Properties

Label 755.2.a.i.1.3
Level $755$
Weight $2$
Character 755.1
Self dual yes
Analytic conductor $6.029$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [755,2,Mod(1,755)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(755, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("755.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 755 = 5 \cdot 151 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 755.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.02870535261\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.220669.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 7x^{3} - 2x^{2} + 11x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.480943\) of defining polynomial
Character \(\chi\) \(=\) 755.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.480943 q^{2} -2.56539 q^{3} -1.76869 q^{4} -1.00000 q^{5} +1.23381 q^{6} +1.04633 q^{7} +1.81253 q^{8} +3.58122 q^{9} +0.480943 q^{10} +0.956168 q^{11} +4.53739 q^{12} +1.76869 q^{13} -0.503226 q^{14} +2.56539 q^{15} +2.66567 q^{16} +1.46511 q^{17} -1.72236 q^{18} -4.52156 q^{19} +1.76869 q^{20} -2.68425 q^{21} -0.459862 q^{22} +3.65555 q^{23} -4.64984 q^{24} +1.00000 q^{25} -0.850641 q^{26} -1.49106 q^{27} -1.85064 q^{28} -6.82264 q^{29} -1.23381 q^{30} +6.70628 q^{31} -4.90709 q^{32} -2.45294 q^{33} -0.704635 q^{34} -1.04633 q^{35} -6.33408 q^{36} -8.10028 q^{37} +2.17461 q^{38} -4.53739 q^{39} -1.81253 q^{40} -8.80931 q^{41} +1.29097 q^{42} -9.17066 q^{43} -1.69117 q^{44} -3.58122 q^{45} -1.75811 q^{46} +10.8251 q^{47} -6.83847 q^{48} -5.90519 q^{49} -0.480943 q^{50} -3.75858 q^{51} -3.12828 q^{52} +9.16684 q^{53} +0.717113 q^{54} -0.956168 q^{55} +1.89650 q^{56} +11.5996 q^{57} +3.28130 q^{58} -11.9096 q^{59} -4.53739 q^{60} -0.221193 q^{61} -3.22534 q^{62} +3.74714 q^{63} -2.97131 q^{64} -1.76869 q^{65} +1.17972 q^{66} +5.06931 q^{67} -2.59133 q^{68} -9.37792 q^{69} +0.503226 q^{70} -7.62183 q^{71} +6.49106 q^{72} -8.91530 q^{73} +3.89577 q^{74} -2.56539 q^{75} +7.99725 q^{76} +1.00047 q^{77} +2.18222 q^{78} +5.99975 q^{79} -2.66567 q^{80} -6.91852 q^{81} +4.23677 q^{82} -0.0357498 q^{83} +4.74761 q^{84} -1.46511 q^{85} +4.41056 q^{86} +17.5027 q^{87} +1.73308 q^{88} +2.00822 q^{89} +1.72236 q^{90} +1.85064 q^{91} -6.46555 q^{92} -17.2042 q^{93} -5.20627 q^{94} +4.52156 q^{95} +12.5886 q^{96} +4.17186 q^{97} +2.84006 q^{98} +3.42425 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 3 q^{3} + 4 q^{4} - 5 q^{5} - 3 q^{6} - 7 q^{7} + 6 q^{8} + 2 q^{9} - 5 q^{11} - 3 q^{12} - 4 q^{13} - 11 q^{14} + 3 q^{15} - 10 q^{16} + 11 q^{17} - 8 q^{18} - 3 q^{19} - 4 q^{20} - 8 q^{21} - 4 q^{22}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.480943 −0.340078 −0.170039 0.985437i \(-0.554389\pi\)
−0.170039 + 0.985437i \(0.554389\pi\)
\(3\) −2.56539 −1.48113 −0.740564 0.671986i \(-0.765442\pi\)
−0.740564 + 0.671986i \(0.765442\pi\)
\(4\) −1.76869 −0.884347
\(5\) −1.00000 −0.447214
\(6\) 1.23381 0.503699
\(7\) 1.04633 0.395476 0.197738 0.980255i \(-0.436640\pi\)
0.197738 + 0.980255i \(0.436640\pi\)
\(8\) 1.81253 0.640825
\(9\) 3.58122 1.19374
\(10\) 0.480943 0.152087
\(11\) 0.956168 0.288295 0.144148 0.989556i \(-0.453956\pi\)
0.144148 + 0.989556i \(0.453956\pi\)
\(12\) 4.53739 1.30983
\(13\) 1.76869 0.490547 0.245274 0.969454i \(-0.421122\pi\)
0.245274 + 0.969454i \(0.421122\pi\)
\(14\) −0.503226 −0.134493
\(15\) 2.56539 0.662381
\(16\) 2.66567 0.666417
\(17\) 1.46511 0.355342 0.177671 0.984090i \(-0.443144\pi\)
0.177671 + 0.984090i \(0.443144\pi\)
\(18\) −1.72236 −0.405965
\(19\) −4.52156 −1.03732 −0.518658 0.854982i \(-0.673568\pi\)
−0.518658 + 0.854982i \(0.673568\pi\)
\(20\) 1.76869 0.395492
\(21\) −2.68425 −0.585751
\(22\) −0.459862 −0.0980429
\(23\) 3.65555 0.762235 0.381118 0.924527i \(-0.375539\pi\)
0.381118 + 0.924527i \(0.375539\pi\)
\(24\) −4.64984 −0.949144
\(25\) 1.00000 0.200000
\(26\) −0.850641 −0.166824
\(27\) −1.49106 −0.286954
\(28\) −1.85064 −0.349738
\(29\) −6.82264 −1.26693 −0.633466 0.773770i \(-0.718368\pi\)
−0.633466 + 0.773770i \(0.718368\pi\)
\(30\) −1.23381 −0.225261
\(31\) 6.70628 1.20448 0.602242 0.798314i \(-0.294274\pi\)
0.602242 + 0.798314i \(0.294274\pi\)
\(32\) −4.90709 −0.867458
\(33\) −2.45294 −0.427002
\(34\) −0.704635 −0.120844
\(35\) −1.04633 −0.176862
\(36\) −6.33408 −1.05568
\(37\) −8.10028 −1.33168 −0.665839 0.746096i \(-0.731926\pi\)
−0.665839 + 0.746096i \(0.731926\pi\)
\(38\) 2.17461 0.352768
\(39\) −4.53739 −0.726564
\(40\) −1.81253 −0.286586
\(41\) −8.80931 −1.37578 −0.687891 0.725814i \(-0.741463\pi\)
−0.687891 + 0.725814i \(0.741463\pi\)
\(42\) 1.29097 0.199201
\(43\) −9.17066 −1.39851 −0.699256 0.714871i \(-0.746485\pi\)
−0.699256 + 0.714871i \(0.746485\pi\)
\(44\) −1.69117 −0.254953
\(45\) −3.58122 −0.533857
\(46\) −1.75811 −0.259219
\(47\) 10.8251 1.57901 0.789504 0.613745i \(-0.210338\pi\)
0.789504 + 0.613745i \(0.210338\pi\)
\(48\) −6.83847 −0.987048
\(49\) −5.90519 −0.843599
\(50\) −0.480943 −0.0680156
\(51\) −3.75858 −0.526307
\(52\) −3.12828 −0.433814
\(53\) 9.16684 1.25916 0.629581 0.776935i \(-0.283227\pi\)
0.629581 + 0.776935i \(0.283227\pi\)
\(54\) 0.717113 0.0975867
\(55\) −0.956168 −0.128930
\(56\) 1.89650 0.253431
\(57\) 11.5996 1.53640
\(58\) 3.28130 0.430856
\(59\) −11.9096 −1.55050 −0.775248 0.631657i \(-0.782375\pi\)
−0.775248 + 0.631657i \(0.782375\pi\)
\(60\) −4.53739 −0.585774
\(61\) −0.221193 −0.0283208 −0.0141604 0.999900i \(-0.504508\pi\)
−0.0141604 + 0.999900i \(0.504508\pi\)
\(62\) −3.22534 −0.409618
\(63\) 3.74714 0.472096
\(64\) −2.97131 −0.371413
\(65\) −1.76869 −0.219379
\(66\) 1.17972 0.145214
\(67\) 5.06931 0.619315 0.309657 0.950848i \(-0.399786\pi\)
0.309657 + 0.950848i \(0.399786\pi\)
\(68\) −2.59133 −0.314245
\(69\) −9.37792 −1.12897
\(70\) 0.503226 0.0601470
\(71\) −7.62183 −0.904545 −0.452273 0.891880i \(-0.649387\pi\)
−0.452273 + 0.891880i \(0.649387\pi\)
\(72\) 6.49106 0.764978
\(73\) −8.91530 −1.04346 −0.521729 0.853111i \(-0.674713\pi\)
−0.521729 + 0.853111i \(0.674713\pi\)
\(74\) 3.89577 0.452874
\(75\) −2.56539 −0.296226
\(76\) 7.99725 0.917347
\(77\) 1.00047 0.114014
\(78\) 2.18222 0.247088
\(79\) 5.99975 0.675025 0.337512 0.941321i \(-0.390415\pi\)
0.337512 + 0.941321i \(0.390415\pi\)
\(80\) −2.66567 −0.298031
\(81\) −6.91852 −0.768725
\(82\) 4.23677 0.467873
\(83\) −0.0357498 −0.00392405 −0.00196202 0.999998i \(-0.500625\pi\)
−0.00196202 + 0.999998i \(0.500625\pi\)
\(84\) 4.74761 0.518007
\(85\) −1.46511 −0.158914
\(86\) 4.41056 0.475603
\(87\) 17.5027 1.87649
\(88\) 1.73308 0.184747
\(89\) 2.00822 0.212871 0.106435 0.994320i \(-0.466056\pi\)
0.106435 + 0.994320i \(0.466056\pi\)
\(90\) 1.72236 0.181553
\(91\) 1.85064 0.194000
\(92\) −6.46555 −0.674081
\(93\) −17.2042 −1.78399
\(94\) −5.20627 −0.536986
\(95\) 4.52156 0.463902
\(96\) 12.5886 1.28482
\(97\) 4.17186 0.423588 0.211794 0.977314i \(-0.432069\pi\)
0.211794 + 0.977314i \(0.432069\pi\)
\(98\) 2.84006 0.286889
\(99\) 3.42425 0.344150
\(100\) −1.76869 −0.176869
\(101\) 5.52595 0.549853 0.274926 0.961465i \(-0.411347\pi\)
0.274926 + 0.961465i \(0.411347\pi\)
\(102\) 1.80766 0.178985
\(103\) 2.58169 0.254381 0.127191 0.991878i \(-0.459404\pi\)
0.127191 + 0.991878i \(0.459404\pi\)
\(104\) 3.20580 0.314355
\(105\) 2.68425 0.261956
\(106\) −4.40872 −0.428213
\(107\) 7.33705 0.709299 0.354650 0.934999i \(-0.384600\pi\)
0.354650 + 0.934999i \(0.384600\pi\)
\(108\) 2.63722 0.253767
\(109\) −10.8766 −1.04179 −0.520894 0.853621i \(-0.674401\pi\)
−0.520894 + 0.853621i \(0.674401\pi\)
\(110\) 0.459862 0.0438461
\(111\) 20.7804 1.97238
\(112\) 2.78917 0.263552
\(113\) −7.15031 −0.672645 −0.336322 0.941747i \(-0.609183\pi\)
−0.336322 + 0.941747i \(0.609183\pi\)
\(114\) −5.57872 −0.522495
\(115\) −3.65555 −0.340882
\(116\) 12.0672 1.12041
\(117\) 6.33408 0.585586
\(118\) 5.72783 0.527289
\(119\) 1.53299 0.140529
\(120\) 4.64984 0.424470
\(121\) −10.0857 −0.916886
\(122\) 0.106381 0.00963128
\(123\) 22.5993 2.03771
\(124\) −11.8614 −1.06518
\(125\) −1.00000 −0.0894427
\(126\) −1.80216 −0.160549
\(127\) −5.61817 −0.498532 −0.249266 0.968435i \(-0.580189\pi\)
−0.249266 + 0.968435i \(0.580189\pi\)
\(128\) 11.2432 0.993768
\(129\) 23.5263 2.07138
\(130\) 0.850641 0.0746061
\(131\) 1.48009 0.129316 0.0646580 0.997907i \(-0.479404\pi\)
0.0646580 + 0.997907i \(0.479404\pi\)
\(132\) 4.33850 0.377618
\(133\) −4.73105 −0.410234
\(134\) −2.43805 −0.210615
\(135\) 1.49106 0.128330
\(136\) 2.65555 0.227712
\(137\) −11.0949 −0.947902 −0.473951 0.880551i \(-0.657173\pi\)
−0.473951 + 0.880551i \(0.657173\pi\)
\(138\) 4.51024 0.383937
\(139\) −15.1042 −1.28112 −0.640559 0.767909i \(-0.721297\pi\)
−0.640559 + 0.767909i \(0.721297\pi\)
\(140\) 1.85064 0.156408
\(141\) −27.7707 −2.33871
\(142\) 3.66567 0.307616
\(143\) 1.69117 0.141423
\(144\) 9.54634 0.795528
\(145\) 6.82264 0.566589
\(146\) 4.28775 0.354857
\(147\) 15.1491 1.24948
\(148\) 14.3269 1.17766
\(149\) 13.3667 1.09504 0.547520 0.836793i \(-0.315572\pi\)
0.547520 + 0.836793i \(0.315572\pi\)
\(150\) 1.23381 0.100740
\(151\) −1.00000 −0.0813788
\(152\) −8.19544 −0.664738
\(153\) 5.24689 0.424186
\(154\) −0.481168 −0.0387736
\(155\) −6.70628 −0.538661
\(156\) 8.02525 0.642534
\(157\) −13.4184 −1.07090 −0.535451 0.844566i \(-0.679858\pi\)
−0.535451 + 0.844566i \(0.679858\pi\)
\(158\) −2.88554 −0.229561
\(159\) −23.5165 −1.86498
\(160\) 4.90709 0.387939
\(161\) 3.82492 0.301446
\(162\) 3.32741 0.261426
\(163\) −20.7937 −1.62869 −0.814344 0.580383i \(-0.802903\pi\)
−0.814344 + 0.580383i \(0.802903\pi\)
\(164\) 15.5810 1.21667
\(165\) 2.45294 0.190961
\(166\) 0.0171936 0.00133448
\(167\) 2.88664 0.223375 0.111687 0.993743i \(-0.464374\pi\)
0.111687 + 0.993743i \(0.464374\pi\)
\(168\) −4.86527 −0.375364
\(169\) −9.87172 −0.759363
\(170\) 0.704635 0.0540430
\(171\) −16.1927 −1.23829
\(172\) 16.2201 1.23677
\(173\) 3.85227 0.292883 0.146441 0.989219i \(-0.453218\pi\)
0.146441 + 0.989219i \(0.453218\pi\)
\(174\) −8.41781 −0.638153
\(175\) 1.04633 0.0790952
\(176\) 2.54882 0.192125
\(177\) 30.5527 2.29648
\(178\) −0.965838 −0.0723926
\(179\) 5.60027 0.418584 0.209292 0.977853i \(-0.432884\pi\)
0.209292 + 0.977853i \(0.432884\pi\)
\(180\) 6.33408 0.472115
\(181\) −16.3286 −1.21369 −0.606847 0.794819i \(-0.707566\pi\)
−0.606847 + 0.794819i \(0.707566\pi\)
\(182\) −0.890052 −0.0659751
\(183\) 0.567445 0.0419467
\(184\) 6.62579 0.488459
\(185\) 8.10028 0.595544
\(186\) 8.27424 0.606697
\(187\) 1.40089 0.102443
\(188\) −19.1464 −1.39639
\(189\) −1.56014 −0.113483
\(190\) −2.17461 −0.157763
\(191\) −17.8639 −1.29259 −0.646295 0.763088i \(-0.723682\pi\)
−0.646295 + 0.763088i \(0.723682\pi\)
\(192\) 7.62255 0.550110
\(193\) 12.8070 0.921870 0.460935 0.887434i \(-0.347514\pi\)
0.460935 + 0.887434i \(0.347514\pi\)
\(194\) −2.00643 −0.144053
\(195\) 4.53739 0.324929
\(196\) 10.4445 0.746034
\(197\) −20.0190 −1.42630 −0.713148 0.701013i \(-0.752731\pi\)
−0.713148 + 0.701013i \(0.752731\pi\)
\(198\) −1.64687 −0.117038
\(199\) 17.3920 1.23289 0.616445 0.787398i \(-0.288572\pi\)
0.616445 + 0.787398i \(0.288572\pi\)
\(200\) 1.81253 0.128165
\(201\) −13.0047 −0.917284
\(202\) −2.65767 −0.186993
\(203\) −7.13874 −0.501042
\(204\) 6.64778 0.465438
\(205\) 8.80931 0.615269
\(206\) −1.24164 −0.0865095
\(207\) 13.0913 0.909911
\(208\) 4.71475 0.326909
\(209\) −4.32337 −0.299053
\(210\) −1.29097 −0.0890854
\(211\) −2.47071 −0.170091 −0.0850453 0.996377i \(-0.527104\pi\)
−0.0850453 + 0.996377i \(0.527104\pi\)
\(212\) −16.2133 −1.11354
\(213\) 19.5530 1.33975
\(214\) −3.52870 −0.241217
\(215\) 9.17066 0.625434
\(216\) −2.70258 −0.183887
\(217\) 7.01699 0.476345
\(218\) 5.23102 0.354289
\(219\) 22.8712 1.54549
\(220\) 1.69117 0.114019
\(221\) 2.59133 0.174312
\(222\) −9.99417 −0.670765
\(223\) −15.3953 −1.03094 −0.515471 0.856907i \(-0.672383\pi\)
−0.515471 + 0.856907i \(0.672383\pi\)
\(224\) −5.13444 −0.343059
\(225\) 3.58122 0.238748
\(226\) 3.43889 0.228752
\(227\) 7.07697 0.469715 0.234857 0.972030i \(-0.424538\pi\)
0.234857 + 0.972030i \(0.424538\pi\)
\(228\) −20.5161 −1.35871
\(229\) −7.45630 −0.492726 −0.246363 0.969178i \(-0.579236\pi\)
−0.246363 + 0.969178i \(0.579236\pi\)
\(230\) 1.75811 0.115926
\(231\) −2.56659 −0.168869
\(232\) −12.3662 −0.811882
\(233\) −16.2506 −1.06461 −0.532306 0.846552i \(-0.678674\pi\)
−0.532306 + 0.846552i \(0.678674\pi\)
\(234\) −3.04633 −0.199145
\(235\) −10.8251 −0.706154
\(236\) 21.0644 1.37118
\(237\) −15.3917 −0.999798
\(238\) −0.737282 −0.0477909
\(239\) −8.89255 −0.575211 −0.287606 0.957749i \(-0.592859\pi\)
−0.287606 + 0.957749i \(0.592859\pi\)
\(240\) 6.83847 0.441421
\(241\) −13.8522 −0.892298 −0.446149 0.894959i \(-0.647205\pi\)
−0.446149 + 0.894959i \(0.647205\pi\)
\(242\) 4.85067 0.311813
\(243\) 22.2219 1.42553
\(244\) 0.391222 0.0250454
\(245\) 5.90519 0.377269
\(246\) −10.8690 −0.692980
\(247\) −7.99725 −0.508853
\(248\) 12.1553 0.771863
\(249\) 0.0917121 0.00581202
\(250\) 0.480943 0.0304175
\(251\) −14.0265 −0.885348 −0.442674 0.896683i \(-0.645970\pi\)
−0.442674 + 0.896683i \(0.645970\pi\)
\(252\) −6.62755 −0.417497
\(253\) 3.49532 0.219749
\(254\) 2.70202 0.169540
\(255\) 3.75858 0.235371
\(256\) 0.535274 0.0334546
\(257\) 19.8708 1.23950 0.619752 0.784798i \(-0.287233\pi\)
0.619752 + 0.784798i \(0.287233\pi\)
\(258\) −11.3148 −0.704429
\(259\) −8.47558 −0.526647
\(260\) 3.12828 0.194008
\(261\) −24.4334 −1.51239
\(262\) −0.711838 −0.0439775
\(263\) −3.97177 −0.244910 −0.122455 0.992474i \(-0.539077\pi\)
−0.122455 + 0.992474i \(0.539077\pi\)
\(264\) −4.44602 −0.273634
\(265\) −9.16684 −0.563114
\(266\) 2.27536 0.139512
\(267\) −5.15186 −0.315289
\(268\) −8.96606 −0.547689
\(269\) 21.5351 1.31302 0.656510 0.754318i \(-0.272032\pi\)
0.656510 + 0.754318i \(0.272032\pi\)
\(270\) −0.717113 −0.0436421
\(271\) 26.2764 1.59618 0.798089 0.602540i \(-0.205844\pi\)
0.798089 + 0.602540i \(0.205844\pi\)
\(272\) 3.90550 0.236806
\(273\) −4.74761 −0.287339
\(274\) 5.33602 0.322361
\(275\) 0.956168 0.0576591
\(276\) 16.5867 0.998400
\(277\) −22.9919 −1.38145 −0.690725 0.723117i \(-0.742709\pi\)
−0.690725 + 0.723117i \(0.742709\pi\)
\(278\) 7.26424 0.435680
\(279\) 24.0167 1.43784
\(280\) −1.89650 −0.113338
\(281\) −2.43664 −0.145358 −0.0726789 0.997355i \(-0.523155\pi\)
−0.0726789 + 0.997355i \(0.523155\pi\)
\(282\) 13.3561 0.795345
\(283\) 4.88829 0.290578 0.145289 0.989389i \(-0.453589\pi\)
0.145289 + 0.989389i \(0.453589\pi\)
\(284\) 13.4807 0.799932
\(285\) −11.5996 −0.687098
\(286\) −0.813355 −0.0480947
\(287\) −9.21746 −0.544089
\(288\) −17.5734 −1.03552
\(289\) −14.8534 −0.873732
\(290\) −3.28130 −0.192685
\(291\) −10.7024 −0.627388
\(292\) 15.7684 0.922778
\(293\) 18.1387 1.05967 0.529837 0.848099i \(-0.322253\pi\)
0.529837 + 0.848099i \(0.322253\pi\)
\(294\) −7.28586 −0.424920
\(295\) 11.9096 0.693403
\(296\) −14.6820 −0.853372
\(297\) −1.42570 −0.0827275
\(298\) −6.42860 −0.372399
\(299\) 6.46555 0.373913
\(300\) 4.53739 0.261966
\(301\) −9.59555 −0.553078
\(302\) 0.480943 0.0276751
\(303\) −14.1762 −0.814402
\(304\) −12.0530 −0.691285
\(305\) 0.221193 0.0126655
\(306\) −2.52345 −0.144256
\(307\) 10.3810 0.592473 0.296237 0.955115i \(-0.404268\pi\)
0.296237 + 0.955115i \(0.404268\pi\)
\(308\) −1.76952 −0.100828
\(309\) −6.62304 −0.376771
\(310\) 3.22534 0.183187
\(311\) 16.5272 0.937169 0.468585 0.883419i \(-0.344764\pi\)
0.468585 + 0.883419i \(0.344764\pi\)
\(312\) −8.22414 −0.465600
\(313\) −11.8263 −0.668460 −0.334230 0.942492i \(-0.608476\pi\)
−0.334230 + 0.942492i \(0.608476\pi\)
\(314\) 6.45347 0.364190
\(315\) −3.74714 −0.211128
\(316\) −10.6117 −0.596956
\(317\) 8.02337 0.450637 0.225319 0.974285i \(-0.427658\pi\)
0.225319 + 0.974285i \(0.427658\pi\)
\(318\) 11.3101 0.634238
\(319\) −6.52359 −0.365251
\(320\) 2.97131 0.166101
\(321\) −18.8224 −1.05056
\(322\) −1.83957 −0.102515
\(323\) −6.62458 −0.368602
\(324\) 12.2367 0.679819
\(325\) 1.76869 0.0981095
\(326\) 10.0006 0.553881
\(327\) 27.9027 1.54302
\(328\) −15.9671 −0.881636
\(329\) 11.3267 0.624460
\(330\) −1.17972 −0.0649417
\(331\) −5.93410 −0.326168 −0.163084 0.986612i \(-0.552144\pi\)
−0.163084 + 0.986612i \(0.552144\pi\)
\(332\) 0.0632304 0.00347022
\(333\) −29.0089 −1.58968
\(334\) −1.38831 −0.0759649
\(335\) −5.06931 −0.276966
\(336\) −7.15531 −0.390354
\(337\) −20.7197 −1.12868 −0.564338 0.825544i \(-0.690869\pi\)
−0.564338 + 0.825544i \(0.690869\pi\)
\(338\) 4.74773 0.258243
\(339\) 18.3433 0.996273
\(340\) 2.59133 0.140535
\(341\) 6.41233 0.347247
\(342\) 7.78776 0.421114
\(343\) −13.5031 −0.729099
\(344\) −16.6221 −0.896201
\(345\) 9.37792 0.504890
\(346\) −1.85272 −0.0996030
\(347\) 10.1583 0.545325 0.272662 0.962110i \(-0.412096\pi\)
0.272662 + 0.962110i \(0.412096\pi\)
\(348\) −30.9570 −1.65947
\(349\) −19.8519 −1.06265 −0.531323 0.847169i \(-0.678305\pi\)
−0.531323 + 0.847169i \(0.678305\pi\)
\(350\) −0.503226 −0.0268985
\(351\) −2.63722 −0.140765
\(352\) −4.69200 −0.250084
\(353\) 15.0182 0.799338 0.399669 0.916660i \(-0.369125\pi\)
0.399669 + 0.916660i \(0.369125\pi\)
\(354\) −14.6941 −0.780983
\(355\) 7.62183 0.404525
\(356\) −3.55192 −0.188251
\(357\) −3.93272 −0.208142
\(358\) −2.69341 −0.142351
\(359\) 17.2763 0.911807 0.455903 0.890029i \(-0.349316\pi\)
0.455903 + 0.890029i \(0.349316\pi\)
\(360\) −6.49106 −0.342109
\(361\) 1.44447 0.0760249
\(362\) 7.85311 0.412751
\(363\) 25.8739 1.35803
\(364\) −3.27322 −0.171563
\(365\) 8.91530 0.466648
\(366\) −0.272909 −0.0142652
\(367\) 0.406316 0.0212095 0.0106048 0.999944i \(-0.496624\pi\)
0.0106048 + 0.999944i \(0.496624\pi\)
\(368\) 9.74449 0.507966
\(369\) −31.5481 −1.64233
\(370\) −3.89577 −0.202531
\(371\) 9.59155 0.497969
\(372\) 30.4290 1.57767
\(373\) −23.7379 −1.22910 −0.614551 0.788877i \(-0.710663\pi\)
−0.614551 + 0.788877i \(0.710663\pi\)
\(374\) −0.673749 −0.0348387
\(375\) 2.56539 0.132476
\(376\) 19.6208 1.01187
\(377\) −12.0672 −0.621490
\(378\) 0.750338 0.0385932
\(379\) −1.17066 −0.0601327 −0.0300663 0.999548i \(-0.509572\pi\)
−0.0300663 + 0.999548i \(0.509572\pi\)
\(380\) −7.99725 −0.410250
\(381\) 14.4128 0.738390
\(382\) 8.59154 0.439581
\(383\) 6.62759 0.338654 0.169327 0.985560i \(-0.445841\pi\)
0.169327 + 0.985560i \(0.445841\pi\)
\(384\) −28.8432 −1.47190
\(385\) −1.00047 −0.0509886
\(386\) −6.15945 −0.313508
\(387\) −32.8421 −1.66946
\(388\) −7.37874 −0.374599
\(389\) −14.9726 −0.759139 −0.379569 0.925163i \(-0.623928\pi\)
−0.379569 + 0.925163i \(0.623928\pi\)
\(390\) −2.18222 −0.110501
\(391\) 5.35579 0.270854
\(392\) −10.7033 −0.540599
\(393\) −3.79700 −0.191533
\(394\) 9.62801 0.485052
\(395\) −5.99975 −0.301880
\(396\) −6.05645 −0.304348
\(397\) −0.0925144 −0.00464316 −0.00232158 0.999997i \(-0.500739\pi\)
−0.00232158 + 0.999997i \(0.500739\pi\)
\(398\) −8.36458 −0.419278
\(399\) 12.1370 0.607609
\(400\) 2.66567 0.133283
\(401\) 28.8917 1.44278 0.721391 0.692528i \(-0.243503\pi\)
0.721391 + 0.692528i \(0.243503\pi\)
\(402\) 6.25454 0.311948
\(403\) 11.8614 0.590856
\(404\) −9.77372 −0.486261
\(405\) 6.91852 0.343784
\(406\) 3.43333 0.170393
\(407\) −7.74522 −0.383916
\(408\) −6.81253 −0.337270
\(409\) 18.0864 0.894314 0.447157 0.894455i \(-0.352436\pi\)
0.447157 + 0.894455i \(0.352436\pi\)
\(410\) −4.23677 −0.209239
\(411\) 28.4628 1.40396
\(412\) −4.56622 −0.224961
\(413\) −12.4614 −0.613184
\(414\) −6.29619 −0.309441
\(415\) 0.0357498 0.00175489
\(416\) −8.67913 −0.425530
\(417\) 38.7480 1.89750
\(418\) 2.07929 0.101701
\(419\) −7.88849 −0.385378 −0.192689 0.981260i \(-0.561721\pi\)
−0.192689 + 0.981260i \(0.561721\pi\)
\(420\) −4.74761 −0.231660
\(421\) 20.2146 0.985197 0.492599 0.870257i \(-0.336047\pi\)
0.492599 + 0.870257i \(0.336047\pi\)
\(422\) 1.18827 0.0578441
\(423\) 38.7672 1.88493
\(424\) 16.6151 0.806902
\(425\) 1.46511 0.0710683
\(426\) −9.40386 −0.455619
\(427\) −0.231441 −0.0112002
\(428\) −12.9770 −0.627267
\(429\) −4.33850 −0.209465
\(430\) −4.41056 −0.212696
\(431\) −24.8208 −1.19557 −0.597787 0.801655i \(-0.703953\pi\)
−0.597787 + 0.801655i \(0.703953\pi\)
\(432\) −3.97466 −0.191231
\(433\) −38.9868 −1.87358 −0.936792 0.349886i \(-0.886220\pi\)
−0.936792 + 0.349886i \(0.886220\pi\)
\(434\) −3.37477 −0.161994
\(435\) −17.5027 −0.839191
\(436\) 19.2374 0.921302
\(437\) −16.5288 −0.790679
\(438\) −10.9997 −0.525588
\(439\) −8.14148 −0.388572 −0.194286 0.980945i \(-0.562239\pi\)
−0.194286 + 0.980945i \(0.562239\pi\)
\(440\) −1.73308 −0.0826213
\(441\) −21.1478 −1.00704
\(442\) −1.24628 −0.0592797
\(443\) −16.9706 −0.806297 −0.403149 0.915135i \(-0.632084\pi\)
−0.403149 + 0.915135i \(0.632084\pi\)
\(444\) −36.7541 −1.74427
\(445\) −2.00822 −0.0951986
\(446\) 7.40424 0.350601
\(447\) −34.2907 −1.62189
\(448\) −3.10897 −0.146885
\(449\) 18.0433 0.851517 0.425759 0.904837i \(-0.360007\pi\)
0.425759 + 0.904837i \(0.360007\pi\)
\(450\) −1.72236 −0.0811929
\(451\) −8.42318 −0.396632
\(452\) 12.6467 0.594851
\(453\) 2.56539 0.120532
\(454\) −3.40362 −0.159740
\(455\) −1.85064 −0.0867594
\(456\) 21.0245 0.984562
\(457\) −7.05558 −0.330046 −0.165023 0.986290i \(-0.552770\pi\)
−0.165023 + 0.986290i \(0.552770\pi\)
\(458\) 3.58605 0.167565
\(459\) −2.18456 −0.101967
\(460\) 6.46555 0.301458
\(461\) −7.89631 −0.367768 −0.183884 0.982948i \(-0.558867\pi\)
−0.183884 + 0.982948i \(0.558867\pi\)
\(462\) 1.23438 0.0574287
\(463\) 20.4539 0.950574 0.475287 0.879831i \(-0.342344\pi\)
0.475287 + 0.879831i \(0.342344\pi\)
\(464\) −18.1869 −0.844305
\(465\) 17.2042 0.797826
\(466\) 7.81560 0.362051
\(467\) −36.6137 −1.69428 −0.847140 0.531370i \(-0.821677\pi\)
−0.847140 + 0.531370i \(0.821677\pi\)
\(468\) −11.2031 −0.517861
\(469\) 5.30418 0.244924
\(470\) 5.20627 0.240147
\(471\) 34.4233 1.58614
\(472\) −21.5864 −0.993596
\(473\) −8.76869 −0.403185
\(474\) 7.40252 0.340009
\(475\) −4.52156 −0.207463
\(476\) −2.71139 −0.124277
\(477\) 32.8285 1.50311
\(478\) 4.27681 0.195617
\(479\) 27.5049 1.25673 0.628365 0.777919i \(-0.283725\pi\)
0.628365 + 0.777919i \(0.283725\pi\)
\(480\) −12.5886 −0.574588
\(481\) −14.3269 −0.653251
\(482\) 6.66211 0.303451
\(483\) −9.81241 −0.446480
\(484\) 17.8386 0.810845
\(485\) −4.17186 −0.189434
\(486\) −10.6874 −0.484792
\(487\) −39.9722 −1.81131 −0.905656 0.424012i \(-0.860621\pi\)
−0.905656 + 0.424012i \(0.860621\pi\)
\(488\) −0.400917 −0.0181487
\(489\) 53.3439 2.41230
\(490\) −2.84006 −0.128301
\(491\) 35.6452 1.60865 0.804323 0.594192i \(-0.202528\pi\)
0.804323 + 0.594192i \(0.202528\pi\)
\(492\) −39.9712 −1.80204
\(493\) −9.99593 −0.450194
\(494\) 3.84622 0.173050
\(495\) −3.42425 −0.153908
\(496\) 17.8767 0.802688
\(497\) −7.97497 −0.357726
\(498\) −0.0441083 −0.00197654
\(499\) 5.95255 0.266473 0.133236 0.991084i \(-0.457463\pi\)
0.133236 + 0.991084i \(0.457463\pi\)
\(500\) 1.76869 0.0790984
\(501\) −7.40536 −0.330847
\(502\) 6.74597 0.301087
\(503\) 15.9458 0.710988 0.355494 0.934679i \(-0.384313\pi\)
0.355494 + 0.934679i \(0.384313\pi\)
\(504\) 6.79180 0.302531
\(505\) −5.52595 −0.245902
\(506\) −1.68105 −0.0747318
\(507\) 25.3248 1.12471
\(508\) 9.93683 0.440875
\(509\) −9.78955 −0.433914 −0.216957 0.976181i \(-0.569613\pi\)
−0.216957 + 0.976181i \(0.569613\pi\)
\(510\) −1.80766 −0.0800446
\(511\) −9.32836 −0.412663
\(512\) −22.7438 −1.00515
\(513\) 6.74190 0.297662
\(514\) −9.55670 −0.421528
\(515\) −2.58169 −0.113763
\(516\) −41.6108 −1.83181
\(517\) 10.3506 0.455221
\(518\) 4.07627 0.179101
\(519\) −9.88258 −0.433797
\(520\) −3.20580 −0.140584
\(521\) −36.4879 −1.59856 −0.799282 0.600956i \(-0.794787\pi\)
−0.799282 + 0.600956i \(0.794787\pi\)
\(522\) 11.7511 0.514330
\(523\) 20.0867 0.878331 0.439166 0.898406i \(-0.355274\pi\)
0.439166 + 0.898406i \(0.355274\pi\)
\(524\) −2.61782 −0.114360
\(525\) −2.68425 −0.117150
\(526\) 1.91020 0.0832885
\(527\) 9.82545 0.428003
\(528\) −6.53872 −0.284561
\(529\) −9.63693 −0.418997
\(530\) 4.40872 0.191503
\(531\) −42.6508 −1.85089
\(532\) 8.36778 0.362789
\(533\) −15.5810 −0.674887
\(534\) 2.47775 0.107223
\(535\) −7.33705 −0.317208
\(536\) 9.18826 0.396872
\(537\) −14.3669 −0.619976
\(538\) −10.3572 −0.446529
\(539\) −5.64635 −0.243206
\(540\) −2.63722 −0.113488
\(541\) 17.8861 0.768984 0.384492 0.923128i \(-0.374377\pi\)
0.384492 + 0.923128i \(0.374377\pi\)
\(542\) −12.6374 −0.542825
\(543\) 41.8892 1.79764
\(544\) −7.18943 −0.308244
\(545\) 10.8766 0.465902
\(546\) 2.28333 0.0977175
\(547\) 29.8421 1.27596 0.637978 0.770054i \(-0.279771\pi\)
0.637978 + 0.770054i \(0.279771\pi\)
\(548\) 19.6235 0.838275
\(549\) −0.792139 −0.0338077
\(550\) −0.459862 −0.0196086
\(551\) 30.8490 1.31421
\(552\) −16.9977 −0.723471
\(553\) 6.27773 0.266956
\(554\) 11.0578 0.469801
\(555\) −20.7804 −0.882077
\(556\) 26.7146 1.13295
\(557\) 20.7798 0.880467 0.440234 0.897883i \(-0.354896\pi\)
0.440234 + 0.897883i \(0.354896\pi\)
\(558\) −11.5506 −0.488978
\(559\) −16.2201 −0.686037
\(560\) −2.78917 −0.117864
\(561\) −3.59383 −0.151732
\(562\) 1.17189 0.0494330
\(563\) 20.9064 0.881098 0.440549 0.897728i \(-0.354784\pi\)
0.440549 + 0.897728i \(0.354784\pi\)
\(564\) 49.1179 2.06823
\(565\) 7.15031 0.300816
\(566\) −2.35099 −0.0988193
\(567\) −7.23907 −0.304012
\(568\) −13.8148 −0.579655
\(569\) 13.5182 0.566711 0.283356 0.959015i \(-0.408552\pi\)
0.283356 + 0.959015i \(0.408552\pi\)
\(570\) 5.57872 0.233667
\(571\) 45.2293 1.89279 0.946393 0.323017i \(-0.104697\pi\)
0.946393 + 0.323017i \(0.104697\pi\)
\(572\) −2.99116 −0.125067
\(573\) 45.8280 1.91449
\(574\) 4.43307 0.185033
\(575\) 3.65555 0.152447
\(576\) −10.6409 −0.443371
\(577\) 22.3699 0.931272 0.465636 0.884976i \(-0.345826\pi\)
0.465636 + 0.884976i \(0.345826\pi\)
\(578\) 7.14366 0.297137
\(579\) −32.8550 −1.36541
\(580\) −12.0672 −0.501062
\(581\) −0.0374061 −0.00155187
\(582\) 5.14726 0.213361
\(583\) 8.76503 0.363011
\(584\) −16.1592 −0.668673
\(585\) −6.33408 −0.261882
\(586\) −8.72368 −0.360372
\(587\) −18.6107 −0.768144 −0.384072 0.923303i \(-0.625479\pi\)
−0.384072 + 0.923303i \(0.625479\pi\)
\(588\) −26.7941 −1.10497
\(589\) −30.3228 −1.24943
\(590\) −5.72783 −0.235811
\(591\) 51.3566 2.11253
\(592\) −21.5926 −0.887452
\(593\) 14.0814 0.578254 0.289127 0.957291i \(-0.406635\pi\)
0.289127 + 0.957291i \(0.406635\pi\)
\(594\) 0.685680 0.0281338
\(595\) −1.53299 −0.0628466
\(596\) −23.6415 −0.968395
\(597\) −44.6174 −1.82607
\(598\) −3.10956 −0.127159
\(599\) −2.18003 −0.0890738 −0.0445369 0.999008i \(-0.514181\pi\)
−0.0445369 + 0.999008i \(0.514181\pi\)
\(600\) −4.64984 −0.189829
\(601\) 1.89273 0.0772059 0.0386030 0.999255i \(-0.487709\pi\)
0.0386030 + 0.999255i \(0.487709\pi\)
\(602\) 4.61491 0.188090
\(603\) 18.1543 0.739301
\(604\) 1.76869 0.0719671
\(605\) 10.0857 0.410044
\(606\) 6.81795 0.276960
\(607\) 13.8032 0.560254 0.280127 0.959963i \(-0.409623\pi\)
0.280127 + 0.959963i \(0.409623\pi\)
\(608\) 22.1877 0.899829
\(609\) 18.3137 0.742107
\(610\) −0.106381 −0.00430724
\(611\) 19.1464 0.774579
\(612\) −9.28014 −0.375127
\(613\) −27.0975 −1.09446 −0.547229 0.836983i \(-0.684317\pi\)
−0.547229 + 0.836983i \(0.684317\pi\)
\(614\) −4.99265 −0.201487
\(615\) −22.5993 −0.911292
\(616\) 1.81338 0.0730630
\(617\) 25.4622 1.02507 0.512534 0.858667i \(-0.328707\pi\)
0.512534 + 0.858667i \(0.328707\pi\)
\(618\) 3.18530 0.128132
\(619\) −41.4042 −1.66418 −0.832088 0.554644i \(-0.812854\pi\)
−0.832088 + 0.554644i \(0.812854\pi\)
\(620\) 11.8614 0.476364
\(621\) −5.45064 −0.218726
\(622\) −7.94862 −0.318711
\(623\) 2.10126 0.0841853
\(624\) −12.0952 −0.484194
\(625\) 1.00000 0.0400000
\(626\) 5.68775 0.227328
\(627\) 11.0911 0.442936
\(628\) 23.7330 0.947049
\(629\) −11.8678 −0.473201
\(630\) 1.80216 0.0717999
\(631\) −21.9555 −0.874036 −0.437018 0.899453i \(-0.643965\pi\)
−0.437018 + 0.899453i \(0.643965\pi\)
\(632\) 10.8747 0.432572
\(633\) 6.33833 0.251926
\(634\) −3.85878 −0.153252
\(635\) 5.61817 0.222950
\(636\) 41.5935 1.64929
\(637\) −10.4445 −0.413825
\(638\) 3.13747 0.124214
\(639\) −27.2955 −1.07979
\(640\) −11.2432 −0.444426
\(641\) −50.3786 −1.98983 −0.994917 0.100694i \(-0.967894\pi\)
−0.994917 + 0.100694i \(0.967894\pi\)
\(642\) 9.05249 0.357273
\(643\) 4.88892 0.192800 0.0964001 0.995343i \(-0.469267\pi\)
0.0964001 + 0.995343i \(0.469267\pi\)
\(644\) −6.76512 −0.266583
\(645\) −23.5263 −0.926347
\(646\) 3.18605 0.125353
\(647\) 0.810735 0.0318733 0.0159366 0.999873i \(-0.494927\pi\)
0.0159366 + 0.999873i \(0.494927\pi\)
\(648\) −12.5400 −0.492618
\(649\) −11.3876 −0.447001
\(650\) −0.850641 −0.0333649
\(651\) −18.0013 −0.705527
\(652\) 36.7777 1.44033
\(653\) 47.4414 1.85653 0.928263 0.371925i \(-0.121302\pi\)
0.928263 + 0.371925i \(0.121302\pi\)
\(654\) −13.4196 −0.524747
\(655\) −1.48009 −0.0578319
\(656\) −23.4827 −0.916844
\(657\) −31.9277 −1.24562
\(658\) −5.44749 −0.212365
\(659\) 12.3148 0.479717 0.239859 0.970808i \(-0.422899\pi\)
0.239859 + 0.970808i \(0.422899\pi\)
\(660\) −4.33850 −0.168876
\(661\) −1.96257 −0.0763353 −0.0381677 0.999271i \(-0.512152\pi\)
−0.0381677 + 0.999271i \(0.512152\pi\)
\(662\) 2.85396 0.110922
\(663\) −6.64778 −0.258178
\(664\) −0.0647974 −0.00251463
\(665\) 4.73105 0.183462
\(666\) 13.9516 0.540614
\(667\) −24.9405 −0.965701
\(668\) −5.10558 −0.197541
\(669\) 39.4948 1.52696
\(670\) 2.43805 0.0941900
\(671\) −0.211497 −0.00816476
\(672\) 13.1718 0.508115
\(673\) 37.3451 1.43955 0.719774 0.694208i \(-0.244245\pi\)
0.719774 + 0.694208i \(0.244245\pi\)
\(674\) 9.96501 0.383838
\(675\) −1.49106 −0.0573908
\(676\) 17.4601 0.671541
\(677\) −46.1601 −1.77408 −0.887039 0.461695i \(-0.847241\pi\)
−0.887039 + 0.461695i \(0.847241\pi\)
\(678\) −8.82209 −0.338810
\(679\) 4.36515 0.167519
\(680\) −2.65555 −0.101836
\(681\) −18.1552 −0.695708
\(682\) −3.08396 −0.118091
\(683\) 27.1238 1.03786 0.518932 0.854815i \(-0.326330\pi\)
0.518932 + 0.854815i \(0.326330\pi\)
\(684\) 28.6399 1.09507
\(685\) 11.0949 0.423915
\(686\) 6.49422 0.247951
\(687\) 19.1283 0.729790
\(688\) −24.4459 −0.931992
\(689\) 16.2133 0.617679
\(690\) −4.51024 −0.171702
\(691\) −5.77816 −0.219812 −0.109906 0.993942i \(-0.535055\pi\)
−0.109906 + 0.993942i \(0.535055\pi\)
\(692\) −6.81349 −0.259010
\(693\) 3.58290 0.136103
\(694\) −4.88555 −0.185453
\(695\) 15.1042 0.572933
\(696\) 31.7241 1.20250
\(697\) −12.9066 −0.488873
\(698\) 9.54761 0.361382
\(699\) 41.6891 1.57683
\(700\) −1.85064 −0.0699476
\(701\) −11.4867 −0.433846 −0.216923 0.976189i \(-0.569602\pi\)
−0.216923 + 0.976189i \(0.569602\pi\)
\(702\) 1.26835 0.0478709
\(703\) 36.6259 1.38137
\(704\) −2.84107 −0.107077
\(705\) 27.7707 1.04590
\(706\) −7.22289 −0.271837
\(707\) 5.78198 0.217454
\(708\) −54.0384 −2.03089
\(709\) 29.1067 1.09312 0.546562 0.837419i \(-0.315936\pi\)
0.546562 + 0.837419i \(0.315936\pi\)
\(710\) −3.66567 −0.137570
\(711\) 21.4864 0.805804
\(712\) 3.63995 0.136413
\(713\) 24.5152 0.918100
\(714\) 1.89141 0.0707844
\(715\) −1.69117 −0.0632461
\(716\) −9.90516 −0.370173
\(717\) 22.8129 0.851962
\(718\) −8.30890 −0.310085
\(719\) 11.0870 0.413477 0.206738 0.978396i \(-0.433715\pi\)
0.206738 + 0.978396i \(0.433715\pi\)
\(720\) −9.54634 −0.355771
\(721\) 2.70130 0.100602
\(722\) −0.694709 −0.0258544
\(723\) 35.5363 1.32161
\(724\) 28.8803 1.07333
\(725\) −6.82264 −0.253386
\(726\) −12.4438 −0.461834
\(727\) 18.3052 0.678902 0.339451 0.940624i \(-0.389759\pi\)
0.339451 + 0.940624i \(0.389759\pi\)
\(728\) 3.35434 0.124320
\(729\) −36.2522 −1.34267
\(730\) −4.28775 −0.158697
\(731\) −13.4360 −0.496950
\(732\) −1.00364 −0.0370955
\(733\) 38.9889 1.44009 0.720045 0.693928i \(-0.244121\pi\)
0.720045 + 0.693928i \(0.244121\pi\)
\(734\) −0.195415 −0.00721289
\(735\) −15.1491 −0.558783
\(736\) −17.9381 −0.661208
\(737\) 4.84711 0.178546
\(738\) 15.1728 0.558519
\(739\) −3.63358 −0.133663 −0.0668317 0.997764i \(-0.521289\pi\)
−0.0668317 + 0.997764i \(0.521289\pi\)
\(740\) −14.3269 −0.526668
\(741\) 20.5161 0.753676
\(742\) −4.61299 −0.169348
\(743\) −2.60444 −0.0955476 −0.0477738 0.998858i \(-0.515213\pi\)
−0.0477738 + 0.998858i \(0.515213\pi\)
\(744\) −31.1831 −1.14323
\(745\) −13.3667 −0.489716
\(746\) 11.4166 0.417991
\(747\) −0.128028 −0.00468429
\(748\) −2.47775 −0.0905955
\(749\) 7.67699 0.280511
\(750\) −1.23381 −0.0450522
\(751\) 53.9790 1.96972 0.984861 0.173347i \(-0.0554581\pi\)
0.984861 + 0.173347i \(0.0554581\pi\)
\(752\) 28.8562 1.05228
\(753\) 35.9836 1.31131
\(754\) 5.80362 0.211355
\(755\) 1.00000 0.0363937
\(756\) 2.75941 0.100359
\(757\) −1.75196 −0.0636762 −0.0318381 0.999493i \(-0.510136\pi\)
−0.0318381 + 0.999493i \(0.510136\pi\)
\(758\) 0.563020 0.0204498
\(759\) −8.96686 −0.325476
\(760\) 8.19544 0.297280
\(761\) 48.1562 1.74566 0.872830 0.488023i \(-0.162282\pi\)
0.872830 + 0.488023i \(0.162282\pi\)
\(762\) −6.93173 −0.251110
\(763\) −11.3805 −0.412002
\(764\) 31.5959 1.14310
\(765\) −5.24689 −0.189702
\(766\) −3.18749 −0.115169
\(767\) −21.0644 −0.760592
\(768\) −1.37319 −0.0495506
\(769\) 33.6508 1.21348 0.606739 0.794901i \(-0.292477\pi\)
0.606739 + 0.794901i \(0.292477\pi\)
\(770\) 0.481168 0.0173401
\(771\) −50.9762 −1.83586
\(772\) −22.6517 −0.815253
\(773\) −8.05893 −0.289860 −0.144930 0.989442i \(-0.546296\pi\)
−0.144930 + 0.989442i \(0.546296\pi\)
\(774\) 15.7952 0.567747
\(775\) 6.70628 0.240897
\(776\) 7.56161 0.271446
\(777\) 21.7432 0.780031
\(778\) 7.20094 0.258166
\(779\) 39.8318 1.42712
\(780\) −8.02525 −0.287350
\(781\) −7.28775 −0.260776
\(782\) −2.57583 −0.0921115
\(783\) 10.1729 0.363551
\(784\) −15.7413 −0.562188
\(785\) 13.4184 0.478922
\(786\) 1.82614 0.0651363
\(787\) 2.90863 0.103681 0.0518407 0.998655i \(-0.483491\pi\)
0.0518407 + 0.998655i \(0.483491\pi\)
\(788\) 35.4075 1.26134
\(789\) 10.1891 0.362743
\(790\) 2.88554 0.102663
\(791\) −7.48160 −0.266015
\(792\) 6.20654 0.220540
\(793\) −0.391222 −0.0138927
\(794\) 0.0444941 0.00157904
\(795\) 23.5165 0.834044
\(796\) −30.7612 −1.09030
\(797\) 0.451798 0.0160035 0.00800175 0.999968i \(-0.497453\pi\)
0.00800175 + 0.999968i \(0.497453\pi\)
\(798\) −5.83719 −0.206634
\(799\) 15.8600 0.561088
\(800\) −4.90709 −0.173492
\(801\) 7.19187 0.254112
\(802\) −13.8953 −0.490659
\(803\) −8.52452 −0.300824
\(804\) 23.0014 0.811198
\(805\) −3.82492 −0.134811
\(806\) −5.70463 −0.200937
\(807\) −55.2460 −1.94475
\(808\) 10.0159 0.352359
\(809\) −1.16162 −0.0408405 −0.0204203 0.999791i \(-0.506500\pi\)
−0.0204203 + 0.999791i \(0.506500\pi\)
\(810\) −3.32741 −0.116913
\(811\) −40.5281 −1.42313 −0.711567 0.702618i \(-0.752014\pi\)
−0.711567 + 0.702618i \(0.752014\pi\)
\(812\) 12.6263 0.443095
\(813\) −67.4092 −2.36414
\(814\) 3.72501 0.130562
\(815\) 20.7937 0.728371
\(816\) −10.0191 −0.350739
\(817\) 41.4656 1.45070
\(818\) −8.69852 −0.304137
\(819\) 6.62755 0.231585
\(820\) −15.5810 −0.544111
\(821\) −50.2158 −1.75254 −0.876272 0.481816i \(-0.839977\pi\)
−0.876272 + 0.481816i \(0.839977\pi\)
\(822\) −13.6890 −0.477457
\(823\) 54.3282 1.89376 0.946882 0.321583i \(-0.104215\pi\)
0.946882 + 0.321583i \(0.104215\pi\)
\(824\) 4.67938 0.163014
\(825\) −2.45294 −0.0854005
\(826\) 5.99321 0.208530
\(827\) −43.6955 −1.51944 −0.759720 0.650250i \(-0.774664\pi\)
−0.759720 + 0.650250i \(0.774664\pi\)
\(828\) −23.1546 −0.804677
\(829\) 49.2585 1.71082 0.855410 0.517952i \(-0.173305\pi\)
0.855410 + 0.517952i \(0.173305\pi\)
\(830\) −0.0171936 −0.000596798 0
\(831\) 58.9832 2.04610
\(832\) −5.25533 −0.182196
\(833\) −8.65176 −0.299766
\(834\) −18.6356 −0.645298
\(835\) −2.88664 −0.0998963
\(836\) 7.64671 0.264467
\(837\) −9.99944 −0.345631
\(838\) 3.79391 0.131059
\(839\) −3.82552 −0.132072 −0.0660358 0.997817i \(-0.521035\pi\)
−0.0660358 + 0.997817i \(0.521035\pi\)
\(840\) 4.86527 0.167868
\(841\) 17.5484 0.605118
\(842\) −9.72205 −0.335044
\(843\) 6.25093 0.215294
\(844\) 4.36993 0.150419
\(845\) 9.87172 0.339598
\(846\) −18.6448 −0.641022
\(847\) −10.5530 −0.362607
\(848\) 24.4357 0.839126
\(849\) −12.5404 −0.430384
\(850\) −0.704635 −0.0241688
\(851\) −29.6110 −1.01505
\(852\) −34.5832 −1.18480
\(853\) −31.4864 −1.07807 −0.539037 0.842282i \(-0.681212\pi\)
−0.539037 + 0.842282i \(0.681212\pi\)
\(854\) 0.111310 0.00380894
\(855\) 16.1927 0.553778
\(856\) 13.2986 0.454537
\(857\) 0.0162565 0.000555310 0 0.000277655 1.00000i \(-0.499912\pi\)
0.000277655 1.00000i \(0.499912\pi\)
\(858\) 2.08657 0.0712344
\(859\) −55.3186 −1.88745 −0.943723 0.330737i \(-0.892703\pi\)
−0.943723 + 0.330737i \(0.892703\pi\)
\(860\) −16.2201 −0.553100
\(861\) 23.6464 0.805866
\(862\) 11.9374 0.406589
\(863\) 3.69078 0.125636 0.0628178 0.998025i \(-0.479991\pi\)
0.0628178 + 0.998025i \(0.479991\pi\)
\(864\) 7.31674 0.248921
\(865\) −3.85227 −0.130981
\(866\) 18.7504 0.637165
\(867\) 38.1049 1.29411
\(868\) −12.4109 −0.421254
\(869\) 5.73677 0.194606
\(870\) 8.41781 0.285390
\(871\) 8.96606 0.303803
\(872\) −19.7141 −0.667604
\(873\) 14.9404 0.505654
\(874\) 7.94940 0.268893
\(875\) −1.04633 −0.0353725
\(876\) −40.4522 −1.36675
\(877\) 1.76591 0.0596306 0.0298153 0.999555i \(-0.490508\pi\)
0.0298153 + 0.999555i \(0.490508\pi\)
\(878\) 3.91559 0.132145
\(879\) −46.5328 −1.56951
\(880\) −2.54882 −0.0859208
\(881\) 28.3124 0.953868 0.476934 0.878939i \(-0.341748\pi\)
0.476934 + 0.878939i \(0.341748\pi\)
\(882\) 10.1709 0.342471
\(883\) −11.9216 −0.401193 −0.200596 0.979674i \(-0.564288\pi\)
−0.200596 + 0.979674i \(0.564288\pi\)
\(884\) −4.58328 −0.154152
\(885\) −30.5527 −1.02702
\(886\) 8.16188 0.274204
\(887\) −48.6486 −1.63346 −0.816730 0.577020i \(-0.804215\pi\)
−0.816730 + 0.577020i \(0.804215\pi\)
\(888\) 37.6650 1.26395
\(889\) −5.87847 −0.197158
\(890\) 0.965838 0.0323750
\(891\) −6.61527 −0.221620
\(892\) 27.2295 0.911711
\(893\) −48.9465 −1.63793
\(894\) 16.4919 0.551570
\(895\) −5.60027 −0.187196
\(896\) 11.7641 0.393012
\(897\) −16.5867 −0.553813
\(898\) −8.67781 −0.289582
\(899\) −45.7545 −1.52600
\(900\) −6.33408 −0.211136
\(901\) 13.4304 0.447433
\(902\) 4.05107 0.134886
\(903\) 24.6163 0.819180
\(904\) −12.9601 −0.431047
\(905\) 16.3286 0.542780
\(906\) −1.23381 −0.0409904
\(907\) −28.8087 −0.956576 −0.478288 0.878203i \(-0.658742\pi\)
−0.478288 + 0.878203i \(0.658742\pi\)
\(908\) −12.5170 −0.415391
\(909\) 19.7897 0.656381
\(910\) 0.890052 0.0295049
\(911\) −27.1064 −0.898075 −0.449037 0.893513i \(-0.648233\pi\)
−0.449037 + 0.893513i \(0.648233\pi\)
\(912\) 30.9205 1.02388
\(913\) −0.0341828 −0.00113128
\(914\) 3.39333 0.112241
\(915\) −0.567445 −0.0187592
\(916\) 13.1879 0.435741
\(917\) 1.54866 0.0511414
\(918\) 1.05065 0.0346766
\(919\) −7.39369 −0.243895 −0.121948 0.992537i \(-0.538914\pi\)
−0.121948 + 0.992537i \(0.538914\pi\)
\(920\) −6.62579 −0.218446
\(921\) −26.6312 −0.877529
\(922\) 3.79767 0.125070
\(923\) −13.4807 −0.443722
\(924\) 4.53951 0.149339
\(925\) −8.10028 −0.266335
\(926\) −9.83717 −0.323269
\(927\) 9.24560 0.303665
\(928\) 33.4793 1.09901
\(929\) −54.7297 −1.79562 −0.897811 0.440381i \(-0.854843\pi\)
−0.897811 + 0.440381i \(0.854843\pi\)
\(930\) −8.27424 −0.271323
\(931\) 26.7007 0.875078
\(932\) 28.7423 0.941486
\(933\) −42.3986 −1.38807
\(934\) 17.6091 0.576187
\(935\) −1.40089 −0.0458141
\(936\) 11.4807 0.375258
\(937\) 25.5089 0.833339 0.416670 0.909058i \(-0.363197\pi\)
0.416670 + 0.909058i \(0.363197\pi\)
\(938\) −2.55101 −0.0832933
\(939\) 30.3390 0.990074
\(940\) 19.1464 0.624485
\(941\) 10.9381 0.356571 0.178285 0.983979i \(-0.442945\pi\)
0.178285 + 0.983979i \(0.442945\pi\)
\(942\) −16.5557 −0.539412
\(943\) −32.2029 −1.04867
\(944\) −31.7470 −1.03328
\(945\) 1.56014 0.0507513
\(946\) 4.21724 0.137114
\(947\) −37.7577 −1.22696 −0.613481 0.789710i \(-0.710231\pi\)
−0.613481 + 0.789710i \(0.710231\pi\)
\(948\) 27.2232 0.884168
\(949\) −15.7684 −0.511865
\(950\) 2.17461 0.0705537
\(951\) −20.5831 −0.667452
\(952\) 2.77859 0.0900546
\(953\) −31.3497 −1.01552 −0.507758 0.861500i \(-0.669525\pi\)
−0.507758 + 0.861500i \(0.669525\pi\)
\(954\) −15.7886 −0.511175
\(955\) 17.8639 0.578064
\(956\) 15.7282 0.508686
\(957\) 16.7355 0.540983
\(958\) −13.2283 −0.427386
\(959\) −11.6090 −0.374873
\(960\) −7.62255 −0.246017
\(961\) 13.9742 0.450780
\(962\) 6.89043 0.222156
\(963\) 26.2756 0.846719
\(964\) 24.5003 0.789101
\(965\) −12.8070 −0.412273
\(966\) 4.71921 0.151838
\(967\) 8.53921 0.274603 0.137301 0.990529i \(-0.456157\pi\)
0.137301 + 0.990529i \(0.456157\pi\)
\(968\) −18.2807 −0.587563
\(969\) 16.9946 0.545946
\(970\) 2.00643 0.0644225
\(971\) 16.1186 0.517271 0.258636 0.965975i \(-0.416727\pi\)
0.258636 + 0.965975i \(0.416727\pi\)
\(972\) −39.3037 −1.26067
\(973\) −15.8040 −0.506652
\(974\) 19.2243 0.615988
\(975\) −4.53739 −0.145313
\(976\) −0.589626 −0.0188735
\(977\) −52.7230 −1.68676 −0.843378 0.537320i \(-0.819437\pi\)
−0.843378 + 0.537320i \(0.819437\pi\)
\(978\) −25.6554 −0.820368
\(979\) 1.92019 0.0613696
\(980\) −10.4445 −0.333636
\(981\) −38.9514 −1.24362
\(982\) −17.1433 −0.547065
\(983\) 41.3603 1.31919 0.659594 0.751622i \(-0.270728\pi\)
0.659594 + 0.751622i \(0.270728\pi\)
\(984\) 40.9618 1.30582
\(985\) 20.0190 0.637859
\(986\) 4.80747 0.153101
\(987\) −29.0574 −0.924906
\(988\) 14.1447 0.450002
\(989\) −33.5238 −1.06600
\(990\) 1.64687 0.0523409
\(991\) −34.7877 −1.10507 −0.552534 0.833491i \(-0.686339\pi\)
−0.552534 + 0.833491i \(0.686339\pi\)
\(992\) −32.9083 −1.04484
\(993\) 15.2233 0.483096
\(994\) 3.83550 0.121655
\(995\) −17.3920 −0.551365
\(996\) −0.162211 −0.00513984
\(997\) −1.47976 −0.0468643 −0.0234322 0.999725i \(-0.507459\pi\)
−0.0234322 + 0.999725i \(0.507459\pi\)
\(998\) −2.86284 −0.0906215
\(999\) 12.0780 0.382130
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 755.2.a.i.1.3 5
3.2 odd 2 6795.2.a.y.1.3 5
5.4 even 2 3775.2.a.n.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
755.2.a.i.1.3 5 1.1 even 1 trivial
3775.2.a.n.1.3 5 5.4 even 2
6795.2.a.y.1.3 5 3.2 odd 2