4.41453 −0.196834 −0.0984170 0.995145i \(-0.531378\pi\)
−0.0984170 + 0.995145i \(0.531378\pi\)
\(504\) 76.5992 3.41200
\(505\) −5.48623 −0.244134
\(506\) −6.59576 −0.293217
\(507\) 23.7207 1.05347
\(508\) −33.5581 −1.48890
\(509\) 11.3256 0.501999 0.251000 0.967987i \(-0.419241\pi\)
0.251000 + 0.967987i \(0.419241\pi\)
\(510\) 29.8928 1.32368
\(511\) −41.6463 −1.84232
\(512\) −2.15248 −0.0951272
\(513\) 10.8079 0.477180
\(514\) 84.7419 3.73780
\(515\) −5.86789 −0.258570
\(516\) 117.177 5.15841
\(517\) 46.8414 2.06008
\(518\) 90.6202 3.98162
\(519\) −17.5452 −0.770149
\(520\) −13.4763 −0.590973
\(521\) −17.7315 −0.776830 −0.388415 0.921485i \(-0.626977\pi\)
−0.388415 + 0.921485i \(0.626977\pi\)
\(522\) 8.44326 0.369551
\(523\) −0.595231 −0.0260276 −0.0130138 0.999915i \(-0.504143\pi\)
−0.0130138 + 0.999915i \(0.504143\pi\)
\(524\) −80.9200 −3.53500
\(525\) −9.77808 −0.426750
\(526\) −9.85178 −0.429558
\(527\) −1.27675 −0.0556163
\(528\) 105.503 4.59142
\(529\) −22.5523 −0.980535
\(530\) 22.6078 0.982018
\(531\) −25.4250 −1.10335
\(532\) 112.996 4.89898
\(533\) 10.0033 0.433291
\(534\) 64.2759 2.78149
\(535\) −11.3157 −0.489221
\(536\) 50.6031 2.18572
\(537\) −26.7946 −1.15627
\(538\) 71.0929 3.06503
\(539\) −44.0644 −1.89799
\(540\) 11.3733 0.489427
\(541\) −5.05218 −0.217210 −0.108605 0.994085i \(-0.534638\pi\)
−0.108605 + 0.994085i \(0.534638\pi\)
\(542\) 52.8959 2.27207
\(543\) 19.5965 0.840966
\(544\) −85.0686 −3.64729
\(545\) 20.5560 0.880522
\(546\) 40.8968 1.75022
\(547\) −41.3122 −1.76638 −0.883190 0.469015i \(-0.844609\pi\)
−0.883190 + 0.469015i \(0.844609\pi\)
\(548\) 92.5678 3.95430
\(549\) 4.14760 0.177015
\(550\) −9.85776 −0.420336
\(551\) 7.68492 0.327389
\(552\) −12.9922 −0.552985
\(553\) −61.7724 −2.62683
\(554\) −16.0750 −0.682960
\(555\) −17.3422 −0.736136
\(556\) −72.7648 −3.08591
\(557\) −26.5034 −1.12298 −0.561492 0.827482i \(-0.689772\pi\)
−0.561492 + 0.827482i \(0.689772\pi\)
\(558\) 1.40337 0.0594093
\(559\) 15.5730 0.658667
\(560\) 55.9250 2.36326
\(561\) −40.8022 −1.72267
\(562\) −32.4377 −1.36830
\(563\) −1.07691 −0.0453863 −0.0226931 0.999742i \(-0.507224\pi\)
−0.0226931 + 0.999742i \(0.507224\pi\)
\(564\) 149.540 6.29676
\(565\) 7.52896 0.316746
\(566\) 48.6577 2.04524
\(567\) −47.8347 −2.00887
\(568\) 21.8774 0.917955
\(569\) 28.6547 1.20127 0.600633 0.799525i \(-0.294915\pi\)
0.600633 + 0.799525i \(0.294915\pi\)
\(570\) −29.9061 −1.25263
\(571\) 34.0036 1.42301 0.711504 0.702682i \(-0.248014\pi\)
0.711504 + 0.702682i \(0.248014\pi\)
\(572\) 29.8122 1.24651
\(573\) 37.2666 1.55683
\(574\) −75.3165 −3.14365
\(575\) 0.669094 0.0279031
\(576\) 41.4629 1.72762
\(577\) 12.0297 0.500803 0.250401 0.968142i \(-0.419437\pi\)
0.250401 + 0.968142i \(0.419437\pi\)
\(578\) 20.4354 0.850000
\(579\) −2.48419 −0.103239
\(580\) 8.08692 0.335791
\(581\) 35.7460 1.48299
\(582\) −50.0903 −2.07631
\(583\) −30.8585 −1.27803
\(584\) −82.7026 −3.42226
\(585\) −3.15750 −0.130547
\(586\) −16.3971 −0.677357
\(587\) −0.350778 −0.0144782 −0.00723908 0.999974i \(-0.502304\pi\)
−0.00723908 + 0.999974i \(0.502304\pi\)
\(588\) −140.674 −5.80130
\(589\) 1.27732 0.0526312
\(590\) −33.6786 −1.38653
\(591\) −2.58481 −0.106325
\(592\) 99.1875 4.07658
\(593\) 10.9339 0.449000 0.224500 0.974474i \(-0.427925\pi\)
0.224500 + 0.974474i \(0.427925\pi\)
\(594\) −21.4695 −0.880903
\(595\) −21.6285 −0.886681
\(596\) 6.90086 0.282670
\(597\) −62.0736 −2.54050
\(598\) −2.79848 −0.114438
\(599\) 2.20514 0.0900997 0.0450499 0.998985i \(-0.485655\pi\)
0.0450499 + 0.998985i \(0.485655\pi\)
\(600\) −19.4176 −0.792721
\(601\) 44.4388 1.81270 0.906349 0.422530i \(-0.138858\pi\)
0.906349 + 0.422530i \(0.138858\pi\)
\(602\) −117.252 −4.77882
\(603\) 11.8564 0.482828
\(604\) −5.22206 −0.212483
\(605\) 2.45535 0.0998243
\(606\) 33.0626 1.34308
\(607\) 18.3226 0.743693 0.371847 0.928294i \(-0.378725\pi\)
0.371847 + 0.928294i \(0.378725\pi\)
\(608\) 85.1065 3.45153
\(609\) −15.1424 −0.613601
\(610\) 5.49400 0.222446
\(611\) 19.8741 0.804021
\(612\) −52.5514 −2.12426
\(613\) 10.1657 0.410591 0.205295 0.978700i \(-0.434185\pi\)
0.205295 + 0.978700i \(0.434185\pi\)
\(614\) −34.2609 −1.38266
\(615\) 14.4135 0.581209
\(616\) −138.495 −5.58011
\(617\) 34.3116 1.38133 0.690666 0.723174i \(-0.257318\pi\)
0.690666 + 0.723174i \(0.257318\pi\)
\(618\) 35.3626 1.42249
\(619\) 14.1975 0.570645 0.285322 0.958432i \(-0.407899\pi\)
0.285322 + 0.958432i \(0.407899\pi\)
\(620\) 1.34414 0.0539820
\(621\) 1.45724 0.0584769
\(622\) 45.6306 1.82962
\(623\) −46.5058 −1.86322
\(624\) 44.7632 1.79196
\(625\) 1.00000 0.0400000
\(626\) 51.5258 2.05938
\(627\) 40.8204 1.63021
\(628\) 78.8418 3.14613
\(629\) −38.3599 −1.52951
\(630\) 23.7733 0.947153
\(631\) 8.66504 0.344950 0.172475 0.985014i \(-0.444824\pi\)
0.172475 + 0.985014i \(0.444824\pi\)
\(632\) −122.670 −4.87954
\(633\) 0.377045 0.0149862
\(634\) 36.3773 1.44473
\(635\) −6.42621 −0.255016
\(636\) −98.5146 −3.90636
\(637\) −18.6958 −0.740756
\(638\) −15.2658 −0.604379
\(639\) 5.12589 0.202777
\(640\) 20.6227 0.815185
\(641\) 23.7598 0.938455 0.469228 0.883077i \(-0.344532\pi\)
0.469228 + 0.883077i \(0.344532\pi\)
\(642\) 68.1937 2.69139
\(643\) −24.4982 −0.966114 −0.483057 0.875589i \(-0.660474\pi\)
−0.483057 + 0.875589i \(0.660474\pi\)
\(644\) 15.2353 0.600354
\(645\) 22.4388 0.883525
\(646\) −66.1505 −2.60266
\(647\) −19.4956 −0.766453 −0.383227 0.923654i \(-0.625187\pi\)
−0.383227 + 0.923654i \(0.625187\pi\)
\(648\) −94.9917 −3.73163
\(649\) 45.9696 1.80447
\(650\) −4.18250 −0.164051
\(651\) −2.51684 −0.0986429
\(652\) 101.326 3.96822
\(653\) −22.3201 −0.873451 −0.436726 0.899595i \(-0.643862\pi\)
−0.436726 + 0.899595i \(0.643862\pi\)
\(654\) −123.880 −4.84409
\(655\) −15.4958 −0.605471
\(656\) −82.4370 −3.21862
\(657\) −19.3773 −0.755980
\(658\) −149.636 −5.83340
\(659\) −9.16557 −0.357040 −0.178520 0.983936i \(-0.557131\pi\)
−0.178520 + 0.983936i \(0.557131\pi\)
\(660\) 42.9558 1.67205
\(661\) 33.4441 1.30082 0.650411 0.759582i \(-0.274597\pi\)
0.650411 + 0.759582i \(0.274597\pi\)
\(662\) 43.5965 1.69443
\(663\) −17.3118 −0.672333
\(664\) 70.9855 2.75477
\(665\) 21.6381 0.839091
\(666\) 42.1639 1.63382
\(667\) 1.03616 0.0401204
\(668\) −8.65761 −0.334973
\(669\) 38.8204 1.50088
\(670\) 15.7052 0.606745
\(671\) −7.49904 −0.289497
\(672\) −167.694 −6.46895
\(673\) −19.3135 −0.744482 −0.372241 0.928136i \(-0.621411\pi\)
−0.372241 + 0.928136i \(0.621411\pi\)
\(674\) −82.3445 −3.17179
\(675\) 2.17793 0.0838284
\(676\) −55.2379 −2.12453
\(677\) −12.6226 −0.485127 −0.242564 0.970136i \(-0.577988\pi\)
−0.242564 + 0.970136i \(0.577988\pi\)
\(678\) −45.3730 −1.74254
\(679\) 36.2420 1.39084
\(680\) −42.9505 −1.64708
\(681\) −47.9211 −1.83634
\(682\) −2.53735 −0.0971603
\(683\) −32.8466 −1.25684 −0.628420 0.777874i \(-0.716298\pi\)
−0.628420 + 0.777874i \(0.716298\pi\)
\(684\) 52.5748 2.01025
\(685\) 17.7263 0.677287
\(686\) 58.7384 2.24264
\(687\) 10.3926 0.396504
\(688\) −128.337 −4.89279
\(689\) −13.0928 −0.498795
\(690\) −4.03227 −0.153506
\(691\) 34.9545 1.32973 0.664865 0.746963i \(-0.268489\pi\)
0.664865 + 0.746963i \(0.268489\pi\)
\(692\) 40.8572 1.55316
\(693\) −32.4494 −1.23265
\(694\) 25.6168 0.972401
\(695\) −13.9341 −0.528551
\(696\) −30.0703 −1.13981
\(697\) 31.8818 1.20761
\(698\) 8.71963 0.330043
\(699\) −45.2521 −1.71159
\(700\) 22.7700 0.860626
\(701\) −33.2005 −1.25396 −0.626982 0.779034i \(-0.715710\pi\)
−0.626982 + 0.779034i \(0.715710\pi\)
\(702\) −9.10917 −0.343803
\(703\) 38.3770 1.44741
\(704\) −74.9669 −2.82542
\(705\) 28.6362 1.07850
\(706\) 61.7201 2.32287
\(707\) −23.9219 −0.899676
\(708\) 146.756 5.51545
\(709\) 9.14187 0.343330 0.171665 0.985155i \(-0.445085\pi\)
0.171665 + 0.985155i \(0.445085\pi\)
\(710\) 6.78988 0.254820
\(711\) −28.7416 −1.07790
\(712\) −92.3528 −3.46107
\(713\) 0.172222 0.00644978
\(714\) 130.343 4.87797
\(715\) 5.70890 0.213501
\(716\) 62.3961 2.33185
\(717\) 20.6660 0.771786
\(718\) −62.1299 −2.31867
\(719\) −19.6337 −0.732212 −0.366106 0.930573i \(-0.619309\pi\)
−0.366106 + 0.930573i \(0.619309\pi\)
\(720\) 26.0209 0.969742
\(721\) −25.5861 −0.952875
\(722\) 15.1196 0.562692
\(723\) 13.3728 0.497340
\(724\) −45.6340 −1.69597
\(725\) 1.54861 0.0575138
\(726\) −14.7971 −0.549172
\(727\) 17.1123 0.634659 0.317329 0.948315i \(-0.397214\pi\)
0.317329 + 0.948315i \(0.397214\pi\)
\(728\) −58.7612 −2.17784
\(729\) −7.60467 −0.281654
\(730\) −25.6676 −0.950001
\(731\) 49.6331 1.83575
\(732\) −23.9404 −0.884864
\(733\) −7.31140 −0.270053 −0.135026 0.990842i \(-0.543112\pi\)
−0.135026 + 0.990842i \(0.543112\pi\)
\(734\) −40.9099 −1.51001
\(735\) −26.9384 −0.993638
\(736\) 11.4750 0.422973
\(737\) −21.4368 −0.789636
\(738\) −35.0434 −1.28997
\(739\) −36.7491 −1.35184 −0.675919 0.736976i \(-0.736253\pi\)
−0.675919 + 0.736976i \(0.736253\pi\)
\(740\) 40.3845 1.48456
\(741\) 17.3195 0.636247
\(742\) 98.5778 3.61890
\(743\) 5.89493 0.216264 0.108132 0.994137i \(-0.465513\pi\)
0.108132 + 0.994137i \(0.465513\pi\)
\(744\) −4.99803 −0.183237
\(745\) 1.32148 0.0484154
\(746\) −31.9835 −1.17100
\(747\) 16.6320 0.608532
\(748\) 95.0154 3.47411
\(749\) −49.3405 −1.80286
\(750\) −6.02646 −0.220055
\(751\) 21.6455 0.789855 0.394927 0.918712i \(-0.370770\pi\)
0.394927 + 0.918712i \(0.370770\pi\)
\(752\) −163.782 −5.97252
\(753\) −3.21976 −0.117334
\(754\) −6.47705 −0.235880
\(755\) −1.00000 −0.0363937
\(756\) 49.5914 1.80362
\(757\) 48.6556 1.76842 0.884209 0.467092i \(-0.154698\pi\)
0.884209 + 0.467092i \(0.154698\pi\)
\(758\) −11.7929 −0.428338
\(759\) 5.50385 0.199777
\(760\) 42.9697 1.55867
\(761\) 29.7632 1.07891 0.539457 0.842013i \(-0.318630\pi\)
0.539457 + 0.842013i \(0.318630\pi\)
\(762\) 38.7273 1.40294
\(763\) 89.6314 3.24487
\(764\) −86.7820 −3.13966
\(765\) −10.0633 −0.363841
\(766\) 19.4507 0.702783
\(767\) 19.5042 0.704256
\(768\) −32.6212 −1.17712
\(769\) −9.26564 −0.334127 −0.167064 0.985946i \(-0.553429\pi\)
−0.167064 + 0.985946i \(0.553429\pi\)
\(770\) −42.9833 −1.54901
\(771\) −70.7130 −2.54667
\(772\) 5.78489 0.208203
\(773\) −2.81463 −0.101235 −0.0506176 0.998718i \(-0.516119\pi\)
−0.0506176 + 0.998718i \(0.516119\pi\)
\(774\) −54.5551 −1.96094
\(775\) 0.257397 0.00924596
\(776\) 71.9706 2.58359
\(777\) −75.6182 −2.71279
\(778\) 21.1188 0.757144
\(779\) −31.8960 −1.14279
\(780\) 18.2255 0.652577
\(781\) −9.26785 −0.331630
\(782\) −8.91912 −0.318947
\(783\) 3.37275 0.120532
\(784\) 154.072 5.50258
\(785\) 15.0978 0.538865
\(786\) 93.3848 3.33093
\(787\) 52.0752 1.85628 0.928141 0.372229i \(-0.121406\pi\)
0.928141 + 0.372229i \(0.121406\pi\)
\(788\) 6.01919 0.214425
\(789\) 8.22084 0.292670
\(790\) −38.0718 −1.35453
\(791\) 32.8289 1.16726
\(792\) −64.4392 −2.28975
\(793\) −3.18173 −0.112987
\(794\) −5.72975 −0.203341
\(795\) −18.8651 −0.669076
\(796\) 144.550 5.12342
\(797\) −4.80658 −0.170258 −0.0851289 0.996370i \(-0.527130\pi\)
−0.0851289 + 0.996370i \(0.527130\pi\)
\(798\) −130.401 −4.61616
\(799\) 63.3413 2.24085
\(800\) 17.1500 0.606345
\(801\) −21.6383 −0.764553
\(802\) −33.4286 −1.18040
\(803\) 35.0350 1.23636
\(804\) −68.4363 −2.41356
\(805\) 2.91749 0.102828
\(806\) −1.07656 −0.0379202
\(807\) −59.3236 −2.08829
\(808\) −47.5049 −1.67122
\(809\) −15.3607 −0.540053 −0.270026 0.962853i \(-0.587032\pi\)
−0.270026 + 0.962853i \(0.587032\pi\)
\(810\) −29.4817 −1.03588
\(811\) −8.60622 −0.302205 −0.151103 0.988518i \(-0.548282\pi\)
−0.151103 + 0.988518i \(0.548282\pi\)
\(812\) 35.2618 1.23745
\(813\) −44.1391 −1.54803
\(814\) −76.2343 −2.67201
\(815\) 19.4034 0.679672
\(816\) 142.666 4.99431
\(817\) −49.6552 −1.73722
\(818\) −40.5360 −1.41731
\(819\) −13.7678 −0.481086
\(820\) −33.5645 −1.17212
\(821\) 5.49446 0.191758 0.0958790 0.995393i \(-0.469434\pi\)
0.0958790 + 0.995393i \(0.469434\pi\)
\(822\) −106.827 −3.72602
\(823\) −20.4903 −0.714246 −0.357123 0.934057i \(-0.616242\pi\)
−0.357123 + 0.934057i \(0.616242\pi\)
\(824\) −50.8096 −1.77004
\(825\) 8.22583 0.286387
\(826\) −146.851 −5.10958
\(827\) −15.4004 −0.535525 −0.267762 0.963485i \(-0.586284\pi\)
−0.267762 + 0.963485i \(0.586284\pi\)
\(828\) 7.08871 0.246350
\(829\) 38.4859 1.33667 0.668335 0.743860i \(-0.267007\pi\)
0.668335 + 0.743860i \(0.267007\pi\)
\(830\) 22.0311 0.764711
\(831\) 13.4138 0.465319
\(832\) −31.8073 −1.10272
\(833\) −59.5860 −2.06453
\(834\) 83.9734 2.90776
\(835\) −1.65789 −0.0573737
\(836\) −95.0577 −3.28764
\(837\) 0.560590 0.0193768
\(838\) 66.1007 2.28341
\(839\) −10.7933 −0.372628 −0.186314 0.982490i \(-0.559654\pi\)
−0.186314 + 0.982490i \(0.559654\pi\)
\(840\) −84.6677 −2.92131
\(841\) −26.6018 −0.917304
\(842\) −84.0773 −2.89750
\(843\) 27.0677 0.932260
\(844\) −0.878017 −0.0302226
\(845\) −10.5778 −0.363887
\(846\) −69.6228 −2.39368
\(847\) 10.7062 0.367870
\(848\) 107.897 3.70521
\(849\) −40.6025 −1.39347
\(850\) −13.3301 −0.457220
\(851\) 5.17440 0.177376
\(852\) −29.5873 −1.01364
\(853\) 43.9591 1.50513 0.752565 0.658518i \(-0.228816\pi\)
0.752565 + 0.658518i \(0.228816\pi\)
\(854\) 23.9558 0.819750
\(855\) 10.0678 0.344313
\(856\) −97.9819 −3.34895
\(857\) −22.0819 −0.754302 −0.377151 0.926152i \(-0.623096\pi\)
−0.377151 + 0.926152i \(0.623096\pi\)
\(858\) −34.4045 −1.17455
\(859\) −27.9821 −0.954737 −0.477368 0.878703i \(-0.658409\pi\)
−0.477368 + 0.878703i \(0.658409\pi\)
\(860\) −52.2527 −1.78180
\(861\) 62.8480 2.14185
\(862\) 30.3134 1.03248
\(863\) −19.3392 −0.658312 −0.329156 0.944275i \(-0.606764\pi\)
−0.329156 + 0.944275i \(0.606764\pi\)
\(864\) 37.3515 1.27072
\(865\) 7.82396 0.266023
\(866\) 76.1784 2.58865
\(867\) −17.0523 −0.579128
\(868\) 5.86093 0.198933
\(869\) 51.9662 1.76283
\(870\) −9.33263 −0.316406
\(871\) −9.09532 −0.308183
\(872\) 177.993 6.02760
\(873\) 16.8628 0.570718
\(874\) 8.92310 0.301828
\(875\) 4.36035 0.147407
\(876\) 111.848 3.77900
\(877\) 6.01523 0.203120 0.101560 0.994829i \(-0.467617\pi\)
0.101560 + 0.994829i \(0.467617\pi\)
\(878\) −82.4884 −2.78385
\(879\) 13.6826 0.461502
\(880\) −47.0470 −1.58595
\(881\) 1.17425 0.0395614 0.0197807 0.999804i \(-0.493703\pi\)
0.0197807 + 0.999804i \(0.493703\pi\)
\(882\) 65.4951 2.20533
\(883\) 8.64906 0.291064 0.145532 0.989354i \(-0.453511\pi\)
0.145532 + 0.989354i \(0.453511\pi\)
\(884\) 40.3136 1.35589
\(885\) 28.1032 0.944678
\(886\) 50.7578 1.70524
\(887\) −15.9927 −0.536981 −0.268490 0.963282i \(-0.586525\pi\)
−0.268490 + 0.963282i \(0.586525\pi\)
\(888\) −150.165 −5.03921
\(889\) −28.0206 −0.939779
\(890\) −28.6627 −0.960774
\(891\) 40.2410 1.34813
\(892\) −90.4002 −3.02682
\(893\) −63.3696 −2.12058
\(894\) −7.96387 −0.266352
\(895\) 11.9486 0.399396
\(896\) 89.9224 3.00409
\(897\) 2.33520 0.0779701
\(898\) 88.2970 2.94651
\(899\) 0.398606 0.0132943
\(900\) 10.5945 0.353150
\(901\) −41.7284 −1.39017
\(902\) 63.3601 2.10966
\(903\) 97.8409 3.25594
\(904\) 65.1927 2.16828
\(905\) −8.73869 −0.290484
\(906\) 6.02646 0.200216
\(907\) 33.4382 1.11030 0.555149 0.831751i \(-0.312661\pi\)
0.555149 + 0.831751i \(0.312661\pi\)
\(908\) 111.593 3.70334
\(909\) −11.1304 −0.369173
\(910\) −18.2372 −0.604556
\(911\) −48.0514 −1.59201 −0.796007 0.605288i \(-0.793058\pi\)
−0.796007 + 0.605288i \(0.793058\pi\)
\(912\) −142.730 −4.72625
\(913\) −30.0714 −0.995217
\(914\) 2.61060 0.0863510
\(915\) −4.58448 −0.151558
\(916\) −24.2012 −0.799629
\(917\) −67.5671 −2.23126
\(918\) −29.0321 −0.958201
\(919\) −37.0111 −1.22088 −0.610441 0.792062i \(-0.709008\pi\)
−0.610441 + 0.792062i \(0.709008\pi\)
\(920\) 5.79364 0.191011
\(921\) 28.5890 0.942041
\(922\) −106.816 −3.51781
\(923\) −3.93221 −0.129430
\(924\) 187.302 6.16179
\(925\) 7.73344 0.254274
\(926\) 66.9479 2.20004
\(927\) −11.9047 −0.391003
\(928\) 26.5587 0.871831
\(929\) 11.2820 0.370151 0.185075 0.982724i \(-0.440747\pi\)
0.185075 + 0.982724i \(0.440747\pi\)
\(930\) −1.55119 −0.0508656
\(931\) 59.6126 1.95372
\(932\) 105.378 3.45176
\(933\) −38.0765 −1.24657
\(934\) −3.76328 −0.123138
\(935\) 18.1950 0.595040
\(936\) −27.3406 −0.893654
\(937\) −21.1801 −0.691923 −0.345962 0.938249i \(-0.612447\pi\)
−0.345962 + 0.938249i \(0.612447\pi\)
\(938\) 68.4802 2.23596
\(939\) −42.9958 −1.40311
\(940\) −66.6844 −2.17501
\(941\) −27.4870 −0.896051 −0.448025 0.894021i \(-0.647873\pi\)
−0.448025 + 0.894021i \(0.647873\pi\)
\(942\) −90.9866 −2.96450
\(943\) −4.30056 −0.140045
\(944\) −160.734 −5.23144
\(945\) 9.49652 0.308922
\(946\) 98.6382 3.20700
\(947\) −55.1778 −1.79304 −0.896519 0.443006i \(-0.853912\pi\)
−0.896519 + 0.443006i \(0.853912\pi\)
\(948\) 165.900 5.38819
\(949\) 14.8648 0.482533
\(950\) 13.3361 0.432680
\(951\) −30.3551 −0.984331
\(952\) −187.280 −6.06976
\(953\) 14.8717 0.481743 0.240872 0.970557i \(-0.422567\pi\)
0.240872 + 0.970557i \(0.422567\pi\)
\(954\) 45.8665 1.48498
\(955\) −16.6183 −0.537757
\(956\) −48.1245 −1.55646
\(957\) 12.7386 0.411780
\(958\) −0.634731 −0.0205072
\(959\) 77.2929 2.49592
\(960\) −45.8304 −1.47917
\(961\) −30.9337 −0.997863
\(962\) −32.3451 −1.04285
\(963\) −22.9572 −0.739787
\(964\) −31.1410 −1.00298
\(965\) 1.10778 0.0356606
\(966\) −17.5821 −0.565695
\(967\) −11.4253 −0.367413 −0.183707 0.982981i \(-0.558810\pi\)
−0.183707 + 0.982981i \(0.558810\pi\)
\(968\) 21.2607 0.683346
\(969\) 55.1994 1.77326
\(970\) 22.3368 0.717192
\(971\) −52.4182 −1.68218 −0.841090 0.540895i \(-0.818086\pi\)
−0.841090 + 0.540895i \(0.818086\pi\)
\(972\) 94.3483 3.02622
\(973\) −60.7576 −1.94780
\(974\) −18.5898 −0.595655
\(975\) 3.49009 0.111772
\(976\) 26.2206 0.839301
\(977\) 21.1523 0.676723 0.338362 0.941016i \(-0.390127\pi\)
0.338362 + 0.941016i \(0.390127\pi\)
\(978\) −116.934 −3.73914
\(979\) 39.1231 1.25038
\(980\) 62.7309 2.00387
\(981\) 41.7039 1.33150
\(982\) 31.7542 1.01332
\(983\) −12.9076 −0.411690 −0.205845 0.978585i \(-0.565994\pi\)
−0.205845 + 0.978585i \(0.565994\pi\)
\(984\) 124.806 3.97866
\(985\) 1.15265 0.0367264
\(986\) −20.6432 −0.657412
\(987\) 124.864 3.97446
\(988\) −40.3316 −1.28312
\(989\) −6.69505 −0.212890
\(990\) −19.9994 −0.635622
\(991\) −18.6955 −0.593881 −0.296941 0.954896i \(-0.595966\pi\)
−0.296941 + 0.954896i \(0.595966\pi\)
\(992\) 4.41436 0.140156
\(993\) −36.3792 −1.15446
\(994\) 29.6063 0.939054
\(995\) 27.6806 0.877533
\(996\) −96.0018 −3.04193
\(997\) 23.0522 0.730070 0.365035 0.930994i \(-0.381057\pi\)
0.365035 + 0.930994i \(0.381057\pi\)
\(998\) 77.1714 2.44282
\(999\) 16.8428 0.532884
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 755.2.a.j.1.15 15
3.2 odd 2 6795.2.a.bh.1.1 15
5.4 even 2 3775.2.a.q.1.1 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
755.2.a.j.1.15 15 1.1 even 1 trivial
3775.2.a.q.1.1 15 5.4 even 2
6795.2.a.bh.1.1 15 3.2 odd 2