Properties

Label 755.1.o.a
Level $755$
Weight $1$
Character orbit 755.o
Analytic conductor $0.377$
Analytic rank $0$
Dimension $4$
Projective image $S_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [755,1,Mod(32,755)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(755, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 4])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("755.32"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 755 = 5 \cdot 151 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 755.o (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.376794084538\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(S_{4}\)
Projective field: Galois closure of 4.0.2850125.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{12} q^{4} + \zeta_{12}^{2} q^{5} - \zeta_{12}^{3} q^{9} - \zeta_{12}^{2} q^{11} + ( - \zeta_{12}^{4} + \zeta_{12}) q^{13} + \zeta_{12}^{2} q^{16} + ( - \zeta_{12}^{5} + \zeta_{12}^{2}) q^{17} + \cdots + \zeta_{12}^{5} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{5} - 2 q^{11} + 2 q^{13} + 2 q^{16} + 2 q^{17} - 2 q^{23} - 2 q^{25} - 2 q^{36} - 2 q^{37} + 4 q^{41} + 2 q^{47} - 2 q^{52} + 2 q^{55} - 2 q^{61} + 4 q^{65} - 4 q^{67} - 4 q^{68} - 2 q^{71} + 2 q^{76}+ \cdots - 4 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/755\mathbb{Z}\right)^\times\).

\(n\) \(6\) \(152\)
\(\chi(n)\) \(\zeta_{12}^{4}\) \(-\zeta_{12}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
32.1
−0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
0.866025 0.500000i
0 0 0.866025 + 0.500000i 0.500000 + 0.866025i 0 0 0 1.00000i 0
118.1 0 0 0.866025 0.500000i 0.500000 0.866025i 0 0 0 1.00000i 0
183.1 0 0 −0.866025 0.500000i 0.500000 + 0.866025i 0 0 0 1.00000i 0
722.1 0 0 −0.866025 + 0.500000i 0.500000 0.866025i 0 0 0 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
151.c even 3 1 inner
755.o odd 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 755.1.o.a 4
5.b even 2 1 3775.1.bi.a 4
5.c odd 4 1 inner 755.1.o.a 4
5.c odd 4 1 3775.1.bi.a 4
151.c even 3 1 inner 755.1.o.a 4
755.j even 6 1 3775.1.bi.a 4
755.o odd 12 1 inner 755.1.o.a 4
755.o odd 12 1 3775.1.bi.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
755.1.o.a 4 1.a even 1 1 trivial
755.1.o.a 4 5.c odd 4 1 inner
755.1.o.a 4 151.c even 3 1 inner
755.1.o.a 4 755.o odd 12 1 inner
3775.1.bi.a 4 5.b even 2 1
3775.1.bi.a 4 5.c odd 4 1
3775.1.bi.a 4 755.j even 6 1
3775.1.bi.a 4 755.o odd 12 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(755, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$17$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$19$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$29$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$41$ \( (T - 1)^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less