Properties

Label 755.2.a.j.1.12
Level $755$
Weight $2$
Character 755.1
Self dual yes
Analytic conductor $6.029$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [755,2,Mod(1,755)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(755, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("755.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 755 = 5 \cdot 151 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 755.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,-2,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.02870535261\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 2 x^{14} - 22 x^{13} + 48 x^{12} + 171 x^{11} - 423 x^{10} - 527 x^{9} + 1641 x^{8} + 400 x^{7} + \cdots + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Root \(-1.37394\) of defining polynomial
Character \(\chi\) \(=\) 755.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.37394 q^{2} +2.59317 q^{3} -0.112300 q^{4} +1.00000 q^{5} +3.56285 q^{6} +0.630227 q^{7} -2.90216 q^{8} +3.72455 q^{9} +1.37394 q^{10} +5.18068 q^{11} -0.291213 q^{12} -0.855835 q^{13} +0.865892 q^{14} +2.59317 q^{15} -3.76279 q^{16} +3.18557 q^{17} +5.11729 q^{18} -8.22633 q^{19} -0.112300 q^{20} +1.63429 q^{21} +7.11793 q^{22} -4.70418 q^{23} -7.52582 q^{24} +1.00000 q^{25} -1.17586 q^{26} +1.87888 q^{27} -0.0707744 q^{28} +7.90859 q^{29} +3.56285 q^{30} -7.84010 q^{31} +0.634499 q^{32} +13.4344 q^{33} +4.37677 q^{34} +0.630227 q^{35} -0.418266 q^{36} +8.34026 q^{37} -11.3025 q^{38} -2.21933 q^{39} -2.90216 q^{40} +2.59716 q^{41} +2.24541 q^{42} -3.75161 q^{43} -0.581790 q^{44} +3.72455 q^{45} -6.46324 q^{46} +0.869890 q^{47} -9.75756 q^{48} -6.60281 q^{49} +1.37394 q^{50} +8.26073 q^{51} +0.0961102 q^{52} -0.171583 q^{53} +2.58146 q^{54} +5.18068 q^{55} -1.82902 q^{56} -21.3323 q^{57} +10.8659 q^{58} -3.54781 q^{59} -0.291213 q^{60} -10.8752 q^{61} -10.7718 q^{62} +2.34731 q^{63} +8.39734 q^{64} -0.855835 q^{65} +18.4580 q^{66} +2.07416 q^{67} -0.357739 q^{68} -12.1988 q^{69} +0.865892 q^{70} +12.0172 q^{71} -10.8093 q^{72} -10.8558 q^{73} +11.4590 q^{74} +2.59317 q^{75} +0.923816 q^{76} +3.26501 q^{77} -3.04922 q^{78} +5.39876 q^{79} -3.76279 q^{80} -6.30139 q^{81} +3.56834 q^{82} -16.9079 q^{83} -0.183530 q^{84} +3.18557 q^{85} -5.15447 q^{86} +20.5083 q^{87} -15.0352 q^{88} -1.13731 q^{89} +5.11729 q^{90} -0.539371 q^{91} +0.528279 q^{92} -20.3307 q^{93} +1.19517 q^{94} -8.22633 q^{95} +1.64536 q^{96} -6.66313 q^{97} -9.07184 q^{98} +19.2957 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 2 q^{2} + 5 q^{3} + 18 q^{4} + 15 q^{5} - 4 q^{6} + 11 q^{7} + 12 q^{8} + 10 q^{9} - 2 q^{10} + 2 q^{11} + 4 q^{12} + 11 q^{13} - 9 q^{14} + 5 q^{15} + 40 q^{16} + 25 q^{17} - 15 q^{18} - 3 q^{19}+ \cdots - 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.37394 0.971519 0.485760 0.874092i \(-0.338543\pi\)
0.485760 + 0.874092i \(0.338543\pi\)
\(3\) 2.59317 1.49717 0.748585 0.663039i \(-0.230734\pi\)
0.748585 + 0.663039i \(0.230734\pi\)
\(4\) −0.112300 −0.0561499
\(5\) 1.00000 0.447214
\(6\) 3.56285 1.45453
\(7\) 0.630227 0.238203 0.119102 0.992882i \(-0.461999\pi\)
0.119102 + 0.992882i \(0.461999\pi\)
\(8\) −2.90216 −1.02607
\(9\) 3.72455 1.24152
\(10\) 1.37394 0.434477
\(11\) 5.18068 1.56203 0.781017 0.624509i \(-0.214701\pi\)
0.781017 + 0.624509i \(0.214701\pi\)
\(12\) −0.291213 −0.0840660
\(13\) −0.855835 −0.237366 −0.118683 0.992932i \(-0.537867\pi\)
−0.118683 + 0.992932i \(0.537867\pi\)
\(14\) 0.865892 0.231419
\(15\) 2.59317 0.669554
\(16\) −3.76279 −0.940697
\(17\) 3.18557 0.772614 0.386307 0.922370i \(-0.373751\pi\)
0.386307 + 0.922370i \(0.373751\pi\)
\(18\) 5.11729 1.20616
\(19\) −8.22633 −1.88725 −0.943625 0.331017i \(-0.892608\pi\)
−0.943625 + 0.331017i \(0.892608\pi\)
\(20\) −0.112300 −0.0251110
\(21\) 1.63429 0.356631
\(22\) 7.11793 1.51755
\(23\) −4.70418 −0.980890 −0.490445 0.871472i \(-0.663166\pi\)
−0.490445 + 0.871472i \(0.663166\pi\)
\(24\) −7.52582 −1.53620
\(25\) 1.00000 0.200000
\(26\) −1.17586 −0.230606
\(27\) 1.87888 0.361590
\(28\) −0.0707744 −0.0133751
\(29\) 7.90859 1.46859 0.734294 0.678832i \(-0.237513\pi\)
0.734294 + 0.678832i \(0.237513\pi\)
\(30\) 3.56285 0.650485
\(31\) −7.84010 −1.40812 −0.704062 0.710139i \(-0.748632\pi\)
−0.704062 + 0.710139i \(0.748632\pi\)
\(32\) 0.634499 0.112165
\(33\) 13.4344 2.33863
\(34\) 4.37677 0.750610
\(35\) 0.630227 0.106528
\(36\) −0.418266 −0.0697111
\(37\) 8.34026 1.37113 0.685565 0.728011i \(-0.259555\pi\)
0.685565 + 0.728011i \(0.259555\pi\)
\(38\) −11.3025 −1.83350
\(39\) −2.21933 −0.355377
\(40\) −2.90216 −0.458873
\(41\) 2.59716 0.405609 0.202804 0.979219i \(-0.434994\pi\)
0.202804 + 0.979219i \(0.434994\pi\)
\(42\) 2.24541 0.346474
\(43\) −3.75161 −0.572115 −0.286058 0.958212i \(-0.592345\pi\)
−0.286058 + 0.958212i \(0.592345\pi\)
\(44\) −0.581790 −0.0877082
\(45\) 3.72455 0.555223
\(46\) −6.46324 −0.952953
\(47\) 0.869890 0.126887 0.0634433 0.997985i \(-0.479792\pi\)
0.0634433 + 0.997985i \(0.479792\pi\)
\(48\) −9.75756 −1.40838
\(49\) −6.60281 −0.943259
\(50\) 1.37394 0.194304
\(51\) 8.26073 1.15673
\(52\) 0.0961102 0.0133281
\(53\) −0.171583 −0.0235688 −0.0117844 0.999931i \(-0.503751\pi\)
−0.0117844 + 0.999931i \(0.503751\pi\)
\(54\) 2.58146 0.351292
\(55\) 5.18068 0.698563
\(56\) −1.82902 −0.244413
\(57\) −21.3323 −2.82553
\(58\) 10.8659 1.42676
\(59\) −3.54781 −0.461885 −0.230943 0.972967i \(-0.574181\pi\)
−0.230943 + 0.972967i \(0.574181\pi\)
\(60\) −0.291213 −0.0375954
\(61\) −10.8752 −1.39243 −0.696213 0.717835i \(-0.745133\pi\)
−0.696213 + 0.717835i \(0.745133\pi\)
\(62\) −10.7718 −1.36802
\(63\) 2.34731 0.295733
\(64\) 8.39734 1.04967
\(65\) −0.855835 −0.106153
\(66\) 18.4580 2.27202
\(67\) 2.07416 0.253399 0.126700 0.991941i \(-0.459562\pi\)
0.126700 + 0.991941i \(0.459562\pi\)
\(68\) −0.357739 −0.0433822
\(69\) −12.1988 −1.46856
\(70\) 0.865892 0.103494
\(71\) 12.0172 1.42618 0.713089 0.701074i \(-0.247296\pi\)
0.713089 + 0.701074i \(0.247296\pi\)
\(72\) −10.8093 −1.27388
\(73\) −10.8558 −1.27058 −0.635290 0.772274i \(-0.719119\pi\)
−0.635290 + 0.772274i \(0.719119\pi\)
\(74\) 11.4590 1.33208
\(75\) 2.59317 0.299434
\(76\) 0.923816 0.105969
\(77\) 3.26501 0.372082
\(78\) −3.04922 −0.345256
\(79\) 5.39876 0.607408 0.303704 0.952766i \(-0.401777\pi\)
0.303704 + 0.952766i \(0.401777\pi\)
\(80\) −3.76279 −0.420693
\(81\) −6.30139 −0.700154
\(82\) 3.56834 0.394057
\(83\) −16.9079 −1.85588 −0.927941 0.372726i \(-0.878423\pi\)
−0.927941 + 0.372726i \(0.878423\pi\)
\(84\) −0.183530 −0.0200248
\(85\) 3.18557 0.345524
\(86\) −5.15447 −0.555821
\(87\) 20.5083 2.19872
\(88\) −15.0352 −1.60276
\(89\) −1.13731 −0.120554 −0.0602771 0.998182i \(-0.519198\pi\)
−0.0602771 + 0.998182i \(0.519198\pi\)
\(90\) 5.11729 0.539410
\(91\) −0.539371 −0.0565414
\(92\) 0.528279 0.0550769
\(93\) −20.3307 −2.10820
\(94\) 1.19517 0.123273
\(95\) −8.22633 −0.844004
\(96\) 1.64536 0.167929
\(97\) −6.66313 −0.676538 −0.338269 0.941049i \(-0.609841\pi\)
−0.338269 + 0.941049i \(0.609841\pi\)
\(98\) −9.07184 −0.916395
\(99\) 19.2957 1.93929
\(100\) −0.112300 −0.0112300
\(101\) −10.5050 −1.04528 −0.522641 0.852553i \(-0.675053\pi\)
−0.522641 + 0.852553i \(0.675053\pi\)
\(102\) 11.3497 1.12379
\(103\) 6.75436 0.665527 0.332763 0.943010i \(-0.392019\pi\)
0.332763 + 0.943010i \(0.392019\pi\)
\(104\) 2.48378 0.243554
\(105\) 1.63429 0.159490
\(106\) −0.235745 −0.0228976
\(107\) −9.85539 −0.952756 −0.476378 0.879241i \(-0.658051\pi\)
−0.476378 + 0.879241i \(0.658051\pi\)
\(108\) −0.210998 −0.0203033
\(109\) 15.2846 1.46400 0.732001 0.681303i \(-0.238587\pi\)
0.732001 + 0.681303i \(0.238587\pi\)
\(110\) 7.11793 0.678668
\(111\) 21.6277 2.05281
\(112\) −2.37141 −0.224077
\(113\) 10.4181 0.980056 0.490028 0.871707i \(-0.336987\pi\)
0.490028 + 0.871707i \(0.336987\pi\)
\(114\) −29.3092 −2.74506
\(115\) −4.70418 −0.438667
\(116\) −0.888134 −0.0824611
\(117\) −3.18760 −0.294694
\(118\) −4.87446 −0.448730
\(119\) 2.00763 0.184039
\(120\) −7.52582 −0.687010
\(121\) 15.8395 1.43995
\(122\) −14.9418 −1.35277
\(123\) 6.73490 0.607265
\(124\) 0.880443 0.0790661
\(125\) 1.00000 0.0894427
\(126\) 3.22505 0.287311
\(127\) 0.896603 0.0795607 0.0397803 0.999208i \(-0.487334\pi\)
0.0397803 + 0.999208i \(0.487334\pi\)
\(128\) 10.2684 0.907608
\(129\) −9.72858 −0.856553
\(130\) −1.17586 −0.103130
\(131\) 18.2492 1.59444 0.797220 0.603689i \(-0.206303\pi\)
0.797220 + 0.603689i \(0.206303\pi\)
\(132\) −1.50868 −0.131314
\(133\) −5.18446 −0.449549
\(134\) 2.84977 0.246182
\(135\) 1.87888 0.161708
\(136\) −9.24505 −0.792756
\(137\) −7.97837 −0.681638 −0.340819 0.940129i \(-0.610704\pi\)
−0.340819 + 0.940129i \(0.610704\pi\)
\(138\) −16.7603 −1.42673
\(139\) −21.2734 −1.80439 −0.902193 0.431333i \(-0.858044\pi\)
−0.902193 + 0.431333i \(0.858044\pi\)
\(140\) −0.0707744 −0.00598153
\(141\) 2.25578 0.189971
\(142\) 16.5108 1.38556
\(143\) −4.43381 −0.370774
\(144\) −14.0147 −1.16789
\(145\) 7.90859 0.656773
\(146\) −14.9152 −1.23439
\(147\) −17.1222 −1.41222
\(148\) −0.936611 −0.0769889
\(149\) −3.39424 −0.278067 −0.139033 0.990288i \(-0.544400\pi\)
−0.139033 + 0.990288i \(0.544400\pi\)
\(150\) 3.56285 0.290906
\(151\) −1.00000 −0.0813788
\(152\) 23.8742 1.93645
\(153\) 11.8648 0.959213
\(154\) 4.48591 0.361485
\(155\) −7.84010 −0.629732
\(156\) 0.249230 0.0199544
\(157\) 3.54156 0.282648 0.141324 0.989963i \(-0.454864\pi\)
0.141324 + 0.989963i \(0.454864\pi\)
\(158\) 7.41755 0.590109
\(159\) −0.444946 −0.0352865
\(160\) 0.634499 0.0501615
\(161\) −2.96470 −0.233651
\(162\) −8.65770 −0.680213
\(163\) 15.9154 1.24659 0.623296 0.781986i \(-0.285793\pi\)
0.623296 + 0.781986i \(0.285793\pi\)
\(164\) −0.291661 −0.0227749
\(165\) 13.4344 1.04587
\(166\) −23.2304 −1.80303
\(167\) 5.08284 0.393322 0.196661 0.980472i \(-0.436990\pi\)
0.196661 + 0.980472i \(0.436990\pi\)
\(168\) −4.74297 −0.365928
\(169\) −12.2675 −0.943657
\(170\) 4.37677 0.335683
\(171\) −30.6394 −2.34305
\(172\) 0.421305 0.0321242
\(173\) 19.5934 1.48966 0.744829 0.667256i \(-0.232531\pi\)
0.744829 + 0.667256i \(0.232531\pi\)
\(174\) 28.1771 2.13610
\(175\) 0.630227 0.0476407
\(176\) −19.4938 −1.46940
\(177\) −9.20008 −0.691520
\(178\) −1.56259 −0.117121
\(179\) 0.314200 0.0234844 0.0117422 0.999931i \(-0.496262\pi\)
0.0117422 + 0.999931i \(0.496262\pi\)
\(180\) −0.418266 −0.0311757
\(181\) 18.7645 1.39476 0.697378 0.716704i \(-0.254350\pi\)
0.697378 + 0.716704i \(0.254350\pi\)
\(182\) −0.741061 −0.0549311
\(183\) −28.2013 −2.08470
\(184\) 13.6523 1.00646
\(185\) 8.34026 0.613188
\(186\) −27.9331 −2.04816
\(187\) 16.5034 1.20685
\(188\) −0.0976886 −0.00712467
\(189\) 1.18412 0.0861320
\(190\) −11.3025 −0.819966
\(191\) 20.1843 1.46049 0.730244 0.683187i \(-0.239407\pi\)
0.730244 + 0.683187i \(0.239407\pi\)
\(192\) 21.7758 1.57153
\(193\) 17.7680 1.27897 0.639486 0.768803i \(-0.279147\pi\)
0.639486 + 0.768803i \(0.279147\pi\)
\(194\) −9.15471 −0.657270
\(195\) −2.21933 −0.158929
\(196\) 0.741495 0.0529640
\(197\) 18.6907 1.33166 0.665829 0.746105i \(-0.268078\pi\)
0.665829 + 0.746105i \(0.268078\pi\)
\(198\) 26.5111 1.88406
\(199\) −2.33943 −0.165838 −0.0829189 0.996556i \(-0.526424\pi\)
−0.0829189 + 0.996556i \(0.526424\pi\)
\(200\) −2.90216 −0.205214
\(201\) 5.37866 0.379382
\(202\) −14.4331 −1.01551
\(203\) 4.98421 0.349823
\(204\) −0.927680 −0.0649506
\(205\) 2.59716 0.181394
\(206\) 9.28006 0.646572
\(207\) −17.5209 −1.21779
\(208\) 3.22033 0.223290
\(209\) −42.6180 −2.94795
\(210\) 2.24541 0.154948
\(211\) −2.54512 −0.175213 −0.0876065 0.996155i \(-0.527922\pi\)
−0.0876065 + 0.996155i \(0.527922\pi\)
\(212\) 0.0192688 0.00132339
\(213\) 31.1626 2.13523
\(214\) −13.5407 −0.925621
\(215\) −3.75161 −0.255858
\(216\) −5.45281 −0.371017
\(217\) −4.94104 −0.335420
\(218\) 21.0001 1.42231
\(219\) −28.1511 −1.90227
\(220\) −0.581790 −0.0392243
\(221\) −2.72632 −0.183392
\(222\) 29.7151 1.99435
\(223\) −24.5770 −1.64580 −0.822898 0.568188i \(-0.807644\pi\)
−0.822898 + 0.568188i \(0.807644\pi\)
\(224\) 0.399878 0.0267180
\(225\) 3.72455 0.248303
\(226\) 14.3139 0.952144
\(227\) 7.66549 0.508776 0.254388 0.967102i \(-0.418126\pi\)
0.254388 + 0.967102i \(0.418126\pi\)
\(228\) 2.39562 0.158653
\(229\) 10.7688 0.711622 0.355811 0.934558i \(-0.384205\pi\)
0.355811 + 0.934558i \(0.384205\pi\)
\(230\) −6.46324 −0.426174
\(231\) 8.46673 0.557070
\(232\) −22.9520 −1.50687
\(233\) −4.78465 −0.313453 −0.156726 0.987642i \(-0.550094\pi\)
−0.156726 + 0.987642i \(0.550094\pi\)
\(234\) −4.37956 −0.286301
\(235\) 0.869890 0.0567454
\(236\) 0.398418 0.0259348
\(237\) 13.9999 0.909393
\(238\) 2.75836 0.178798
\(239\) −15.6444 −1.01195 −0.505976 0.862547i \(-0.668868\pi\)
−0.505976 + 0.862547i \(0.668868\pi\)
\(240\) −9.75756 −0.629848
\(241\) −4.44919 −0.286597 −0.143299 0.989679i \(-0.545771\pi\)
−0.143299 + 0.989679i \(0.545771\pi\)
\(242\) 21.7624 1.39894
\(243\) −21.9772 −1.40984
\(244\) 1.22128 0.0781846
\(245\) −6.60281 −0.421838
\(246\) 9.25332 0.589970
\(247\) 7.04038 0.447969
\(248\) 22.7533 1.44483
\(249\) −43.8451 −2.77857
\(250\) 1.37394 0.0868953
\(251\) 9.24794 0.583725 0.291862 0.956460i \(-0.405725\pi\)
0.291862 + 0.956460i \(0.405725\pi\)
\(252\) −0.263603 −0.0166054
\(253\) −24.3709 −1.53218
\(254\) 1.23188 0.0772947
\(255\) 8.26073 0.517307
\(256\) −2.68654 −0.167909
\(257\) 9.02608 0.563031 0.281516 0.959557i \(-0.409163\pi\)
0.281516 + 0.959557i \(0.409163\pi\)
\(258\) −13.3664 −0.832158
\(259\) 5.25626 0.326608
\(260\) 0.0961102 0.00596050
\(261\) 29.4559 1.82328
\(262\) 25.0732 1.54903
\(263\) 2.84760 0.175590 0.0877952 0.996139i \(-0.472018\pi\)
0.0877952 + 0.996139i \(0.472018\pi\)
\(264\) −38.9889 −2.39960
\(265\) −0.171583 −0.0105403
\(266\) −7.12311 −0.436746
\(267\) −2.94923 −0.180490
\(268\) −0.232928 −0.0142284
\(269\) −2.69331 −0.164214 −0.0821069 0.996624i \(-0.526165\pi\)
−0.0821069 + 0.996624i \(0.526165\pi\)
\(270\) 2.58146 0.157103
\(271\) −5.79191 −0.351833 −0.175917 0.984405i \(-0.556289\pi\)
−0.175917 + 0.984405i \(0.556289\pi\)
\(272\) −11.9866 −0.726796
\(273\) −1.39868 −0.0846520
\(274\) −10.9618 −0.662224
\(275\) 5.18068 0.312407
\(276\) 1.36992 0.0824595
\(277\) −26.7346 −1.60632 −0.803162 0.595760i \(-0.796851\pi\)
−0.803162 + 0.595760i \(0.796851\pi\)
\(278\) −29.2283 −1.75300
\(279\) −29.2008 −1.74821
\(280\) −1.82902 −0.109305
\(281\) 12.9751 0.774031 0.387016 0.922073i \(-0.373506\pi\)
0.387016 + 0.922073i \(0.373506\pi\)
\(282\) 3.09929 0.184560
\(283\) 25.7387 1.53000 0.765002 0.644028i \(-0.222738\pi\)
0.765002 + 0.644028i \(0.222738\pi\)
\(284\) −1.34953 −0.0800798
\(285\) −21.3323 −1.26362
\(286\) −6.09177 −0.360214
\(287\) 1.63680 0.0966174
\(288\) 2.36322 0.139254
\(289\) −6.85215 −0.403067
\(290\) 10.8659 0.638067
\(291\) −17.2786 −1.01289
\(292\) 1.21911 0.0713430
\(293\) 17.3208 1.01189 0.505946 0.862565i \(-0.331144\pi\)
0.505946 + 0.862565i \(0.331144\pi\)
\(294\) −23.5249 −1.37200
\(295\) −3.54781 −0.206561
\(296\) −24.2048 −1.40688
\(297\) 9.73387 0.564816
\(298\) −4.66347 −0.270147
\(299\) 4.02600 0.232830
\(300\) −0.291213 −0.0168132
\(301\) −2.36437 −0.136280
\(302\) −1.37394 −0.0790611
\(303\) −27.2412 −1.56496
\(304\) 30.9539 1.77533
\(305\) −10.8752 −0.622712
\(306\) 16.3015 0.931894
\(307\) 2.77705 0.158495 0.0792474 0.996855i \(-0.474748\pi\)
0.0792474 + 0.996855i \(0.474748\pi\)
\(308\) −0.366660 −0.0208924
\(309\) 17.5152 0.996406
\(310\) −10.7718 −0.611797
\(311\) 22.2633 1.26243 0.631217 0.775606i \(-0.282556\pi\)
0.631217 + 0.775606i \(0.282556\pi\)
\(312\) 6.44086 0.364642
\(313\) 11.6916 0.660846 0.330423 0.943833i \(-0.392809\pi\)
0.330423 + 0.943833i \(0.392809\pi\)
\(314\) 4.86588 0.274598
\(315\) 2.34731 0.132256
\(316\) −0.606280 −0.0341059
\(317\) −27.4049 −1.53921 −0.769606 0.638519i \(-0.779547\pi\)
−0.769606 + 0.638519i \(0.779547\pi\)
\(318\) −0.611327 −0.0342815
\(319\) 40.9719 2.29399
\(320\) 8.39734 0.469425
\(321\) −25.5567 −1.42644
\(322\) −4.07331 −0.226997
\(323\) −26.2055 −1.45812
\(324\) 0.707645 0.0393136
\(325\) −0.855835 −0.0474732
\(326\) 21.8668 1.21109
\(327\) 39.6357 2.19186
\(328\) −7.53740 −0.416183
\(329\) 0.548228 0.0302248
\(330\) 18.4580 1.01608
\(331\) −16.9726 −0.932900 −0.466450 0.884548i \(-0.654467\pi\)
−0.466450 + 0.884548i \(0.654467\pi\)
\(332\) 1.89875 0.104208
\(333\) 31.0637 1.70228
\(334\) 6.98350 0.382120
\(335\) 2.07416 0.113324
\(336\) −6.14948 −0.335482
\(337\) 33.6340 1.83216 0.916080 0.400995i \(-0.131336\pi\)
0.916080 + 0.400995i \(0.131336\pi\)
\(338\) −16.8548 −0.916782
\(339\) 27.0160 1.46731
\(340\) −0.357739 −0.0194011
\(341\) −40.6171 −2.19954
\(342\) −42.0965 −2.27632
\(343\) −8.57286 −0.462891
\(344\) 10.8878 0.587030
\(345\) −12.1988 −0.656759
\(346\) 26.9201 1.44723
\(347\) −14.8627 −0.797874 −0.398937 0.916978i \(-0.630621\pi\)
−0.398937 + 0.916978i \(0.630621\pi\)
\(348\) −2.30308 −0.123458
\(349\) −8.82000 −0.472124 −0.236062 0.971738i \(-0.575857\pi\)
−0.236062 + 0.971738i \(0.575857\pi\)
\(350\) 0.865892 0.0462839
\(351\) −1.60801 −0.0858292
\(352\) 3.28714 0.175205
\(353\) −5.03612 −0.268046 −0.134023 0.990978i \(-0.542790\pi\)
−0.134023 + 0.990978i \(0.542790\pi\)
\(354\) −12.6403 −0.671825
\(355\) 12.0172 0.637806
\(356\) 0.127719 0.00676912
\(357\) 5.20614 0.275538
\(358\) 0.431690 0.0228155
\(359\) 24.7446 1.30597 0.652986 0.757370i \(-0.273516\pi\)
0.652986 + 0.757370i \(0.273516\pi\)
\(360\) −10.8093 −0.569698
\(361\) 48.6725 2.56171
\(362\) 25.7812 1.35503
\(363\) 41.0745 2.15585
\(364\) 0.0605713 0.00317480
\(365\) −10.8558 −0.568220
\(366\) −38.7467 −2.02532
\(367\) 0.467081 0.0243814 0.0121907 0.999926i \(-0.496119\pi\)
0.0121907 + 0.999926i \(0.496119\pi\)
\(368\) 17.7008 0.922720
\(369\) 9.67326 0.503570
\(370\) 11.4590 0.595724
\(371\) −0.108137 −0.00561417
\(372\) 2.28314 0.118375
\(373\) 25.5913 1.32507 0.662534 0.749032i \(-0.269481\pi\)
0.662534 + 0.749032i \(0.269481\pi\)
\(374\) 22.6747 1.17248
\(375\) 2.59317 0.133911
\(376\) −2.52456 −0.130194
\(377\) −6.76845 −0.348593
\(378\) 1.62690 0.0836789
\(379\) 14.9668 0.768792 0.384396 0.923168i \(-0.374410\pi\)
0.384396 + 0.923168i \(0.374410\pi\)
\(380\) 0.923816 0.0473908
\(381\) 2.32505 0.119116
\(382\) 27.7320 1.41889
\(383\) 11.6224 0.593876 0.296938 0.954897i \(-0.404035\pi\)
0.296938 + 0.954897i \(0.404035\pi\)
\(384\) 26.6278 1.35884
\(385\) 3.26501 0.166400
\(386\) 24.4122 1.24255
\(387\) −13.9731 −0.710290
\(388\) 0.748268 0.0379876
\(389\) −27.8265 −1.41086 −0.705430 0.708779i \(-0.749246\pi\)
−0.705430 + 0.708779i \(0.749246\pi\)
\(390\) −3.04922 −0.154403
\(391\) −14.9855 −0.757849
\(392\) 19.1625 0.967850
\(393\) 47.3233 2.38715
\(394\) 25.6798 1.29373
\(395\) 5.39876 0.271641
\(396\) −2.16690 −0.108891
\(397\) 29.5489 1.48302 0.741509 0.670943i \(-0.234110\pi\)
0.741509 + 0.670943i \(0.234110\pi\)
\(398\) −3.21423 −0.161115
\(399\) −13.4442 −0.673051
\(400\) −3.76279 −0.188139
\(401\) −21.9047 −1.09387 −0.546934 0.837175i \(-0.684205\pi\)
−0.546934 + 0.837175i \(0.684205\pi\)
\(402\) 7.38994 0.368577
\(403\) 6.70984 0.334241
\(404\) 1.17971 0.0586926
\(405\) −6.30139 −0.313118
\(406\) 6.84798 0.339860
\(407\) 43.2082 2.14175
\(408\) −23.9740 −1.18689
\(409\) 28.3917 1.40388 0.701939 0.712237i \(-0.252318\pi\)
0.701939 + 0.712237i \(0.252318\pi\)
\(410\) 3.56834 0.176228
\(411\) −20.6893 −1.02053
\(412\) −0.758514 −0.0373693
\(413\) −2.23592 −0.110023
\(414\) −24.0727 −1.18311
\(415\) −16.9079 −0.829976
\(416\) −0.543026 −0.0266241
\(417\) −55.1656 −2.70147
\(418\) −58.5544 −2.86399
\(419\) −29.5636 −1.44428 −0.722139 0.691748i \(-0.756841\pi\)
−0.722139 + 0.691748i \(0.756841\pi\)
\(420\) −0.183530 −0.00895537
\(421\) 9.26381 0.451491 0.225745 0.974186i \(-0.427518\pi\)
0.225745 + 0.974186i \(0.427518\pi\)
\(422\) −3.49683 −0.170223
\(423\) 3.23995 0.157532
\(424\) 0.497964 0.0241832
\(425\) 3.18557 0.154523
\(426\) 42.8155 2.07442
\(427\) −6.85384 −0.331681
\(428\) 1.10676 0.0534972
\(429\) −11.4976 −0.555111
\(430\) −5.15447 −0.248571
\(431\) −26.9482 −1.29805 −0.649024 0.760768i \(-0.724823\pi\)
−0.649024 + 0.760768i \(0.724823\pi\)
\(432\) −7.06982 −0.340147
\(433\) 27.2498 1.30954 0.654770 0.755828i \(-0.272765\pi\)
0.654770 + 0.755828i \(0.272765\pi\)
\(434\) −6.78868 −0.325867
\(435\) 20.5083 0.983300
\(436\) −1.71646 −0.0822036
\(437\) 38.6982 1.85118
\(438\) −38.6778 −1.84809
\(439\) −20.0464 −0.956763 −0.478381 0.878152i \(-0.658776\pi\)
−0.478381 + 0.878152i \(0.658776\pi\)
\(440\) −15.0352 −0.716775
\(441\) −24.5925 −1.17107
\(442\) −3.74579 −0.178169
\(443\) 15.4823 0.735588 0.367794 0.929907i \(-0.380113\pi\)
0.367794 + 0.929907i \(0.380113\pi\)
\(444\) −2.42879 −0.115265
\(445\) −1.13731 −0.0539135
\(446\) −33.7672 −1.59892
\(447\) −8.80185 −0.416313
\(448\) 5.29223 0.250034
\(449\) 6.44934 0.304363 0.152182 0.988353i \(-0.451370\pi\)
0.152182 + 0.988353i \(0.451370\pi\)
\(450\) 5.11729 0.241231
\(451\) 13.4551 0.633575
\(452\) −1.16996 −0.0550301
\(453\) −2.59317 −0.121838
\(454\) 10.5319 0.494286
\(455\) −0.539371 −0.0252861
\(456\) 61.9099 2.89919
\(457\) 28.6199 1.33878 0.669391 0.742911i \(-0.266555\pi\)
0.669391 + 0.742911i \(0.266555\pi\)
\(458\) 14.7956 0.691355
\(459\) 5.98530 0.279370
\(460\) 0.528279 0.0246311
\(461\) 12.3582 0.575581 0.287791 0.957693i \(-0.407079\pi\)
0.287791 + 0.957693i \(0.407079\pi\)
\(462\) 11.6327 0.541204
\(463\) 13.8354 0.642983 0.321492 0.946912i \(-0.395816\pi\)
0.321492 + 0.946912i \(0.395816\pi\)
\(464\) −29.7583 −1.38150
\(465\) −20.3307 −0.942816
\(466\) −6.57380 −0.304525
\(467\) −28.0863 −1.29968 −0.649840 0.760071i \(-0.725164\pi\)
−0.649840 + 0.760071i \(0.725164\pi\)
\(468\) 0.357967 0.0165470
\(469\) 1.30719 0.0603606
\(470\) 1.19517 0.0551292
\(471\) 9.18389 0.423171
\(472\) 10.2963 0.473927
\(473\) −19.4359 −0.893664
\(474\) 19.2350 0.883493
\(475\) −8.22633 −0.377450
\(476\) −0.225457 −0.0103338
\(477\) −0.639071 −0.0292610
\(478\) −21.4944 −0.983131
\(479\) −15.9302 −0.727869 −0.363935 0.931424i \(-0.618567\pi\)
−0.363935 + 0.931424i \(0.618567\pi\)
\(480\) 1.64536 0.0751003
\(481\) −7.13789 −0.325460
\(482\) −6.11290 −0.278435
\(483\) −7.68799 −0.349816
\(484\) −1.77877 −0.0808532
\(485\) −6.66313 −0.302557
\(486\) −30.1953 −1.36969
\(487\) 13.3874 0.606640 0.303320 0.952889i \(-0.401905\pi\)
0.303320 + 0.952889i \(0.401905\pi\)
\(488\) 31.5616 1.42873
\(489\) 41.2715 1.86636
\(490\) −9.07184 −0.409824
\(491\) −22.0823 −0.996560 −0.498280 0.867016i \(-0.666035\pi\)
−0.498280 + 0.867016i \(0.666035\pi\)
\(492\) −0.756328 −0.0340979
\(493\) 25.1934 1.13465
\(494\) 9.67304 0.435210
\(495\) 19.2957 0.867277
\(496\) 29.5006 1.32462
\(497\) 7.57355 0.339720
\(498\) −60.2404 −2.69944
\(499\) 17.0256 0.762170 0.381085 0.924540i \(-0.375550\pi\)
0.381085 + 0.924540i \(0.375550\pi\)
\(500\) −0.112300 −0.00502220
\(501\) 13.1807 0.588869
\(502\) 12.7061 0.567100
\(503\) 19.3446 0.862531 0.431266 0.902225i \(-0.358067\pi\)
0.431266 + 0.902225i \(0.358067\pi\)
\(504\) −6.81228 −0.303443
\(505\) −10.5050 −0.467465
\(506\) −33.4840 −1.48855
\(507\) −31.8119 −1.41281
\(508\) −0.100688 −0.00446733
\(509\) −4.72064 −0.209239 −0.104619 0.994512i \(-0.533362\pi\)
−0.104619 + 0.994512i \(0.533362\pi\)
\(510\) 11.3497 0.502574
\(511\) −6.84164 −0.302656
\(512\) −24.2280 −1.07073
\(513\) −15.4563 −0.682411
\(514\) 12.4013 0.546996
\(515\) 6.75436 0.297633
\(516\) 1.09252 0.0480954
\(517\) 4.50662 0.198201
\(518\) 7.22176 0.317306
\(519\) 50.8090 2.23027
\(520\) 2.48378 0.108921
\(521\) −5.67236 −0.248511 −0.124255 0.992250i \(-0.539654\pi\)
−0.124255 + 0.992250i \(0.539654\pi\)
\(522\) 40.4705 1.77135
\(523\) −14.4840 −0.633340 −0.316670 0.948536i \(-0.602565\pi\)
−0.316670 + 0.948536i \(0.602565\pi\)
\(524\) −2.04938 −0.0895277
\(525\) 1.63429 0.0713262
\(526\) 3.91242 0.170589
\(527\) −24.9752 −1.08794
\(528\) −50.5508 −2.19994
\(529\) −0.870673 −0.0378553
\(530\) −0.235745 −0.0102401
\(531\) −13.2140 −0.573438
\(532\) 0.582214 0.0252422
\(533\) −2.22274 −0.0962777
\(534\) −4.05206 −0.175350
\(535\) −9.85539 −0.426086
\(536\) −6.01956 −0.260006
\(537\) 0.814775 0.0351601
\(538\) −3.70043 −0.159537
\(539\) −34.2071 −1.47340
\(540\) −0.210998 −0.00907990
\(541\) −36.6339 −1.57501 −0.787507 0.616305i \(-0.788629\pi\)
−0.787507 + 0.616305i \(0.788629\pi\)
\(542\) −7.95771 −0.341813
\(543\) 48.6596 2.08818
\(544\) 2.02124 0.0866599
\(545\) 15.2846 0.654722
\(546\) −1.92170 −0.0822411
\(547\) −28.4935 −1.21829 −0.609147 0.793057i \(-0.708488\pi\)
−0.609147 + 0.793057i \(0.708488\pi\)
\(548\) 0.895970 0.0382739
\(549\) −40.5052 −1.72872
\(550\) 7.11793 0.303509
\(551\) −65.0587 −2.77159
\(552\) 35.4028 1.50684
\(553\) 3.40245 0.144687
\(554\) −36.7316 −1.56058
\(555\) 21.6277 0.918047
\(556\) 2.38900 0.101316
\(557\) −17.8421 −0.755994 −0.377997 0.925807i \(-0.623387\pi\)
−0.377997 + 0.925807i \(0.623387\pi\)
\(558\) −40.1201 −1.69842
\(559\) 3.21076 0.135801
\(560\) −2.37141 −0.100210
\(561\) 42.7962 1.80686
\(562\) 17.8270 0.751987
\(563\) −32.8159 −1.38303 −0.691513 0.722364i \(-0.743056\pi\)
−0.691513 + 0.722364i \(0.743056\pi\)
\(564\) −0.253323 −0.0106668
\(565\) 10.4181 0.438294
\(566\) 35.3633 1.48643
\(567\) −3.97130 −0.166779
\(568\) −34.8758 −1.46336
\(569\) 23.3893 0.980531 0.490265 0.871573i \(-0.336900\pi\)
0.490265 + 0.871573i \(0.336900\pi\)
\(570\) −29.3092 −1.22763
\(571\) −7.61103 −0.318512 −0.159256 0.987237i \(-0.550909\pi\)
−0.159256 + 0.987237i \(0.550909\pi\)
\(572\) 0.497916 0.0208189
\(573\) 52.3415 2.18660
\(574\) 2.24886 0.0938657
\(575\) −4.70418 −0.196178
\(576\) 31.2763 1.30318
\(577\) −11.5248 −0.479783 −0.239891 0.970800i \(-0.577112\pi\)
−0.239891 + 0.970800i \(0.577112\pi\)
\(578\) −9.41441 −0.391588
\(579\) 46.0756 1.91484
\(580\) −0.888134 −0.0368777
\(581\) −10.6558 −0.442078
\(582\) −23.7397 −0.984044
\(583\) −0.888920 −0.0368153
\(584\) 31.5054 1.30370
\(585\) −3.18760 −0.131791
\(586\) 23.7977 0.983072
\(587\) 4.83954 0.199749 0.0998745 0.995000i \(-0.468156\pi\)
0.0998745 + 0.995000i \(0.468156\pi\)
\(588\) 1.92283 0.0792960
\(589\) 64.4953 2.65748
\(590\) −4.87446 −0.200678
\(591\) 48.4682 1.99372
\(592\) −31.3826 −1.28982
\(593\) 1.70954 0.0702026 0.0351013 0.999384i \(-0.488825\pi\)
0.0351013 + 0.999384i \(0.488825\pi\)
\(594\) 13.3737 0.548730
\(595\) 2.00763 0.0823049
\(596\) 0.381173 0.0156134
\(597\) −6.06654 −0.248287
\(598\) 5.53147 0.226199
\(599\) 8.09099 0.330589 0.165294 0.986244i \(-0.447143\pi\)
0.165294 + 0.986244i \(0.447143\pi\)
\(600\) −7.52582 −0.307240
\(601\) −28.3274 −1.15550 −0.577750 0.816214i \(-0.696069\pi\)
−0.577750 + 0.816214i \(0.696069\pi\)
\(602\) −3.24849 −0.132398
\(603\) 7.72532 0.314599
\(604\) 0.112300 0.00456942
\(605\) 15.8395 0.643966
\(606\) −37.4276 −1.52039
\(607\) 37.5155 1.52271 0.761354 0.648336i \(-0.224535\pi\)
0.761354 + 0.648336i \(0.224535\pi\)
\(608\) −5.21959 −0.211683
\(609\) 12.9249 0.523744
\(610\) −14.9418 −0.604977
\(611\) −0.744483 −0.0301185
\(612\) −1.33242 −0.0538597
\(613\) −31.3968 −1.26810 −0.634052 0.773290i \(-0.718610\pi\)
−0.634052 + 0.773290i \(0.718610\pi\)
\(614\) 3.81549 0.153981
\(615\) 6.73490 0.271577
\(616\) −9.47559 −0.381782
\(617\) −6.57291 −0.264616 −0.132308 0.991209i \(-0.542239\pi\)
−0.132308 + 0.991209i \(0.542239\pi\)
\(618\) 24.0648 0.968028
\(619\) 42.9193 1.72507 0.862537 0.505994i \(-0.168874\pi\)
0.862537 + 0.505994i \(0.168874\pi\)
\(620\) 0.880443 0.0353594
\(621\) −8.83858 −0.354680
\(622\) 30.5883 1.22648
\(623\) −0.716762 −0.0287164
\(624\) 8.35087 0.334302
\(625\) 1.00000 0.0400000
\(626\) 16.0635 0.642025
\(627\) −110.516 −4.41358
\(628\) −0.397717 −0.0158706
\(629\) 26.5685 1.05935
\(630\) 3.22505 0.128489
\(631\) 4.93114 0.196305 0.0981527 0.995171i \(-0.468707\pi\)
0.0981527 + 0.995171i \(0.468707\pi\)
\(632\) −15.6681 −0.623244
\(633\) −6.59993 −0.262324
\(634\) −37.6526 −1.49537
\(635\) 0.896603 0.0355806
\(636\) 0.0499674 0.00198133
\(637\) 5.65092 0.223898
\(638\) 56.2927 2.22865
\(639\) 44.7586 1.77062
\(640\) 10.2684 0.405894
\(641\) −15.3889 −0.607823 −0.303912 0.952700i \(-0.598293\pi\)
−0.303912 + 0.952700i \(0.598293\pi\)
\(642\) −35.1133 −1.38581
\(643\) −19.8546 −0.782991 −0.391495 0.920180i \(-0.628042\pi\)
−0.391495 + 0.920180i \(0.628042\pi\)
\(644\) 0.332936 0.0131195
\(645\) −9.72858 −0.383062
\(646\) −36.0047 −1.41659
\(647\) −2.11286 −0.0830652 −0.0415326 0.999137i \(-0.513224\pi\)
−0.0415326 + 0.999137i \(0.513224\pi\)
\(648\) 18.2877 0.718407
\(649\) −18.3801 −0.721480
\(650\) −1.17586 −0.0461211
\(651\) −12.8130 −0.502180
\(652\) −1.78730 −0.0699961
\(653\) 31.8431 1.24612 0.623059 0.782175i \(-0.285890\pi\)
0.623059 + 0.782175i \(0.285890\pi\)
\(654\) 54.4569 2.12943
\(655\) 18.2492 0.713055
\(656\) −9.77258 −0.381555
\(657\) −40.4331 −1.57744
\(658\) 0.753231 0.0293640
\(659\) 15.8190 0.616220 0.308110 0.951351i \(-0.400304\pi\)
0.308110 + 0.951351i \(0.400304\pi\)
\(660\) −1.50868 −0.0587254
\(661\) −13.5311 −0.526300 −0.263150 0.964755i \(-0.584761\pi\)
−0.263150 + 0.964755i \(0.584761\pi\)
\(662\) −23.3193 −0.906331
\(663\) −7.06983 −0.274569
\(664\) 49.0695 1.90427
\(665\) −5.18446 −0.201045
\(666\) 42.6795 1.65380
\(667\) −37.2034 −1.44052
\(668\) −0.570802 −0.0220850
\(669\) −63.7324 −2.46404
\(670\) 2.84977 0.110096
\(671\) −56.3409 −2.17502
\(672\) 1.03695 0.0400013
\(673\) −40.7493 −1.57077 −0.785384 0.619009i \(-0.787535\pi\)
−0.785384 + 0.619009i \(0.787535\pi\)
\(674\) 46.2109 1.77998
\(675\) 1.87888 0.0723180
\(676\) 1.37764 0.0529863
\(677\) −7.96692 −0.306193 −0.153097 0.988211i \(-0.548925\pi\)
−0.153097 + 0.988211i \(0.548925\pi\)
\(678\) 37.1183 1.42552
\(679\) −4.19928 −0.161154
\(680\) −9.24505 −0.354531
\(681\) 19.8779 0.761724
\(682\) −55.8053 −2.13689
\(683\) 30.4257 1.16421 0.582103 0.813115i \(-0.302230\pi\)
0.582103 + 0.813115i \(0.302230\pi\)
\(684\) 3.44080 0.131562
\(685\) −7.97837 −0.304838
\(686\) −11.7786 −0.449708
\(687\) 27.9254 1.06542
\(688\) 14.1165 0.538187
\(689\) 0.146847 0.00559443
\(690\) −16.7603 −0.638054
\(691\) −22.1449 −0.842434 −0.421217 0.906960i \(-0.638397\pi\)
−0.421217 + 0.906960i \(0.638397\pi\)
\(692\) −2.20034 −0.0836442
\(693\) 12.1607 0.461946
\(694\) −20.4205 −0.775150
\(695\) −21.2734 −0.806946
\(696\) −59.5186 −2.25605
\(697\) 8.27345 0.313379
\(698\) −12.1181 −0.458677
\(699\) −12.4074 −0.469292
\(700\) −0.0707744 −0.00267502
\(701\) 2.69074 0.101628 0.0508139 0.998708i \(-0.483818\pi\)
0.0508139 + 0.998708i \(0.483818\pi\)
\(702\) −2.20930 −0.0833848
\(703\) −68.6098 −2.58767
\(704\) 43.5039 1.63962
\(705\) 2.25578 0.0849574
\(706\) −6.91931 −0.260411
\(707\) −6.62051 −0.248990
\(708\) 1.03317 0.0388288
\(709\) −33.3983 −1.25430 −0.627149 0.778899i \(-0.715778\pi\)
−0.627149 + 0.778899i \(0.715778\pi\)
\(710\) 16.5108 0.619641
\(711\) 20.1079 0.754107
\(712\) 3.30065 0.123697
\(713\) 36.8813 1.38121
\(714\) 7.15290 0.267691
\(715\) −4.43381 −0.165815
\(716\) −0.0352846 −0.00131865
\(717\) −40.5686 −1.51506
\(718\) 33.9976 1.26878
\(719\) 4.60117 0.171595 0.0857974 0.996313i \(-0.472656\pi\)
0.0857974 + 0.996313i \(0.472656\pi\)
\(720\) −14.0147 −0.522297
\(721\) 4.25678 0.158531
\(722\) 66.8729 2.48875
\(723\) −11.5375 −0.429085
\(724\) −2.10725 −0.0783154
\(725\) 7.90859 0.293718
\(726\) 56.4337 2.09445
\(727\) −21.5538 −0.799385 −0.399692 0.916649i \(-0.630883\pi\)
−0.399692 + 0.916649i \(0.630883\pi\)
\(728\) 1.56534 0.0580154
\(729\) −38.0866 −1.41061
\(730\) −14.9152 −0.552037
\(731\) −11.9510 −0.442024
\(732\) 3.16700 0.117056
\(733\) −14.8487 −0.548447 −0.274224 0.961666i \(-0.588421\pi\)
−0.274224 + 0.961666i \(0.588421\pi\)
\(734\) 0.641739 0.0236870
\(735\) −17.1222 −0.631563
\(736\) −2.98480 −0.110021
\(737\) 10.7456 0.395819
\(738\) 13.2904 0.489228
\(739\) −41.7268 −1.53495 −0.767473 0.641081i \(-0.778486\pi\)
−0.767473 + 0.641081i \(0.778486\pi\)
\(740\) −0.936611 −0.0344305
\(741\) 18.2569 0.670685
\(742\) −0.148573 −0.00545428
\(743\) −27.5240 −1.00976 −0.504880 0.863190i \(-0.668463\pi\)
−0.504880 + 0.863190i \(0.668463\pi\)
\(744\) 59.0032 2.16316
\(745\) −3.39424 −0.124355
\(746\) 35.1608 1.28733
\(747\) −62.9743 −2.30411
\(748\) −1.85333 −0.0677646
\(749\) −6.21113 −0.226950
\(750\) 3.56285 0.130097
\(751\) 23.2700 0.849135 0.424568 0.905396i \(-0.360426\pi\)
0.424568 + 0.905396i \(0.360426\pi\)
\(752\) −3.27321 −0.119362
\(753\) 23.9815 0.873935
\(754\) −9.29942 −0.338665
\(755\) −1.00000 −0.0363937
\(756\) −0.132977 −0.00483631
\(757\) 44.3136 1.61061 0.805303 0.592863i \(-0.202003\pi\)
0.805303 + 0.592863i \(0.202003\pi\)
\(758\) 20.5634 0.746896
\(759\) −63.1979 −2.29394
\(760\) 23.8742 0.866007
\(761\) −10.8530 −0.393422 −0.196711 0.980462i \(-0.563026\pi\)
−0.196711 + 0.980462i \(0.563026\pi\)
\(762\) 3.19447 0.115723
\(763\) 9.63279 0.348730
\(764\) −2.26670 −0.0820063
\(765\) 11.8648 0.428973
\(766\) 15.9684 0.576962
\(767\) 3.03634 0.109636
\(768\) −6.96667 −0.251388
\(769\) −48.9883 −1.76656 −0.883282 0.468843i \(-0.844671\pi\)
−0.883282 + 0.468843i \(0.844671\pi\)
\(770\) 4.48591 0.161661
\(771\) 23.4062 0.842953
\(772\) −1.99535 −0.0718142
\(773\) −14.1530 −0.509046 −0.254523 0.967067i \(-0.581919\pi\)
−0.254523 + 0.967067i \(0.581919\pi\)
\(774\) −19.1981 −0.690061
\(775\) −7.84010 −0.281625
\(776\) 19.3375 0.694176
\(777\) 13.6304 0.488988
\(778\) −38.2319 −1.37068
\(779\) −21.3651 −0.765485
\(780\) 0.249230 0.00892388
\(781\) 62.2572 2.22774
\(782\) −20.5891 −0.736265
\(783\) 14.8593 0.531027
\(784\) 24.8450 0.887321
\(785\) 3.54156 0.126404
\(786\) 65.0192 2.31916
\(787\) 12.1843 0.434325 0.217162 0.976135i \(-0.430320\pi\)
0.217162 + 0.976135i \(0.430320\pi\)
\(788\) −2.09896 −0.0747725
\(789\) 7.38431 0.262888
\(790\) 7.41755 0.263905
\(791\) 6.56579 0.233453
\(792\) −55.9993 −1.98985
\(793\) 9.30738 0.330515
\(794\) 40.5983 1.44078
\(795\) −0.444946 −0.0157806
\(796\) 0.262718 0.00931178
\(797\) −20.4340 −0.723809 −0.361904 0.932215i \(-0.617873\pi\)
−0.361904 + 0.932215i \(0.617873\pi\)
\(798\) −18.4715 −0.653883
\(799\) 2.77110 0.0980343
\(800\) 0.634499 0.0224329
\(801\) −4.23595 −0.149670
\(802\) −30.0957 −1.06271
\(803\) −56.2406 −1.98469
\(804\) −0.604023 −0.0213023
\(805\) −2.96470 −0.104492
\(806\) 9.21888 0.324721
\(807\) −6.98421 −0.245856
\(808\) 30.4871 1.07253
\(809\) −47.0787 −1.65520 −0.827600 0.561319i \(-0.810294\pi\)
−0.827600 + 0.561319i \(0.810294\pi\)
\(810\) −8.65770 −0.304201
\(811\) −35.7750 −1.25623 −0.628115 0.778121i \(-0.716173\pi\)
−0.628115 + 0.778121i \(0.716173\pi\)
\(812\) −0.559726 −0.0196425
\(813\) −15.0194 −0.526754
\(814\) 59.3654 2.08076
\(815\) 15.9154 0.557493
\(816\) −31.0834 −1.08814
\(817\) 30.8620 1.07972
\(818\) 39.0083 1.36389
\(819\) −2.00891 −0.0701970
\(820\) −0.291661 −0.0101853
\(821\) −44.7860 −1.56304 −0.781521 0.623879i \(-0.785556\pi\)
−0.781521 + 0.623879i \(0.785556\pi\)
\(822\) −28.4258 −0.991462
\(823\) 7.20433 0.251127 0.125564 0.992086i \(-0.459926\pi\)
0.125564 + 0.992086i \(0.459926\pi\)
\(824\) −19.6023 −0.682877
\(825\) 13.4344 0.467726
\(826\) −3.07202 −0.106889
\(827\) −31.5555 −1.09729 −0.548646 0.836055i \(-0.684856\pi\)
−0.548646 + 0.836055i \(0.684856\pi\)
\(828\) 1.96760 0.0683789
\(829\) 33.1698 1.15203 0.576017 0.817437i \(-0.304606\pi\)
0.576017 + 0.817437i \(0.304606\pi\)
\(830\) −23.2304 −0.806338
\(831\) −69.3274 −2.40494
\(832\) −7.18674 −0.249155
\(833\) −21.0337 −0.728775
\(834\) −75.7940 −2.62453
\(835\) 5.08284 0.175899
\(836\) 4.78600 0.165527
\(837\) −14.7306 −0.509164
\(838\) −40.6185 −1.40314
\(839\) −23.1918 −0.800669 −0.400335 0.916369i \(-0.631106\pi\)
−0.400335 + 0.916369i \(0.631106\pi\)
\(840\) −4.74297 −0.163648
\(841\) 33.5458 1.15675
\(842\) 12.7279 0.438632
\(843\) 33.6468 1.15886
\(844\) 0.285816 0.00983820
\(845\) −12.2675 −0.422016
\(846\) 4.45148 0.153045
\(847\) 9.98246 0.343002
\(848\) 0.645632 0.0221711
\(849\) 66.7448 2.29068
\(850\) 4.37677 0.150122
\(851\) −39.2341 −1.34493
\(852\) −3.49956 −0.119893
\(853\) 20.0593 0.686816 0.343408 0.939186i \(-0.388419\pi\)
0.343408 + 0.939186i \(0.388419\pi\)
\(854\) −9.41674 −0.322234
\(855\) −30.6394 −1.04784
\(856\) 28.6020 0.977595
\(857\) 9.87547 0.337340 0.168670 0.985673i \(-0.446053\pi\)
0.168670 + 0.985673i \(0.446053\pi\)
\(858\) −15.7970 −0.539301
\(859\) 16.2800 0.555467 0.277734 0.960658i \(-0.410417\pi\)
0.277734 + 0.960658i \(0.410417\pi\)
\(860\) 0.421305 0.0143664
\(861\) 4.24451 0.144653
\(862\) −37.0251 −1.26108
\(863\) 42.0286 1.43067 0.715336 0.698781i \(-0.246274\pi\)
0.715336 + 0.698781i \(0.246274\pi\)
\(864\) 1.19215 0.0405576
\(865\) 19.5934 0.666195
\(866\) 37.4394 1.27224
\(867\) −17.7688 −0.603460
\(868\) 0.554879 0.0188338
\(869\) 27.9693 0.948793
\(870\) 28.1771 0.955295
\(871\) −1.77514 −0.0601484
\(872\) −44.3585 −1.50217
\(873\) −24.8171 −0.839933
\(874\) 53.1688 1.79846
\(875\) 0.630227 0.0213056
\(876\) 3.16136 0.106812
\(877\) 20.1657 0.680946 0.340473 0.940254i \(-0.389413\pi\)
0.340473 + 0.940254i \(0.389413\pi\)
\(878\) −27.5425 −0.929513
\(879\) 44.9158 1.51497
\(880\) −19.4938 −0.657136
\(881\) −14.2022 −0.478483 −0.239242 0.970960i \(-0.576899\pi\)
−0.239242 + 0.970960i \(0.576899\pi\)
\(882\) −33.7885 −1.13772
\(883\) 46.4890 1.56448 0.782240 0.622977i \(-0.214077\pi\)
0.782240 + 0.622977i \(0.214077\pi\)
\(884\) 0.306166 0.0102975
\(885\) −9.20008 −0.309257
\(886\) 21.2717 0.714638
\(887\) −15.2221 −0.511108 −0.255554 0.966795i \(-0.582258\pi\)
−0.255554 + 0.966795i \(0.582258\pi\)
\(888\) −62.7673 −2.10633
\(889\) 0.565064 0.0189516
\(890\) −1.56259 −0.0523780
\(891\) −32.6455 −1.09367
\(892\) 2.75999 0.0924114
\(893\) −7.15600 −0.239467
\(894\) −12.0932 −0.404456
\(895\) 0.314200 0.0105025
\(896\) 6.47143 0.216195
\(897\) 10.4401 0.348586
\(898\) 8.86099 0.295695
\(899\) −62.0041 −2.06795
\(900\) −0.418266 −0.0139422
\(901\) −0.546591 −0.0182096
\(902\) 18.4864 0.615530
\(903\) −6.13121 −0.204034
\(904\) −30.2352 −1.00561
\(905\) 18.7645 0.623754
\(906\) −3.56285 −0.118368
\(907\) −6.28561 −0.208710 −0.104355 0.994540i \(-0.533278\pi\)
−0.104355 + 0.994540i \(0.533278\pi\)
\(908\) −0.860833 −0.0285678
\(909\) −39.1262 −1.29773
\(910\) −0.741061 −0.0245659
\(911\) −16.7995 −0.556592 −0.278296 0.960495i \(-0.589770\pi\)
−0.278296 + 0.960495i \(0.589770\pi\)
\(912\) 80.2689 2.65797
\(913\) −87.5944 −2.89895
\(914\) 39.3219 1.30065
\(915\) −28.2013 −0.932305
\(916\) −1.20934 −0.0399576
\(917\) 11.5011 0.379801
\(918\) 8.22341 0.271413
\(919\) −3.57994 −0.118091 −0.0590457 0.998255i \(-0.518806\pi\)
−0.0590457 + 0.998255i \(0.518806\pi\)
\(920\) 13.6523 0.450103
\(921\) 7.20138 0.237294
\(922\) 16.9794 0.559188
\(923\) −10.2847 −0.338526
\(924\) −0.950813 −0.0312794
\(925\) 8.34026 0.274226
\(926\) 19.0089 0.624671
\(927\) 25.1569 0.826262
\(928\) 5.01799 0.164724
\(929\) −3.46043 −0.113533 −0.0567665 0.998387i \(-0.518079\pi\)
−0.0567665 + 0.998387i \(0.518079\pi\)
\(930\) −27.9331 −0.915964
\(931\) 54.3169 1.78017
\(932\) 0.537315 0.0176003
\(933\) 57.7325 1.89008
\(934\) −38.5888 −1.26266
\(935\) 16.5034 0.539720
\(936\) 9.25094 0.302376
\(937\) 47.1178 1.53927 0.769635 0.638484i \(-0.220438\pi\)
0.769635 + 0.638484i \(0.220438\pi\)
\(938\) 1.79600 0.0586415
\(939\) 30.3182 0.989398
\(940\) −0.0976886 −0.00318625
\(941\) −32.0773 −1.04569 −0.522846 0.852427i \(-0.675130\pi\)
−0.522846 + 0.852427i \(0.675130\pi\)
\(942\) 12.6181 0.411119
\(943\) −12.2175 −0.397858
\(944\) 13.3496 0.434494
\(945\) 1.18412 0.0385194
\(946\) −26.7037 −0.868212
\(947\) −22.9541 −0.745908 −0.372954 0.927850i \(-0.621655\pi\)
−0.372954 + 0.927850i \(0.621655\pi\)
\(948\) −1.57219 −0.0510624
\(949\) 9.29081 0.301592
\(950\) −11.3025 −0.366700
\(951\) −71.0657 −2.30446
\(952\) −5.82648 −0.188837
\(953\) 42.5681 1.37892 0.689458 0.724325i \(-0.257849\pi\)
0.689458 + 0.724325i \(0.257849\pi\)
\(954\) −0.878042 −0.0284277
\(955\) 20.1843 0.653150
\(956\) 1.75686 0.0568211
\(957\) 106.247 3.43448
\(958\) −21.8871 −0.707139
\(959\) −5.02818 −0.162368
\(960\) 21.7758 0.702809
\(961\) 30.4672 0.982813
\(962\) −9.80700 −0.316191
\(963\) −36.7069 −1.18286
\(964\) 0.499643 0.0160924
\(965\) 17.7680 0.571974
\(966\) −10.5628 −0.339853
\(967\) −21.9537 −0.705983 −0.352991 0.935627i \(-0.614836\pi\)
−0.352991 + 0.935627i \(0.614836\pi\)
\(968\) −45.9688 −1.47749
\(969\) −67.9555 −2.18305
\(970\) −9.15471 −0.293940
\(971\) 17.3202 0.555830 0.277915 0.960606i \(-0.410357\pi\)
0.277915 + 0.960606i \(0.410357\pi\)
\(972\) 2.46804 0.0791624
\(973\) −13.4071 −0.429811
\(974\) 18.3934 0.589363
\(975\) −2.21933 −0.0710754
\(976\) 40.9211 1.30985
\(977\) −21.9417 −0.701976 −0.350988 0.936380i \(-0.614154\pi\)
−0.350988 + 0.936380i \(0.614154\pi\)
\(978\) 56.7043 1.81320
\(979\) −5.89203 −0.188310
\(980\) 0.741495 0.0236862
\(981\) 56.9283 1.81758
\(982\) −30.3396 −0.968177
\(983\) 56.1811 1.79190 0.895949 0.444156i \(-0.146496\pi\)
0.895949 + 0.444156i \(0.146496\pi\)
\(984\) −19.5458 −0.623097
\(985\) 18.6907 0.595535
\(986\) 34.6141 1.10234
\(987\) 1.42165 0.0452517
\(988\) −0.790634 −0.0251534
\(989\) 17.6483 0.561182
\(990\) 26.5111 0.842577
\(991\) −39.6659 −1.26003 −0.630014 0.776584i \(-0.716951\pi\)
−0.630014 + 0.776584i \(0.716951\pi\)
\(992\) −4.97453 −0.157942
\(993\) −44.0130 −1.39671
\(994\) 10.4056 0.330045
\(995\) −2.33943 −0.0741649
\(996\) 4.92380 0.156017
\(997\) −14.9585 −0.473740 −0.236870 0.971541i \(-0.576122\pi\)
−0.236870 + 0.971541i \(0.576122\pi\)
\(998\) 23.3921 0.740463
\(999\) 15.6703 0.495787
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 755.2.a.j.1.12 15
3.2 odd 2 6795.2.a.bh.1.4 15
5.4 even 2 3775.2.a.q.1.4 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
755.2.a.j.1.12 15 1.1 even 1 trivial
3775.2.a.q.1.4 15 5.4 even 2
6795.2.a.bh.1.4 15 3.2 odd 2