Properties

Label 750.2.g.f.601.4
Level $750$
Weight $2$
Character 750.601
Analytic conductor $5.989$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [750,2,Mod(151,750)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("750.151"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(750, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 750 = 2 \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 750.g (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-4,-4,-4,0,-4,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.98878015160\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 24 x^{14} + 94 x^{13} + 262 x^{12} - 936 x^{11} - 1584 x^{10} + 4642 x^{9} + \cdots + 11105 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 5^{6} \)
Twist minimal: no (minimal twist has level 150)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 601.4
Root \(2.32349 - 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 750.601
Dual form 750.2.g.f.151.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.309017 - 0.951057i) q^{2} +(-0.809017 - 0.587785i) q^{3} +(-0.809017 - 0.587785i) q^{4} +(-0.809017 + 0.587785i) q^{6} +3.23143 q^{7} +(-0.809017 + 0.587785i) q^{8} +(0.309017 + 0.951057i) q^{9} +(1.63788 - 5.04087i) q^{11} +(0.309017 + 0.951057i) q^{12} +(1.82456 + 5.61543i) q^{13} +(0.998566 - 3.07327i) q^{14} +(0.309017 + 0.951057i) q^{16} +(-0.828995 + 0.602300i) q^{17} +1.00000 q^{18} +(3.64639 - 2.64926i) q^{19} +(-2.61428 - 1.89939i) q^{21} +(-4.28802 - 3.11543i) q^{22} +(0.595870 - 1.83390i) q^{23} +1.00000 q^{24} +5.90441 q^{26} +(0.309017 - 0.951057i) q^{27} +(-2.61428 - 1.89939i) q^{28} +(0.210961 + 0.153272i) q^{29} +(1.81386 - 1.31784i) q^{31} +1.00000 q^{32} +(-4.28802 + 3.11543i) q^{33} +(0.316648 + 0.974542i) q^{34} +(0.309017 - 0.951057i) q^{36} +(-2.95221 - 9.08596i) q^{37} +(-1.39280 - 4.28659i) q^{38} +(1.82456 - 5.61543i) q^{39} +(-3.07816 - 9.47359i) q^{41} +(-2.61428 + 1.89939i) q^{42} -5.30164 q^{43} +(-4.28802 + 3.11543i) q^{44} +(-1.56001 - 1.13341i) q^{46} +(8.51747 + 6.18830i) q^{47} +(0.309017 - 0.951057i) q^{48} +3.44213 q^{49} +1.02469 q^{51} +(1.82456 - 5.61543i) q^{52} +(1.86970 + 1.35841i) q^{53} +(-0.809017 - 0.587785i) q^{54} +(-2.61428 + 1.89939i) q^{56} -4.50718 q^{57} +(0.210961 - 0.153272i) q^{58} +(-2.00615 - 6.17428i) q^{59} +(-1.21905 + 3.75186i) q^{61} +(-0.692831 - 2.13232i) q^{62} +(0.998566 + 3.07327i) q^{63} +(0.309017 - 0.951057i) q^{64} +(1.63788 + 5.04087i) q^{66} +(-7.51747 + 5.46176i) q^{67} +1.02469 q^{68} +(-1.56001 + 1.13341i) q^{69} +(-6.90715 - 5.01834i) q^{71} +(-0.809017 - 0.587785i) q^{72} +(1.22192 - 3.76068i) q^{73} -9.55354 q^{74} -4.50718 q^{76} +(5.29269 - 16.2892i) q^{77} +(-4.77677 - 3.47053i) q^{78} +(10.8177 + 7.85950i) q^{79} +(-0.809017 + 0.587785i) q^{81} -9.96112 q^{82} +(-6.05709 + 4.40074i) q^{83} +(0.998566 + 3.07327i) q^{84} +(-1.63830 + 5.04216i) q^{86} +(-0.0805798 - 0.247999i) q^{87} +(1.63788 + 5.04087i) q^{88} +(-0.226687 + 0.697671i) q^{89} +(5.89595 + 18.1459i) q^{91} +(-1.56001 + 1.13341i) q^{92} -2.24205 q^{93} +(8.51747 - 6.18830i) q^{94} +(-0.809017 - 0.587785i) q^{96} +(13.9610 + 10.1432i) q^{97} +(1.06368 - 3.27366i) q^{98} +5.30029 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{2} - 4 q^{3} - 4 q^{4} - 4 q^{6} + 8 q^{7} - 4 q^{8} - 4 q^{9} + 2 q^{11} - 4 q^{12} + 4 q^{13} - 2 q^{14} - 4 q^{16} - 2 q^{17} + 16 q^{18} - 2 q^{21} - 8 q^{22} - 6 q^{23} + 16 q^{24} + 4 q^{26}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/750\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(251\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.309017 0.951057i 0.218508 0.672499i
\(3\) −0.809017 0.587785i −0.467086 0.339358i
\(4\) −0.809017 0.587785i −0.404508 0.293893i
\(5\) 0 0
\(6\) −0.809017 + 0.587785i −0.330280 + 0.239962i
\(7\) 3.23143 1.22136 0.610682 0.791876i \(-0.290895\pi\)
0.610682 + 0.791876i \(0.290895\pi\)
\(8\) −0.809017 + 0.587785i −0.286031 + 0.207813i
\(9\) 0.309017 + 0.951057i 0.103006 + 0.317019i
\(10\) 0 0
\(11\) 1.63788 5.04087i 0.493839 1.51988i −0.324920 0.945742i \(-0.605337\pi\)
0.818758 0.574138i \(-0.194663\pi\)
\(12\) 0.309017 + 0.951057i 0.0892055 + 0.274546i
\(13\) 1.82456 + 5.61543i 0.506043 + 1.55744i 0.799010 + 0.601318i \(0.205357\pi\)
−0.292967 + 0.956122i \(0.594643\pi\)
\(14\) 0.998566 3.07327i 0.266878 0.821366i
\(15\) 0 0
\(16\) 0.309017 + 0.951057i 0.0772542 + 0.237764i
\(17\) −0.828995 + 0.602300i −0.201061 + 0.146079i −0.683760 0.729707i \(-0.739656\pi\)
0.482699 + 0.875786i \(0.339656\pi\)
\(18\) 1.00000 0.235702
\(19\) 3.64639 2.64926i 0.836539 0.607781i −0.0848627 0.996393i \(-0.527045\pi\)
0.921402 + 0.388611i \(0.127045\pi\)
\(20\) 0 0
\(21\) −2.61428 1.89939i −0.570483 0.414480i
\(22\) −4.28802 3.11543i −0.914209 0.664212i
\(23\) 0.595870 1.83390i 0.124247 0.382394i −0.869516 0.493905i \(-0.835569\pi\)
0.993763 + 0.111511i \(0.0355690\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) 5.90441 1.15795
\(27\) 0.309017 0.951057i 0.0594703 0.183031i
\(28\) −2.61428 1.89939i −0.494053 0.358950i
\(29\) 0.210961 + 0.153272i 0.0391744 + 0.0284619i 0.607200 0.794549i \(-0.292293\pi\)
−0.568026 + 0.823011i \(0.692293\pi\)
\(30\) 0 0
\(31\) 1.81386 1.31784i 0.325778 0.236692i −0.412859 0.910795i \(-0.635470\pi\)
0.738637 + 0.674103i \(0.235470\pi\)
\(32\) 1.00000 0.176777
\(33\) −4.28802 + 3.11543i −0.746449 + 0.542327i
\(34\) 0.316648 + 0.974542i 0.0543046 + 0.167133i
\(35\) 0 0
\(36\) 0.309017 0.951057i 0.0515028 0.158509i
\(37\) −2.95221 9.08596i −0.485340 1.49372i −0.831488 0.555542i \(-0.812511\pi\)
0.346149 0.938180i \(-0.387489\pi\)
\(38\) −1.39280 4.28659i −0.225941 0.695376i
\(39\) 1.82456 5.61543i 0.292164 0.899188i
\(40\) 0 0
\(41\) −3.07816 9.47359i −0.480727 1.47953i −0.838075 0.545555i \(-0.816319\pi\)
0.357348 0.933971i \(-0.383681\pi\)
\(42\) −2.61428 + 1.89939i −0.403392 + 0.293082i
\(43\) −5.30164 −0.808492 −0.404246 0.914650i \(-0.632466\pi\)
−0.404246 + 0.914650i \(0.632466\pi\)
\(44\) −4.28802 + 3.11543i −0.646444 + 0.469669i
\(45\) 0 0
\(46\) −1.56001 1.13341i −0.230010 0.167112i
\(47\) 8.51747 + 6.18830i 1.24240 + 0.902657i 0.997756 0.0669561i \(-0.0213288\pi\)
0.244644 + 0.969613i \(0.421329\pi\)
\(48\) 0.309017 0.951057i 0.0446028 0.137273i
\(49\) 3.44213 0.491732
\(50\) 0 0
\(51\) 1.02469 0.143486
\(52\) 1.82456 5.61543i 0.253021 0.778720i
\(53\) 1.86970 + 1.35841i 0.256823 + 0.186593i 0.708745 0.705465i \(-0.249262\pi\)
−0.451923 + 0.892057i \(0.649262\pi\)
\(54\) −0.809017 0.587785i −0.110093 0.0799874i
\(55\) 0 0
\(56\) −2.61428 + 1.89939i −0.349348 + 0.253816i
\(57\) −4.50718 −0.596991
\(58\) 0.210961 0.153272i 0.0277005 0.0201256i
\(59\) −2.00615 6.17428i −0.261178 0.803823i −0.992549 0.121844i \(-0.961119\pi\)
0.731371 0.681979i \(-0.238881\pi\)
\(60\) 0 0
\(61\) −1.21905 + 3.75186i −0.156084 + 0.480376i −0.998269 0.0588118i \(-0.981269\pi\)
0.842185 + 0.539188i \(0.181269\pi\)
\(62\) −0.692831 2.13232i −0.0879897 0.270804i
\(63\) 0.998566 + 3.07327i 0.125808 + 0.387196i
\(64\) 0.309017 0.951057i 0.0386271 0.118882i
\(65\) 0 0
\(66\) 1.63788 + 5.04087i 0.201609 + 0.620488i
\(67\) −7.51747 + 5.46176i −0.918405 + 0.667260i −0.943126 0.332434i \(-0.892130\pi\)
0.0247216 + 0.999694i \(0.492130\pi\)
\(68\) 1.02469 0.124262
\(69\) −1.56001 + 1.13341i −0.187803 + 0.136447i
\(70\) 0 0
\(71\) −6.90715 5.01834i −0.819728 0.595567i 0.0969066 0.995293i \(-0.469105\pi\)
−0.916635 + 0.399726i \(0.869105\pi\)
\(72\) −0.809017 0.587785i −0.0953436 0.0692712i
\(73\) 1.22192 3.76068i 0.143015 0.440155i −0.853735 0.520707i \(-0.825668\pi\)
0.996750 + 0.0805522i \(0.0256684\pi\)
\(74\) −9.55354 −1.11058
\(75\) 0 0
\(76\) −4.50718 −0.517010
\(77\) 5.29269 16.2892i 0.603158 1.85633i
\(78\) −4.77677 3.47053i −0.540863 0.392960i
\(79\) 10.8177 + 7.85950i 1.21708 + 0.884263i 0.995855 0.0909589i \(-0.0289932\pi\)
0.221229 + 0.975222i \(0.428993\pi\)
\(80\) 0 0
\(81\) −0.809017 + 0.587785i −0.0898908 + 0.0653095i
\(82\) −9.96112 −1.10002
\(83\) −6.05709 + 4.40074i −0.664852 + 0.483044i −0.868298 0.496043i \(-0.834786\pi\)
0.203446 + 0.979086i \(0.434786\pi\)
\(84\) 0.998566 + 3.07327i 0.108952 + 0.335321i
\(85\) 0 0
\(86\) −1.63830 + 5.04216i −0.176662 + 0.543710i
\(87\) −0.0805798 0.247999i −0.00863906 0.0265883i
\(88\) 1.63788 + 5.04087i 0.174598 + 0.537359i
\(89\) −0.226687 + 0.697671i −0.0240288 + 0.0739529i −0.962352 0.271807i \(-0.912379\pi\)
0.938323 + 0.345760i \(0.112379\pi\)
\(90\) 0 0
\(91\) 5.89595 + 18.1459i 0.618063 + 1.90220i
\(92\) −1.56001 + 1.13341i −0.162642 + 0.118166i
\(93\) −2.24205 −0.232490
\(94\) 8.51747 6.18830i 0.878510 0.638275i
\(95\) 0 0
\(96\) −0.809017 0.587785i −0.0825700 0.0599906i
\(97\) 13.9610 + 10.1432i 1.41752 + 1.02989i 0.992175 + 0.124857i \(0.0398473\pi\)
0.425345 + 0.905031i \(0.360153\pi\)
\(98\) 1.06368 3.27366i 0.107447 0.330689i
\(99\) 5.30029 0.532699
\(100\) 0 0
\(101\) 11.8454 1.17866 0.589331 0.807892i \(-0.299391\pi\)
0.589331 + 0.807892i \(0.299391\pi\)
\(102\) 0.316648 0.974542i 0.0313528 0.0964940i
\(103\) 5.78515 + 4.20316i 0.570028 + 0.414150i 0.835115 0.550075i \(-0.185401\pi\)
−0.265087 + 0.964224i \(0.585401\pi\)
\(104\) −4.77677 3.47053i −0.468401 0.340313i
\(105\) 0 0
\(106\) 1.86970 1.35841i 0.181601 0.131941i
\(107\) 3.20058 0.309412 0.154706 0.987961i \(-0.450557\pi\)
0.154706 + 0.987961i \(0.450557\pi\)
\(108\) −0.809017 + 0.587785i −0.0778477 + 0.0565597i
\(109\) 3.05789 + 9.41123i 0.292893 + 0.901432i 0.983921 + 0.178604i \(0.0571581\pi\)
−0.691028 + 0.722828i \(0.742842\pi\)
\(110\) 0 0
\(111\) −2.95221 + 9.08596i −0.280211 + 0.862401i
\(112\) 0.998566 + 3.07327i 0.0943556 + 0.290397i
\(113\) −1.31201 4.03794i −0.123423 0.379858i 0.870187 0.492721i \(-0.163998\pi\)
−0.993611 + 0.112863i \(0.963998\pi\)
\(114\) −1.39280 + 4.28659i −0.130447 + 0.401476i
\(115\) 0 0
\(116\) −0.0805798 0.247999i −0.00748165 0.0230261i
\(117\) −4.77677 + 3.47053i −0.441613 + 0.320850i
\(118\) −6.49202 −0.597639
\(119\) −2.67884 + 1.94629i −0.245569 + 0.178416i
\(120\) 0 0
\(121\) −13.8285 10.0470i −1.25714 0.913366i
\(122\) 3.19152 + 2.31878i 0.288947 + 0.209932i
\(123\) −3.07816 + 9.47359i −0.277548 + 0.854205i
\(124\) −2.24205 −0.201342
\(125\) 0 0
\(126\) 3.23143 0.287878
\(127\) −2.85868 + 8.79813i −0.253667 + 0.780708i 0.740422 + 0.672142i \(0.234626\pi\)
−0.994089 + 0.108565i \(0.965374\pi\)
\(128\) −0.809017 0.587785i −0.0715077 0.0519534i
\(129\) 4.28912 + 3.11623i 0.377636 + 0.274368i
\(130\) 0 0
\(131\) 3.93584 2.85956i 0.343876 0.249841i −0.402419 0.915455i \(-0.631831\pi\)
0.746296 + 0.665615i \(0.231831\pi\)
\(132\) 5.30029 0.461331
\(133\) 11.7830 8.56088i 1.02172 0.742323i
\(134\) 2.87142 + 8.83731i 0.248053 + 0.763428i
\(135\) 0 0
\(136\) 0.316648 0.974542i 0.0271523 0.0835663i
\(137\) 1.85925 + 5.72219i 0.158847 + 0.488879i 0.998530 0.0541963i \(-0.0172597\pi\)
−0.839684 + 0.543076i \(0.817260\pi\)
\(138\) 0.595870 + 1.83390i 0.0507238 + 0.156112i
\(139\) −1.73890 + 5.35178i −0.147492 + 0.453932i −0.997323 0.0731222i \(-0.976704\pi\)
0.849831 + 0.527055i \(0.176704\pi\)
\(140\) 0 0
\(141\) −3.25338 10.0129i −0.273984 0.843237i
\(142\) −6.90715 + 5.01834i −0.579635 + 0.421130i
\(143\) 31.2951 2.61703
\(144\) −0.809017 + 0.587785i −0.0674181 + 0.0489821i
\(145\) 0 0
\(146\) −3.19903 2.32423i −0.264754 0.192355i
\(147\) −2.78474 2.02323i −0.229681 0.166873i
\(148\) −2.95221 + 9.08596i −0.242670 + 0.746861i
\(149\) −11.6556 −0.954863 −0.477432 0.878669i \(-0.658432\pi\)
−0.477432 + 0.878669i \(0.658432\pi\)
\(150\) 0 0
\(151\) 5.52354 0.449499 0.224750 0.974417i \(-0.427844\pi\)
0.224750 + 0.974417i \(0.427844\pi\)
\(152\) −1.39280 + 4.28659i −0.112971 + 0.347688i
\(153\) −0.828995 0.602300i −0.0670202 0.0486931i
\(154\) −13.8564 10.0673i −1.11658 0.811245i
\(155\) 0 0
\(156\) −4.77677 + 3.47053i −0.382448 + 0.277864i
\(157\) −6.84307 −0.546136 −0.273068 0.961995i \(-0.588038\pi\)
−0.273068 + 0.961995i \(0.588038\pi\)
\(158\) 10.8177 7.85950i 0.860608 0.625268i
\(159\) −0.714161 2.19796i −0.0566366 0.174310i
\(160\) 0 0
\(161\) 1.92551 5.92611i 0.151751 0.467043i
\(162\) 0.309017 + 0.951057i 0.0242787 + 0.0747221i
\(163\) −2.90080 8.92773i −0.227208 0.699274i −0.998060 0.0622597i \(-0.980169\pi\)
0.770852 0.637014i \(-0.219831\pi\)
\(164\) −3.07816 + 9.47359i −0.240364 + 0.739763i
\(165\) 0 0
\(166\) 2.31360 + 7.12054i 0.179570 + 0.552661i
\(167\) −5.52464 + 4.01388i −0.427509 + 0.310604i −0.780652 0.624966i \(-0.785113\pi\)
0.353143 + 0.935569i \(0.385113\pi\)
\(168\) 3.23143 0.249310
\(169\) −17.6868 + 12.8502i −1.36052 + 0.988478i
\(170\) 0 0
\(171\) 3.64639 + 2.64926i 0.278846 + 0.202594i
\(172\) 4.28912 + 3.11623i 0.327042 + 0.237610i
\(173\) 5.82820 17.9373i 0.443110 1.36375i −0.441434 0.897294i \(-0.645530\pi\)
0.884544 0.466457i \(-0.154470\pi\)
\(174\) −0.260762 −0.0197683
\(175\) 0 0
\(176\) 5.30029 0.399524
\(177\) −2.00615 + 6.17428i −0.150791 + 0.464087i
\(178\) 0.593474 + 0.431184i 0.0444828 + 0.0323186i
\(179\) −0.761557 0.553303i −0.0569214 0.0413558i 0.558961 0.829194i \(-0.311200\pi\)
−0.615882 + 0.787838i \(0.711200\pi\)
\(180\) 0 0
\(181\) −11.4118 + 8.29114i −0.848231 + 0.616276i −0.924658 0.380800i \(-0.875649\pi\)
0.0764270 + 0.997075i \(0.475649\pi\)
\(182\) 19.0797 1.41428
\(183\) 3.19152 2.31878i 0.235924 0.171409i
\(184\) 0.595870 + 1.83390i 0.0439281 + 0.135197i
\(185\) 0 0
\(186\) −0.692831 + 2.13232i −0.0508009 + 0.156349i
\(187\) 1.67832 + 5.16535i 0.122731 + 0.377728i
\(188\) −3.25338 10.0129i −0.237277 0.730265i
\(189\) 0.998566 3.07327i 0.0726350 0.223548i
\(190\) 0 0
\(191\) 7.87125 + 24.2252i 0.569544 + 1.75288i 0.654049 + 0.756453i \(0.273069\pi\)
−0.0845047 + 0.996423i \(0.526931\pi\)
\(192\) −0.809017 + 0.587785i −0.0583858 + 0.0424197i
\(193\) −6.63439 −0.477554 −0.238777 0.971074i \(-0.576746\pi\)
−0.238777 + 0.971074i \(0.576746\pi\)
\(194\) 13.9610 10.1432i 1.00234 0.728241i
\(195\) 0 0
\(196\) −2.78474 2.02323i −0.198910 0.144517i
\(197\) 8.23396 + 5.98232i 0.586645 + 0.426223i 0.841114 0.540858i \(-0.181900\pi\)
−0.254468 + 0.967081i \(0.581900\pi\)
\(198\) 1.63788 5.04087i 0.116399 0.358239i
\(199\) −2.52238 −0.178807 −0.0894035 0.995995i \(-0.528496\pi\)
−0.0894035 + 0.995995i \(0.528496\pi\)
\(200\) 0 0
\(201\) 9.29210 0.655414
\(202\) 3.66043 11.2656i 0.257547 0.792648i
\(203\) 0.681704 + 0.495287i 0.0478463 + 0.0347623i
\(204\) −0.828995 0.602300i −0.0580412 0.0421694i
\(205\) 0 0
\(206\) 5.78515 4.20316i 0.403071 0.292848i
\(207\) 1.92827 0.134024
\(208\) −4.77677 + 3.47053i −0.331209 + 0.240638i
\(209\) −7.38222 22.7201i −0.510639 1.57158i
\(210\) 0 0
\(211\) 4.87129 14.9923i 0.335353 1.03211i −0.631194 0.775625i \(-0.717435\pi\)
0.966548 0.256487i \(-0.0825650\pi\)
\(212\) −0.714161 2.19796i −0.0490487 0.150957i
\(213\) 2.63830 + 8.11984i 0.180773 + 0.556362i
\(214\) 0.989034 3.04393i 0.0676090 0.208079i
\(215\) 0 0
\(216\) 0.309017 + 0.951057i 0.0210259 + 0.0647112i
\(217\) 5.86135 4.25852i 0.397894 0.289087i
\(218\) 9.89555 0.670211
\(219\) −3.19903 + 2.32423i −0.216170 + 0.157057i
\(220\) 0 0
\(221\) −4.89473 3.55623i −0.329255 0.239218i
\(222\) 7.72898 + 5.61543i 0.518735 + 0.376883i
\(223\) −2.87242 + 8.84040i −0.192351 + 0.591997i 0.807646 + 0.589668i \(0.200741\pi\)
−0.999997 + 0.00232890i \(0.999259\pi\)
\(224\) 3.23143 0.215909
\(225\) 0 0
\(226\) −4.24575 −0.282423
\(227\) −1.12423 + 3.46003i −0.0746178 + 0.229650i −0.981408 0.191931i \(-0.938525\pi\)
0.906791 + 0.421582i \(0.138525\pi\)
\(228\) 3.64639 + 2.64926i 0.241488 + 0.175451i
\(229\) −8.03500 5.83777i −0.530968 0.385771i 0.289752 0.957102i \(-0.406427\pi\)
−0.820720 + 0.571331i \(0.806427\pi\)
\(230\) 0 0
\(231\) −13.8564 + 10.0673i −0.911686 + 0.662379i
\(232\) −0.260762 −0.0171198
\(233\) −15.2009 + 11.0441i −0.995844 + 0.723523i −0.961193 0.275877i \(-0.911032\pi\)
−0.0346507 + 0.999399i \(0.511032\pi\)
\(234\) 1.82456 + 5.61543i 0.119275 + 0.367092i
\(235\) 0 0
\(236\) −2.00615 + 6.17428i −0.130589 + 0.401912i
\(237\) −4.13198 12.7169i −0.268401 0.826054i
\(238\) 1.02322 + 3.14916i 0.0663258 + 0.204130i
\(239\) −3.01349 + 9.27457i −0.194926 + 0.599922i 0.805051 + 0.593206i \(0.202138\pi\)
−0.999977 + 0.00671626i \(0.997862\pi\)
\(240\) 0 0
\(241\) 5.84694 + 17.9950i 0.376634 + 1.15916i 0.942369 + 0.334574i \(0.108592\pi\)
−0.565735 + 0.824587i \(0.691408\pi\)
\(242\) −13.8285 + 10.0470i −0.888933 + 0.645848i
\(243\) 1.00000 0.0641500
\(244\) 3.19152 2.31878i 0.204316 0.148444i
\(245\) 0 0
\(246\) 8.05872 + 5.85500i 0.513805 + 0.373301i
\(247\) 21.5298 + 15.6423i 1.36991 + 0.995296i
\(248\) −0.692831 + 2.13232i −0.0439948 + 0.135402i
\(249\) 7.48698 0.474468
\(250\) 0 0
\(251\) −1.98608 −0.125360 −0.0626801 0.998034i \(-0.519965\pi\)
−0.0626801 + 0.998034i \(0.519965\pi\)
\(252\) 0.998566 3.07327i 0.0629038 0.193598i
\(253\) −8.26848 6.00740i −0.519835 0.377682i
\(254\) 7.48413 + 5.43754i 0.469596 + 0.341182i
\(255\) 0 0
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) −19.2797 −1.20263 −0.601317 0.799010i \(-0.705357\pi\)
−0.601317 + 0.799010i \(0.705357\pi\)
\(258\) 4.28912 3.11623i 0.267029 0.194008i
\(259\) −9.53984 29.3606i −0.592777 1.82438i
\(260\) 0 0
\(261\) −0.0805798 + 0.247999i −0.00498777 + 0.0153508i
\(262\) −1.50336 4.62686i −0.0928778 0.285848i
\(263\) 3.87188 + 11.9164i 0.238751 + 0.734799i 0.996602 + 0.0823713i \(0.0262493\pi\)
−0.757851 + 0.652428i \(0.773751\pi\)
\(264\) 1.63788 5.04087i 0.100804 0.310244i
\(265\) 0 0
\(266\) −4.50072 13.8518i −0.275957 0.849308i
\(267\) 0.593474 0.431184i 0.0363200 0.0263880i
\(268\) 9.29210 0.567605
\(269\) −10.9160 + 7.93096i −0.665562 + 0.483559i −0.868537 0.495625i \(-0.834939\pi\)
0.202975 + 0.979184i \(0.434939\pi\)
\(270\) 0 0
\(271\) 21.6926 + 15.7606i 1.31773 + 0.957387i 0.999957 + 0.00922023i \(0.00293493\pi\)
0.317773 + 0.948167i \(0.397065\pi\)
\(272\) −0.828995 0.602300i −0.0502652 0.0365198i
\(273\) 5.89595 18.1459i 0.356839 1.09824i
\(274\) 6.01666 0.363480
\(275\) 0 0
\(276\) 1.92827 0.116068
\(277\) 2.52382 7.76751i 0.151641 0.466704i −0.846164 0.532923i \(-0.821094\pi\)
0.997805 + 0.0662188i \(0.0210935\pi\)
\(278\) 4.55250 + 3.30758i 0.273041 + 0.198376i
\(279\) 1.81386 + 1.31784i 0.108593 + 0.0788972i
\(280\) 0 0
\(281\) −25.3561 + 18.4223i −1.51262 + 1.09898i −0.547615 + 0.836730i \(0.684464\pi\)
−0.965000 + 0.262249i \(0.915536\pi\)
\(282\) −10.5282 −0.626943
\(283\) 13.2277 9.61049i 0.786306 0.571284i −0.120559 0.992706i \(-0.538469\pi\)
0.906865 + 0.421422i \(0.138469\pi\)
\(284\) 2.63830 + 8.11984i 0.156554 + 0.481824i
\(285\) 0 0
\(286\) 9.67071 29.7634i 0.571841 1.75995i
\(287\) −9.94684 30.6132i −0.587143 1.80704i
\(288\) 0.309017 + 0.951057i 0.0182090 + 0.0560415i
\(289\) −4.92882 + 15.1694i −0.289931 + 0.892315i
\(290\) 0 0
\(291\) −5.33261 16.4121i −0.312603 0.962093i
\(292\) −3.19903 + 2.32423i −0.187209 + 0.136015i
\(293\) −28.1867 −1.64669 −0.823343 0.567545i \(-0.807893\pi\)
−0.823343 + 0.567545i \(0.807893\pi\)
\(294\) −2.78474 + 2.02323i −0.162409 + 0.117997i
\(295\) 0 0
\(296\) 7.72898 + 5.61543i 0.449238 + 0.326390i
\(297\) −4.28802 3.11543i −0.248816 0.180776i
\(298\) −3.60178 + 11.0851i −0.208645 + 0.642144i
\(299\) 11.3853 0.658431
\(300\) 0 0
\(301\) −17.1319 −0.987464
\(302\) 1.70687 5.25320i 0.0982192 0.302288i
\(303\) −9.58313 6.96255i −0.550537 0.399988i
\(304\) 3.64639 + 2.64926i 0.209135 + 0.151945i
\(305\) 0 0
\(306\) −0.828995 + 0.602300i −0.0473905 + 0.0344312i
\(307\) −14.5372 −0.829680 −0.414840 0.909894i \(-0.636163\pi\)
−0.414840 + 0.909894i \(0.636163\pi\)
\(308\) −13.8564 + 10.0673i −0.789543 + 0.573637i
\(309\) −2.20973 6.80085i −0.125707 0.386887i
\(310\) 0 0
\(311\) 4.47841 13.7831i 0.253947 0.781570i −0.740088 0.672510i \(-0.765216\pi\)
0.994035 0.109060i \(-0.0347839\pi\)
\(312\) 1.82456 + 5.61543i 0.103296 + 0.317911i
\(313\) −9.74294 29.9857i −0.550703 1.69489i −0.707029 0.707185i \(-0.749965\pi\)
0.156325 0.987706i \(-0.450035\pi\)
\(314\) −2.11462 + 6.50814i −0.119335 + 0.367276i
\(315\) 0 0
\(316\) −4.13198 12.7169i −0.232442 0.715384i
\(317\) 12.1199 8.80564i 0.680722 0.494574i −0.192875 0.981223i \(-0.561781\pi\)
0.873597 + 0.486650i \(0.161781\pi\)
\(318\) −2.31107 −0.129598
\(319\) 1.11815 0.812385i 0.0626045 0.0454848i
\(320\) 0 0
\(321\) −2.58932 1.88125i −0.144522 0.105001i
\(322\) −5.04105 3.66254i −0.280927 0.204105i
\(323\) −1.42719 + 4.39244i −0.0794110 + 0.244402i
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −9.38717 −0.519907
\(327\) 3.05789 9.41123i 0.169102 0.520442i
\(328\) 8.05872 + 5.85500i 0.444968 + 0.323288i
\(329\) 27.5236 + 19.9971i 1.51742 + 1.10247i
\(330\) 0 0
\(331\) 17.4888 12.7064i 0.961273 0.698406i 0.00782724 0.999969i \(-0.497508\pi\)
0.953446 + 0.301563i \(0.0975085\pi\)
\(332\) 7.48698 0.410901
\(333\) 7.72898 5.61543i 0.423545 0.307724i
\(334\) 2.11022 + 6.49460i 0.115466 + 0.355369i
\(335\) 0 0
\(336\) 0.998566 3.07327i 0.0544762 0.167661i
\(337\) −2.34697 7.22323i −0.127848 0.393474i 0.866562 0.499070i \(-0.166325\pi\)
−0.994409 + 0.105596i \(0.966325\pi\)
\(338\) 6.75576 + 20.7921i 0.367465 + 1.13094i
\(339\) −1.31201 + 4.03794i −0.0712585 + 0.219311i
\(340\) 0 0
\(341\) −3.67220 11.3019i −0.198861 0.612031i
\(342\) 3.64639 2.64926i 0.197174 0.143255i
\(343\) −11.4970 −0.620780
\(344\) 4.28912 3.11623i 0.231254 0.168016i
\(345\) 0 0
\(346\) −15.2584 11.0859i −0.820298 0.595981i
\(347\) 6.09436 + 4.42781i 0.327162 + 0.237697i 0.739226 0.673458i \(-0.235192\pi\)
−0.412063 + 0.911155i \(0.635192\pi\)
\(348\) −0.0805798 + 0.247999i −0.00431953 + 0.0132942i
\(349\) 18.7527 1.00381 0.501904 0.864923i \(-0.332633\pi\)
0.501904 + 0.864923i \(0.332633\pi\)
\(350\) 0 0
\(351\) 5.90441 0.315154
\(352\) 1.63788 5.04087i 0.0872992 0.268679i
\(353\) −3.53223 2.56631i −0.188001 0.136591i 0.489803 0.871833i \(-0.337069\pi\)
−0.677805 + 0.735242i \(0.737069\pi\)
\(354\) 5.25216 + 3.81592i 0.279149 + 0.202814i
\(355\) 0 0
\(356\) 0.593474 0.431184i 0.0314541 0.0228527i
\(357\) 3.31122 0.175249
\(358\) −0.761557 + 0.553303i −0.0402495 + 0.0292430i
\(359\) 0.227811 + 0.701130i 0.0120234 + 0.0370042i 0.956888 0.290456i \(-0.0938071\pi\)
−0.944865 + 0.327461i \(0.893807\pi\)
\(360\) 0 0
\(361\) 0.406269 1.25037i 0.0213826 0.0658088i
\(362\) 4.35891 + 13.4153i 0.229099 + 0.705095i
\(363\) 5.28204 + 16.2564i 0.277235 + 0.853242i
\(364\) 5.89595 18.1459i 0.309032 0.951101i
\(365\) 0 0
\(366\) −1.21905 3.75186i −0.0637209 0.196113i
\(367\) −15.2581 + 11.0856i −0.796466 + 0.578666i −0.909875 0.414882i \(-0.863823\pi\)
0.113410 + 0.993548i \(0.463823\pi\)
\(368\) 1.92827 0.100518
\(369\) 8.05872 5.85500i 0.419520 0.304799i
\(370\) 0 0
\(371\) 6.04179 + 4.38962i 0.313674 + 0.227898i
\(372\) 1.81386 + 1.31784i 0.0940441 + 0.0683270i
\(373\) −9.22003 + 28.3763i −0.477395 + 1.46927i 0.365305 + 0.930888i \(0.380965\pi\)
−0.842700 + 0.538383i \(0.819035\pi\)
\(374\) 5.43117 0.280839
\(375\) 0 0
\(376\) −10.5282 −0.542949
\(377\) −0.475776 + 1.46429i −0.0245037 + 0.0754147i
\(378\) −2.61428 1.89939i −0.134464 0.0976939i
\(379\) −20.6159 14.9783i −1.05897 0.769384i −0.0850692 0.996375i \(-0.527111\pi\)
−0.973897 + 0.226991i \(0.927111\pi\)
\(380\) 0 0
\(381\) 7.48413 5.43754i 0.383424 0.278574i
\(382\) 25.4719 1.30326
\(383\) −25.6000 + 18.5995i −1.30810 + 0.950389i −1.00000 0.000965638i \(-0.999693\pi\)
−0.308098 + 0.951354i \(0.599693\pi\)
\(384\) 0.309017 + 0.951057i 0.0157695 + 0.0485334i
\(385\) 0 0
\(386\) −2.05014 + 6.30968i −0.104349 + 0.321154i
\(387\) −1.63830 5.04216i −0.0832793 0.256307i
\(388\) −5.33261 16.4121i −0.270722 0.833197i
\(389\) 3.72304 11.4583i 0.188766 0.580961i −0.811227 0.584731i \(-0.801200\pi\)
0.999993 + 0.00377022i \(0.00120010\pi\)
\(390\) 0 0
\(391\) 0.610584 + 1.87918i 0.0308786 + 0.0950344i
\(392\) −2.78474 + 2.02323i −0.140651 + 0.102189i
\(393\) −4.86497 −0.245405
\(394\) 8.23396 5.98232i 0.414821 0.301385i
\(395\) 0 0
\(396\) −4.28802 3.11543i −0.215481 0.156556i
\(397\) −20.8374 15.1393i −1.04580 0.759819i −0.0743920 0.997229i \(-0.523702\pi\)
−0.971410 + 0.237410i \(0.923702\pi\)
\(398\) −0.779460 + 2.39893i −0.0390708 + 0.120247i
\(399\) −14.5646 −0.729144
\(400\) 0 0
\(401\) 26.3196 1.31434 0.657169 0.753743i \(-0.271754\pi\)
0.657169 + 0.753743i \(0.271754\pi\)
\(402\) 2.87142 8.83731i 0.143213 0.440765i
\(403\) 10.7098 + 7.78109i 0.533491 + 0.387604i
\(404\) −9.58313 6.96255i −0.476779 0.346400i
\(405\) 0 0
\(406\) 0.681704 0.495287i 0.0338324 0.0245807i
\(407\) −50.6365 −2.50996
\(408\) −0.828995 + 0.602300i −0.0410414 + 0.0298183i
\(409\) 11.3630 + 34.9716i 0.561863 + 1.72924i 0.677093 + 0.735897i \(0.263239\pi\)
−0.115230 + 0.993339i \(0.536761\pi\)
\(410\) 0 0
\(411\) 1.85925 5.72219i 0.0917101 0.282255i
\(412\) −2.20973 6.80085i −0.108866 0.335054i
\(413\) −6.48272 19.9517i −0.318994 0.981761i
\(414\) 0.595870 1.83390i 0.0292854 0.0901312i
\(415\) 0 0
\(416\) 1.82456 + 5.61543i 0.0894566 + 0.275319i
\(417\) 4.55250 3.30758i 0.222937 0.161973i
\(418\) −23.8894 −1.16847
\(419\) 25.6657 18.6472i 1.25385 0.910975i 0.255411 0.966833i \(-0.417789\pi\)
0.998439 + 0.0558572i \(0.0177891\pi\)
\(420\) 0 0
\(421\) −7.13332 5.18266i −0.347657 0.252587i 0.400229 0.916415i \(-0.368931\pi\)
−0.747885 + 0.663828i \(0.768931\pi\)
\(422\) −12.7532 9.26574i −0.620816 0.451049i
\(423\) −3.25338 + 10.0129i −0.158185 + 0.486843i
\(424\) −2.31107 −0.112236
\(425\) 0 0
\(426\) 8.53771 0.413653
\(427\) −3.93928 + 12.1239i −0.190635 + 0.586715i
\(428\) −2.58932 1.88125i −0.125160 0.0909339i
\(429\) −25.3182 18.3948i −1.22238 0.888108i
\(430\) 0 0
\(431\) −19.0172 + 13.8168i −0.916026 + 0.665532i −0.942532 0.334117i \(-0.891562\pi\)
0.0265058 + 0.999649i \(0.491562\pi\)
\(432\) 1.00000 0.0481125
\(433\) 6.79827 4.93923i 0.326704 0.237364i −0.412327 0.911036i \(-0.635284\pi\)
0.739031 + 0.673672i \(0.235284\pi\)
\(434\) −2.23883 6.89042i −0.107468 0.330751i
\(435\) 0 0
\(436\) 3.05789 9.41123i 0.146447 0.450716i
\(437\) −2.68569 8.26572i −0.128474 0.395403i
\(438\) 1.22192 + 3.76068i 0.0583856 + 0.179692i
\(439\) 11.0111 33.8885i 0.525529 1.61741i −0.237739 0.971329i \(-0.576406\pi\)
0.763268 0.646083i \(-0.223594\pi\)
\(440\) 0 0
\(441\) 1.06368 + 3.27366i 0.0506512 + 0.155888i
\(442\) −4.89473 + 3.55623i −0.232818 + 0.169152i
\(443\) −6.79550 −0.322864 −0.161432 0.986884i \(-0.551611\pi\)
−0.161432 + 0.986884i \(0.551611\pi\)
\(444\) 7.72898 5.61543i 0.366801 0.266497i
\(445\) 0 0
\(446\) 7.52009 + 5.46366i 0.356087 + 0.258712i
\(447\) 9.42957 + 6.85098i 0.446003 + 0.324040i
\(448\) 0.998566 3.07327i 0.0471778 0.145198i
\(449\) 8.75011 0.412943 0.206472 0.978453i \(-0.433802\pi\)
0.206472 + 0.978453i \(0.433802\pi\)
\(450\) 0 0
\(451\) −52.7968 −2.48610
\(452\) −1.31201 + 4.03794i −0.0617117 + 0.189929i
\(453\) −4.46864 3.24666i −0.209955 0.152541i
\(454\) 2.94327 + 2.13841i 0.138135 + 0.100361i
\(455\) 0 0
\(456\) 3.64639 2.64926i 0.170758 0.124063i
\(457\) 38.1474 1.78446 0.892230 0.451581i \(-0.149140\pi\)
0.892230 + 0.451581i \(0.149140\pi\)
\(458\) −8.03500 + 5.83777i −0.375451 + 0.272781i
\(459\) 0.316648 + 0.974542i 0.0147799 + 0.0454877i
\(460\) 0 0
\(461\) −0.392689 + 1.20857i −0.0182893 + 0.0562888i −0.959785 0.280737i \(-0.909421\pi\)
0.941495 + 0.337026i \(0.109421\pi\)
\(462\) 5.29269 + 16.2892i 0.246238 + 0.757843i
\(463\) −2.76060 8.49626i −0.128296 0.394855i 0.866191 0.499713i \(-0.166561\pi\)
−0.994487 + 0.104858i \(0.966561\pi\)
\(464\) −0.0805798 + 0.247999i −0.00374082 + 0.0115131i
\(465\) 0 0
\(466\) 5.80623 + 17.8697i 0.268968 + 0.827799i
\(467\) −4.65737 + 3.38378i −0.215517 + 0.156582i −0.690306 0.723517i \(-0.742524\pi\)
0.474789 + 0.880100i \(0.342524\pi\)
\(468\) 5.90441 0.272932
\(469\) −24.2922 + 17.6493i −1.12171 + 0.814968i
\(470\) 0 0
\(471\) 5.53616 + 4.02225i 0.255093 + 0.185336i
\(472\) 5.25216 + 3.81592i 0.241750 + 0.175642i
\(473\) −8.68344 + 26.7249i −0.399265 + 1.22881i
\(474\) −13.3714 −0.614168
\(475\) 0 0
\(476\) 3.31122 0.151770
\(477\) −0.714161 + 2.19796i −0.0326992 + 0.100638i
\(478\) 7.88942 + 5.73200i 0.360854 + 0.262175i
\(479\) 3.74616 + 2.72175i 0.171167 + 0.124360i 0.670070 0.742298i \(-0.266264\pi\)
−0.498904 + 0.866657i \(0.666264\pi\)
\(480\) 0 0
\(481\) 45.6351 33.1558i 2.08078 1.51177i
\(482\) 18.9211 0.861832
\(483\) −5.04105 + 3.66254i −0.229376 + 0.166651i
\(484\) 5.28204 + 16.2564i 0.240093 + 0.738929i
\(485\) 0 0
\(486\) 0.309017 0.951057i 0.0140173 0.0431408i
\(487\) −4.92064 15.1442i −0.222975 0.686248i −0.998491 0.0549192i \(-0.982510\pi\)
0.775515 0.631329i \(-0.217490\pi\)
\(488\) −1.21905 3.75186i −0.0551839 0.169839i
\(489\) −2.90080 + 8.92773i −0.131178 + 0.403726i
\(490\) 0 0
\(491\) −1.97176 6.06846i −0.0889844 0.273866i 0.896655 0.442730i \(-0.145990\pi\)
−0.985639 + 0.168864i \(0.945990\pi\)
\(492\) 8.05872 5.85500i 0.363315 0.263964i
\(493\) −0.267201 −0.0120341
\(494\) 21.5298 15.6423i 0.968671 0.703780i
\(495\) 0 0
\(496\) 1.81386 + 1.31784i 0.0814445 + 0.0591729i
\(497\) −22.3200 16.2164i −1.00119 0.727405i
\(498\) 2.31360 7.12054i 0.103675 0.319079i
\(499\) 12.9135 0.578087 0.289044 0.957316i \(-0.406663\pi\)
0.289044 + 0.957316i \(0.406663\pi\)
\(500\) 0 0
\(501\) 6.82883 0.305090
\(502\) −0.613732 + 1.88887i −0.0273922 + 0.0843046i
\(503\) −1.17472 0.853483i −0.0523781 0.0380549i 0.561288 0.827620i \(-0.310306\pi\)
−0.613666 + 0.789566i \(0.710306\pi\)
\(504\) −2.61428 1.89939i −0.116449 0.0846054i
\(505\) 0 0
\(506\) −8.26848 + 6.00740i −0.367579 + 0.267062i
\(507\) 21.8621 0.970929
\(508\) 7.48413 5.43754i 0.332055 0.241252i
\(509\) −3.83481 11.8023i −0.169975 0.523130i 0.829393 0.558665i \(-0.188686\pi\)
−0.999368 + 0.0355355i \(0.988686\pi\)
\(510\) 0 0
\(511\) 3.94855 12.1524i 0.174673 0.537590i
\(512\) 0.309017 + 0.951057i 0.0136568 + 0.0420312i
\(513\) −1.39280 4.28659i −0.0614935 0.189257i
\(514\) −5.95775 + 18.3361i −0.262785 + 0.808770i
\(515\) 0 0
\(516\) −1.63830 5.04216i −0.0721220 0.221969i
\(517\) 45.1450 32.7998i 1.98548 1.44253i
\(518\) −30.8716 −1.35642
\(519\) −15.2584 + 11.0859i −0.669770 + 0.486617i
\(520\) 0 0
\(521\) −6.42857 4.67063i −0.281641 0.204624i 0.437992 0.898979i \(-0.355690\pi\)
−0.719633 + 0.694355i \(0.755690\pi\)
\(522\) 0.210961 + 0.153272i 0.00923350 + 0.00670853i
\(523\) 10.7632 33.1258i 0.470643 1.44849i −0.381101 0.924533i \(-0.624455\pi\)
0.851745 0.523957i \(-0.175545\pi\)
\(524\) −4.86497 −0.212527
\(525\) 0 0
\(526\) 12.5297 0.546320
\(527\) −0.709940 + 2.18497i −0.0309255 + 0.0951788i
\(528\) −4.28802 3.11543i −0.186612 0.135582i
\(529\) 15.5993 + 11.3335i 0.678229 + 0.492762i
\(530\) 0 0
\(531\) 5.25216 3.81592i 0.227924 0.165597i
\(532\) −14.5646 −0.631457
\(533\) 47.5820 34.5703i 2.06100 1.49741i
\(534\) −0.226687 0.697671i −0.00980970 0.0301912i
\(535\) 0 0
\(536\) 2.87142 8.83731i 0.124026 0.381714i
\(537\) 0.290889 + 0.895264i 0.0125528 + 0.0386335i
\(538\) 4.16955 + 12.8326i 0.179762 + 0.553251i
\(539\) 5.63778 17.3513i 0.242837 0.747374i
\(540\) 0 0
\(541\) 8.70571 + 26.7934i 0.374288 + 1.15194i 0.943958 + 0.330065i \(0.107071\pi\)
−0.569670 + 0.821873i \(0.692929\pi\)
\(542\) 21.6926 15.7606i 0.931776 0.676975i
\(543\) 14.1057 0.605335
\(544\) −0.828995 + 0.602300i −0.0355429 + 0.0258234i
\(545\) 0 0
\(546\) −15.4358 11.2148i −0.660591 0.479947i
\(547\) −21.9873 15.9747i −0.940108 0.683029i 0.00833839 0.999965i \(-0.497346\pi\)
−0.948447 + 0.316937i \(0.897346\pi\)
\(548\) 1.85925 5.72219i 0.0794233 0.244440i
\(549\) −3.94494 −0.168366
\(550\) 0 0
\(551\) 1.17530 0.0500695
\(552\) 0.595870 1.83390i 0.0253619 0.0780559i
\(553\) 34.9565 + 25.3974i 1.48650 + 1.08001i
\(554\) −6.60744 4.80058i −0.280723 0.203957i
\(555\) 0 0
\(556\) 4.55250 3.30758i 0.193069 0.140273i
\(557\) −6.74857 −0.285946 −0.142973 0.989727i \(-0.545666\pi\)
−0.142973 + 0.989727i \(0.545666\pi\)
\(558\) 1.81386 1.31784i 0.0767867 0.0557888i
\(559\) −9.67318 29.7710i −0.409132 1.25918i
\(560\) 0 0
\(561\) 1.67832 5.16535i 0.0708589 0.218081i
\(562\) 9.68515 + 29.8078i 0.408543 + 1.25737i
\(563\) 3.49426 + 10.7542i 0.147265 + 0.453236i 0.997295 0.0734982i \(-0.0234163\pi\)
−0.850030 + 0.526734i \(0.823416\pi\)
\(564\) −3.25338 + 10.0129i −0.136992 + 0.421618i
\(565\) 0 0
\(566\) −5.05253 15.5501i −0.212374 0.653620i
\(567\) −2.61428 + 1.89939i −0.109789 + 0.0797667i
\(568\) 8.53771 0.358234
\(569\) −20.4022 + 14.8231i −0.855304 + 0.621415i −0.926603 0.376040i \(-0.877286\pi\)
0.0712991 + 0.997455i \(0.477286\pi\)
\(570\) 0 0
\(571\) 22.4908 + 16.3405i 0.941209 + 0.683828i 0.948711 0.316144i \(-0.102388\pi\)
−0.00750262 + 0.999972i \(0.502388\pi\)
\(572\) −25.3182 18.3948i −1.05861 0.769124i
\(573\) 7.87125 24.2252i 0.328826 1.01202i
\(574\) −32.1886 −1.34353
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) −3.55168 + 10.9309i −0.147858 + 0.455061i −0.997367 0.0725129i \(-0.976898\pi\)
0.849509 + 0.527574i \(0.176898\pi\)
\(578\) 12.9038 + 9.37518i 0.536728 + 0.389956i
\(579\) 5.36734 + 3.89960i 0.223059 + 0.162062i
\(580\) 0 0
\(581\) −19.5731 + 14.2207i −0.812027 + 0.589972i
\(582\) −17.2567 −0.715313
\(583\) 9.90993 7.19998i 0.410427 0.298193i
\(584\) 1.22192 + 3.76068i 0.0505634 + 0.155618i
\(585\) 0 0
\(586\) −8.71017 + 26.8072i −0.359814 + 1.10739i
\(587\) 13.0492 + 40.1613i 0.538598 + 1.65763i 0.735745 + 0.677259i \(0.236832\pi\)
−0.197147 + 0.980374i \(0.563168\pi\)
\(588\) 1.06368 + 3.27366i 0.0438652 + 0.135003i
\(589\) 3.12272 9.61074i 0.128669 0.396004i
\(590\) 0 0
\(591\) −3.14509 9.67960i −0.129372 0.398166i
\(592\) 7.72898 5.61543i 0.317659 0.230793i
\(593\) −0.0131121 −0.000538451 −0.000269225 1.00000i \(-0.500086\pi\)
−0.000269225 1.00000i \(0.500086\pi\)
\(594\) −4.28802 + 3.11543i −0.175940 + 0.127828i
\(595\) 0 0
\(596\) 9.42957 + 6.85098i 0.386250 + 0.280627i
\(597\) 2.04065 + 1.48262i 0.0835183 + 0.0606796i
\(598\) 3.51826 10.8281i 0.143872 0.442794i
\(599\) 2.38072 0.0972738 0.0486369 0.998817i \(-0.484512\pi\)
0.0486369 + 0.998817i \(0.484512\pi\)
\(600\) 0 0
\(601\) −19.6020 −0.799581 −0.399790 0.916607i \(-0.630917\pi\)
−0.399790 + 0.916607i \(0.630917\pi\)
\(602\) −5.29404 + 16.2934i −0.215769 + 0.664068i
\(603\) −7.51747 5.46176i −0.306135 0.222420i
\(604\) −4.46864 3.24666i −0.181826 0.132105i
\(605\) 0 0
\(606\) −9.58313 + 6.96255i −0.389288 + 0.282834i
\(607\) 10.7155 0.434930 0.217465 0.976068i \(-0.430221\pi\)
0.217465 + 0.976068i \(0.430221\pi\)
\(608\) 3.64639 2.64926i 0.147881 0.107442i
\(609\) −0.260388 0.801391i −0.0105514 0.0324740i
\(610\) 0 0
\(611\) −19.2093 + 59.1202i −0.777126 + 2.39175i
\(612\) 0.316648 + 0.974542i 0.0127997 + 0.0393935i
\(613\) 0.359801 + 1.10735i 0.0145322 + 0.0447256i 0.958060 0.286569i \(-0.0925147\pi\)
−0.943527 + 0.331294i \(0.892515\pi\)
\(614\) −4.49223 + 13.8257i −0.181292 + 0.557959i
\(615\) 0 0
\(616\) 5.29269 + 16.2892i 0.213248 + 0.656311i
\(617\) −18.3190 + 13.3095i −0.737495 + 0.535821i −0.891926 0.452182i \(-0.850646\pi\)
0.154431 + 0.988004i \(0.450646\pi\)
\(618\) −7.15084 −0.287649
\(619\) −20.0413 + 14.5609i −0.805529 + 0.585251i −0.912531 0.409008i \(-0.865875\pi\)
0.107002 + 0.994259i \(0.465875\pi\)
\(620\) 0 0
\(621\) −1.56001 1.13341i −0.0626009 0.0454822i
\(622\) −11.7246 8.51844i −0.470115 0.341559i
\(623\) −0.732522 + 2.25447i −0.0293479 + 0.0903235i
\(624\) 5.90441 0.236366
\(625\) 0 0
\(626\) −31.5288 −1.26014
\(627\) −7.38222 + 22.7201i −0.294817 + 0.907355i
\(628\) 5.53616 + 4.02225i 0.220917 + 0.160505i
\(629\) 7.91983 + 5.75410i 0.315784 + 0.229431i
\(630\) 0 0
\(631\) 26.4156 19.1920i 1.05159 0.764023i 0.0790740 0.996869i \(-0.474804\pi\)
0.972514 + 0.232845i \(0.0748036\pi\)
\(632\) −13.3714 −0.531885
\(633\) −12.7532 + 9.26574i −0.506894 + 0.368280i
\(634\) −4.62940 14.2478i −0.183857 0.565853i
\(635\) 0 0
\(636\) −0.714161 + 2.19796i −0.0283183 + 0.0871548i
\(637\) 6.28038 + 19.3290i 0.248838 + 0.765844i
\(638\) −0.427096 1.31447i −0.0169089 0.0520402i
\(639\) 2.63830 8.11984i 0.104369 0.321216i
\(640\) 0 0
\(641\) −8.29842 25.5399i −0.327768 1.00877i −0.970176 0.242403i \(-0.922064\pi\)
0.642408 0.766363i \(-0.277936\pi\)
\(642\) −2.58932 + 1.88125i −0.102193 + 0.0742472i
\(643\) 17.1051 0.674559 0.337279 0.941405i \(-0.390493\pi\)
0.337279 + 0.941405i \(0.390493\pi\)
\(644\) −5.04105 + 3.66254i −0.198645 + 0.144324i
\(645\) 0 0
\(646\) 3.73643 + 2.71468i 0.147008 + 0.106808i
\(647\) 37.0639 + 26.9285i 1.45713 + 1.05867i 0.984098 + 0.177626i \(0.0568418\pi\)
0.473036 + 0.881043i \(0.343158\pi\)
\(648\) 0.309017 0.951057i 0.0121393 0.0373610i
\(649\) −34.4096 −1.35069
\(650\) 0 0
\(651\) −7.24502 −0.283955
\(652\) −2.90080 + 8.92773i −0.113604 + 0.349637i
\(653\) 9.26769 + 6.73337i 0.362673 + 0.263497i 0.754166 0.656684i \(-0.228041\pi\)
−0.391493 + 0.920181i \(0.628041\pi\)
\(654\) −8.00567 5.81646i −0.313046 0.227442i
\(655\) 0 0
\(656\) 8.05872 5.85500i 0.314640 0.228599i
\(657\) 3.95422 0.154269
\(658\) 27.5236 19.9971i 1.07298 0.779566i
\(659\) 12.3601 + 38.0405i 0.481482 + 1.48185i 0.837013 + 0.547183i \(0.184300\pi\)
−0.355531 + 0.934664i \(0.615700\pi\)
\(660\) 0 0
\(661\) −1.75871 + 5.41276i −0.0684060 + 0.210532i −0.979416 0.201852i \(-0.935304\pi\)
0.911010 + 0.412384i \(0.135304\pi\)
\(662\) −6.68014 20.5594i −0.259631 0.799062i
\(663\) 1.86962 + 5.75410i 0.0726100 + 0.223471i
\(664\) 2.31360 7.12054i 0.0897852 0.276331i
\(665\) 0 0
\(666\) −2.95221 9.08596i −0.114396 0.352074i
\(667\) 0.406790 0.295550i 0.0157510 0.0114438i
\(668\) 6.82883 0.264215
\(669\) 7.52009 5.46366i 0.290743 0.211237i
\(670\) 0 0
\(671\) 16.9160 + 12.2902i 0.653034 + 0.474457i
\(672\) −2.61428 1.89939i −0.100848 0.0732704i
\(673\) −14.9727 + 46.0813i −0.577156 + 1.77630i 0.0515628 + 0.998670i \(0.483580\pi\)
−0.628719 + 0.777633i \(0.716420\pi\)
\(674\) −7.59495 −0.292547
\(675\) 0 0
\(676\) 21.8621 0.840849
\(677\) −5.71966 + 17.6033i −0.219824 + 0.676550i 0.778951 + 0.627084i \(0.215752\pi\)
−0.998776 + 0.0494656i \(0.984248\pi\)
\(678\) 3.43488 + 2.49559i 0.131916 + 0.0958424i
\(679\) 45.1138 + 32.7771i 1.73131 + 1.25787i
\(680\) 0 0
\(681\) 2.94327 2.13841i 0.112787 0.0819442i
\(682\) −11.8835 −0.455043
\(683\) −29.1442 + 21.1745i −1.11517 + 0.810219i −0.983470 0.181070i \(-0.942044\pi\)
−0.131701 + 0.991289i \(0.542044\pi\)
\(684\) −1.39280 4.28659i −0.0532549 0.163902i
\(685\) 0 0
\(686\) −3.55277 + 10.9343i −0.135645 + 0.417474i
\(687\) 3.06910 + 9.44571i 0.117093 + 0.360376i
\(688\) −1.63830 5.04216i −0.0624595 0.192231i
\(689\) −4.21670 + 12.9777i −0.160643 + 0.494410i
\(690\) 0 0
\(691\) −4.47133 13.7613i −0.170097 0.523506i 0.829278 0.558836i \(-0.188752\pi\)
−0.999376 + 0.0353301i \(0.988752\pi\)
\(692\) −15.2584 + 11.0859i −0.580038 + 0.421422i
\(693\) 17.1275 0.650620
\(694\) 6.09436 4.42781i 0.231339 0.168077i
\(695\) 0 0
\(696\) 0.210961 + 0.153272i 0.00799644 + 0.00580976i
\(697\) 8.25772 + 5.99958i 0.312783 + 0.227250i
\(698\) 5.79489 17.8349i 0.219340 0.675059i
\(699\) 18.7893 0.710678
\(700\) 0 0
\(701\) 8.31284 0.313972 0.156986 0.987601i \(-0.449822\pi\)
0.156986 + 0.987601i \(0.449822\pi\)
\(702\) 1.82456 5.61543i 0.0688637 0.211941i
\(703\) −34.8359 25.3098i −1.31386 0.954576i
\(704\) −4.28802 3.11543i −0.161611 0.117417i
\(705\) 0 0
\(706\) −3.53223 + 2.56631i −0.132937 + 0.0965845i
\(707\) 38.2776 1.43958
\(708\) 5.25216 3.81592i 0.197388 0.143411i
\(709\) −2.77255 8.53302i −0.104125 0.320464i 0.885399 0.464832i \(-0.153885\pi\)
−0.989524 + 0.144368i \(0.953885\pi\)
\(710\) 0 0
\(711\) −4.13198 + 12.7169i −0.154962 + 0.476923i
\(712\) −0.226687 0.697671i −0.00849545 0.0261463i
\(713\) −1.33597 4.11169i −0.0500324 0.153984i
\(714\) 1.02322 3.14916i 0.0382932 0.117854i
\(715\) 0 0
\(716\) 0.290889 + 0.895264i 0.0108710 + 0.0334576i
\(717\) 7.88942 5.73200i 0.294636 0.214065i
\(718\) 0.737212 0.0275125
\(719\) −22.7445 + 16.5249i −0.848228 + 0.616274i −0.924657 0.380801i \(-0.875648\pi\)
0.0764289 + 0.997075i \(0.475648\pi\)
\(720\) 0 0
\(721\) 18.6943 + 13.5822i 0.696212 + 0.505828i
\(722\) −1.06363 0.772769i −0.0395840 0.0287595i
\(723\) 5.84694 17.9950i 0.217450 0.669242i
\(724\) 14.1057 0.524235
\(725\) 0 0
\(726\) 17.0930 0.634382
\(727\) 7.68734 23.6592i 0.285108 0.877471i −0.701259 0.712907i \(-0.747378\pi\)
0.986366 0.164564i \(-0.0526217\pi\)
\(728\) −15.4358 11.2148i −0.572088 0.415647i
\(729\) −0.809017 0.587785i −0.0299636 0.0217698i
\(730\) 0 0
\(731\) 4.39503 3.19318i 0.162556 0.118104i
\(732\) −3.94494 −0.145809
\(733\) 5.46572 3.97108i 0.201881 0.146675i −0.482252 0.876033i \(-0.660181\pi\)
0.684133 + 0.729358i \(0.260181\pi\)
\(734\) 5.82807 + 17.9370i 0.215118 + 0.662065i
\(735\) 0 0
\(736\) 0.595870 1.83390i 0.0219640 0.0675984i
\(737\) 15.2193 + 46.8403i 0.560611 + 1.72538i
\(738\) −3.07816 9.47359i −0.113308 0.348728i
\(739\) −1.57339 + 4.84241i −0.0578783 + 0.178131i −0.975816 0.218593i \(-0.929853\pi\)
0.917938 + 0.396724i \(0.129853\pi\)
\(740\) 0 0
\(741\) −8.22365 25.3098i −0.302103 0.929778i
\(742\) 6.04179 4.38962i 0.221801 0.161148i
\(743\) 16.0999 0.590647 0.295324 0.955397i \(-0.404573\pi\)
0.295324 + 0.955397i \(0.404573\pi\)
\(744\) 1.81386 1.31784i 0.0664992 0.0483145i
\(745\) 0 0
\(746\) 24.1383 + 17.5375i 0.883768 + 0.642095i
\(747\) −6.05709 4.40074i −0.221617 0.161015i
\(748\) 1.67832 5.16535i 0.0613656 0.188864i
\(749\) 10.3424 0.377905
\(750\) 0 0
\(751\) −25.4366 −0.928196 −0.464098 0.885784i \(-0.653622\pi\)
−0.464098 + 0.885784i \(0.653622\pi\)
\(752\) −3.25338 + 10.0129i −0.118639 + 0.365132i
\(753\) 1.60677 + 1.16739i 0.0585540 + 0.0425420i
\(754\) 1.24560 + 0.904981i 0.0453620 + 0.0329575i
\(755\) 0 0
\(756\) −2.61428 + 1.89939i −0.0950804 + 0.0690800i
\(757\) −12.4947 −0.454129 −0.227064 0.973880i \(-0.572913\pi\)
−0.227064 + 0.973880i \(0.572913\pi\)
\(758\) −20.6159 + 14.9783i −0.748802 + 0.544037i
\(759\) 3.15828 + 9.72018i 0.114638 + 0.352820i
\(760\) 0 0
\(761\) −3.58120 + 11.0218i −0.129818 + 0.399540i −0.994748 0.102353i \(-0.967363\pi\)
0.864930 + 0.501893i \(0.167363\pi\)
\(762\) −2.85868 8.79813i −0.103559 0.318723i
\(763\) 9.88136 + 30.4117i 0.357729 + 1.10098i
\(764\) 7.87125 24.2252i 0.284772 0.876438i
\(765\) 0 0
\(766\) 9.77832 + 30.0946i 0.353305 + 1.08736i
\(767\) 31.0109 22.5307i 1.11974 0.813538i
\(768\) 1.00000 0.0360844
\(769\) 19.2155 13.9609i 0.692927 0.503441i −0.184694 0.982796i \(-0.559129\pi\)
0.877621 + 0.479355i \(0.159129\pi\)
\(770\) 0 0
\(771\) 15.5976 + 11.3323i 0.561734 + 0.408124i
\(772\) 5.36734 + 3.89960i 0.193175 + 0.140350i
\(773\) −3.73754 + 11.5030i −0.134430 + 0.413732i −0.995501 0.0947521i \(-0.969794\pi\)
0.861071 + 0.508485i \(0.169794\pi\)
\(774\) −5.30164 −0.190564
\(775\) 0 0
\(776\) −17.2567 −0.619479
\(777\) −9.53984 + 29.3606i −0.342240 + 1.05331i
\(778\) −9.74704 7.08164i −0.349448 0.253889i
\(779\) −36.3221 26.3896i −1.30138 0.945504i
\(780\) 0 0
\(781\) −36.6099 + 26.5986i −1.31000 + 0.951774i
\(782\) 1.97589 0.0706577
\(783\) 0.210961 0.153272i 0.00753912 0.00547749i
\(784\) 1.06368 + 3.27366i 0.0379884 + 0.116916i
\(785\) 0 0
\(786\) −1.50336 + 4.62686i −0.0536230 + 0.165035i
\(787\) 6.27371 + 19.3085i 0.223634 + 0.688274i 0.998427 + 0.0560597i \(0.0178537\pi\)
−0.774794 + 0.632214i \(0.782146\pi\)
\(788\) −3.14509 9.67960i −0.112039 0.344821i
\(789\) 3.87188 11.9164i 0.137843 0.424236i
\(790\) 0 0
\(791\) −4.23966 13.0483i −0.150745 0.463945i
\(792\) −4.28802 + 3.11543i −0.152368 + 0.110702i
\(793\) −23.2925 −0.827142
\(794\) −20.8374 + 15.1393i −0.739493 + 0.537273i
\(795\) 0 0
\(796\) 2.04065 + 1.48262i 0.0723290 + 0.0525501i
\(797\) −25.6479 18.6343i −0.908493 0.660059i 0.0321399 0.999483i \(-0.489768\pi\)
−0.940633 + 0.339424i \(0.889768\pi\)
\(798\) −4.50072 + 13.8518i −0.159324 + 0.490348i
\(799\) −10.7881 −0.381657
\(800\) 0 0
\(801\) −0.733574 −0.0259196
\(802\) 8.13321 25.0314i 0.287194 0.883891i
\(803\) −16.9558 12.3191i −0.598356 0.434731i
\(804\) −7.51747 5.46176i −0.265121 0.192621i
\(805\) 0 0
\(806\) 10.7098 7.78109i 0.377235 0.274077i
\(807\) 13.4929 0.474974
\(808\) −9.58313 + 6.96255i −0.337133 + 0.244942i
\(809\) 2.69637 + 8.29856i 0.0947992 + 0.291762i 0.987201 0.159479i \(-0.0509815\pi\)
−0.892402 + 0.451241i \(0.850981\pi\)
\(810\) 0 0
\(811\) 4.69774 14.4581i 0.164960 0.507694i −0.834074 0.551653i \(-0.813997\pi\)
0.999033 + 0.0439592i \(0.0139972\pi\)
\(812\) −0.260388 0.801391i −0.00913782 0.0281233i
\(813\) −8.28583 25.5012i −0.290597 0.894365i
\(814\) −15.6475 + 48.1582i −0.548446 + 1.68794i
\(815\) 0 0
\(816\) 0.316648 + 0.974542i 0.0110849 + 0.0341158i
\(817\) −19.3318 + 14.0454i −0.676336 + 0.491387i
\(818\) 36.7714 1.28568
\(819\) −15.4358 + 11.2148i −0.539370 + 0.391875i
\(820\) 0 0
\(821\) −13.3160 9.67465i −0.464732 0.337648i 0.330653 0.943753i \(-0.392731\pi\)
−0.795385 + 0.606105i \(0.792731\pi\)
\(822\) −4.86758 3.53651i −0.169776 0.123350i
\(823\) 7.10692 21.8728i 0.247732 0.762439i −0.747444 0.664325i \(-0.768719\pi\)
0.995175 0.0981141i \(-0.0312810\pi\)
\(824\) −7.15084 −0.249111
\(825\) 0 0
\(826\) −20.9785 −0.729936
\(827\) 7.64257 23.5214i 0.265758 0.817919i −0.725760 0.687948i \(-0.758512\pi\)
0.991518 0.129971i \(-0.0414884\pi\)
\(828\) −1.56001 1.13341i −0.0542140 0.0393888i
\(829\) −16.8789 12.2632i −0.586227 0.425919i 0.254736 0.967011i \(-0.418011\pi\)
−0.840964 + 0.541091i \(0.818011\pi\)
\(830\) 0 0
\(831\) −6.60744 + 4.80058i −0.229209 + 0.166530i
\(832\) 5.90441 0.204699
\(833\) −2.85350 + 2.07319i −0.0988681 + 0.0718319i
\(834\) −1.73890 5.35178i −0.0602132 0.185317i
\(835\) 0 0
\(836\) −7.38222 + 22.7201i −0.255319 + 0.785792i
\(837\) −0.692831 2.13232i −0.0239478 0.0737036i
\(838\) −9.80341 30.1718i −0.338653 1.04227i
\(839\) −7.29166 + 22.4414i −0.251736 + 0.774764i 0.742719 + 0.669603i \(0.233536\pi\)
−0.994455 + 0.105161i \(0.966464\pi\)
\(840\) 0 0
\(841\) −8.94048 27.5160i −0.308292 0.948827i
\(842\) −7.13332 + 5.18266i −0.245830 + 0.178606i
\(843\) 31.3418 1.07947
\(844\) −12.7532 + 9.26574i −0.438983 + 0.318940i
\(845\) 0 0
\(846\) 8.51747 + 6.18830i 0.292837 + 0.212758i
\(847\) −44.6860 32.4663i −1.53543 1.11555i
\(848\) −0.714161 + 2.19796i −0.0245244 + 0.0754783i
\(849\) −16.3503 −0.561142
\(850\) 0 0
\(851\) −18.4218 −0.631493
\(852\) 2.63830 8.11984i 0.0903866 0.278181i
\(853\) 21.3280 + 15.4957i 0.730257 + 0.530563i 0.889645 0.456653i \(-0.150952\pi\)
−0.159388 + 0.987216i \(0.550952\pi\)
\(854\) 10.3132 + 7.49296i 0.352910 + 0.256404i
\(855\) 0 0
\(856\) −2.58932 + 1.88125i −0.0885013 + 0.0643000i
\(857\) −16.0891 −0.549593 −0.274797 0.961502i \(-0.588611\pi\)
−0.274797 + 0.961502i \(0.588611\pi\)
\(858\) −25.3182 + 18.3948i −0.864351 + 0.627987i
\(859\) 3.26846 + 10.0593i 0.111519 + 0.343219i 0.991205 0.132335i \(-0.0422476\pi\)
−0.879686 + 0.475554i \(0.842248\pi\)
\(860\) 0 0
\(861\) −9.94684 + 30.6132i −0.338987 + 1.04330i
\(862\) 7.26392 + 22.3560i 0.247410 + 0.761450i
\(863\) 12.9051 + 39.7177i 0.439293 + 1.35201i 0.888622 + 0.458640i \(0.151663\pi\)
−0.449329 + 0.893366i \(0.648337\pi\)
\(864\) 0.309017 0.951057i 0.0105130 0.0323556i
\(865\) 0 0
\(866\) −2.59671 7.99185i −0.0882397 0.271574i
\(867\) 12.9038 9.37518i 0.438237 0.318398i
\(868\) −7.24502 −0.245912
\(869\) 57.3368 41.6576i 1.94502 1.41314i
\(870\) 0 0
\(871\) −44.3862 32.2485i −1.50397 1.09270i
\(872\) −8.00567 5.81646i −0.271106 0.196970i
\(873\) −5.33261 + 16.4121i −0.180481 + 0.555465i
\(874\) −8.69109 −0.293980
\(875\) 0 0
\(876\) 3.95422 0.133601
\(877\) −9.83498 + 30.2690i −0.332104 + 1.02211i 0.636027 + 0.771667i \(0.280577\pi\)
−0.968131 + 0.250444i \(0.919423\pi\)
\(878\) −28.8273 20.9443i −0.972875 0.706835i
\(879\) 22.8035 + 16.5677i 0.769144 + 0.558816i
\(880\) 0 0
\(881\) 40.1535 29.1732i 1.35280 0.982870i 0.353938 0.935269i \(-0.384842\pi\)
0.998866 0.0476012i \(-0.0151577\pi\)
\(882\) 3.44213 0.115902
\(883\) 4.09442 2.97477i 0.137788 0.100109i −0.516756 0.856133i \(-0.672861\pi\)
0.654544 + 0.756024i \(0.272861\pi\)
\(884\) 1.86962 + 5.75410i 0.0628821 + 0.193531i
\(885\) 0 0
\(886\) −2.09992 + 6.46290i −0.0705483 + 0.217125i
\(887\) 3.41594 + 10.5132i 0.114696 + 0.352998i 0.991884 0.127150i \(-0.0405829\pi\)
−0.877187 + 0.480148i \(0.840583\pi\)
\(888\) −2.95221 9.08596i −0.0990696 0.304905i
\(889\) −9.23763 + 28.4305i −0.309820 + 0.953529i
\(890\) 0 0
\(891\) 1.63788 + 5.04087i 0.0548710 + 0.168876i
\(892\) 7.52009 5.46366i 0.251791 0.182937i
\(893\) 47.4524 1.58793
\(894\) 9.42957 6.85098i 0.315372 0.229131i
\(895\) 0 0
\(896\) −2.61428 1.89939i −0.0873370 0.0634540i
\(897\) −9.21092 6.69213i −0.307544 0.223444i
\(898\) 2.70393 8.32185i 0.0902314 0.277704i
\(899\) 0.584641 0.0194989
\(900\) 0 0
\(901\) −2.36814 −0.0788942
\(902\) −16.3151 + 50.2127i −0.543234 + 1.67190i
\(903\) 13.8600 + 10.0699i 0.461231 + 0.335104i
\(904\) 3.43488 + 2.49559i 0.114242 + 0.0830020i
\(905\) 0 0
\(906\) −4.46864 + 3.24666i −0.148461 + 0.107863i
\(907\) −7.57086 −0.251386 −0.125693 0.992069i \(-0.540115\pi\)
−0.125693 + 0.992069i \(0.540115\pi\)
\(908\) 2.94327 2.13841i 0.0976760 0.0709658i
\(909\) 3.66043 + 11.2656i 0.121409 + 0.373658i
\(910\) 0 0
\(911\) 11.0530 34.0177i 0.366203 1.12706i −0.583021 0.812457i \(-0.698129\pi\)
0.949224 0.314601i \(-0.101871\pi\)
\(912\) −1.39280 4.28659i −0.0461201 0.141943i
\(913\) 12.2628 + 37.7409i 0.405838 + 1.24904i
\(914\) 11.7882 36.2803i 0.389919 1.20005i
\(915\) 0 0
\(916\) 3.06910 + 9.44571i 0.101406 + 0.312095i
\(917\) 12.7184 9.24046i 0.419998 0.305147i
\(918\) 1.02469 0.0338199
\(919\) 40.1464 29.1680i 1.32431 0.962165i 0.324438 0.945907i \(-0.394825\pi\)
0.999868 0.0162579i \(-0.00517529\pi\)
\(920\) 0 0
\(921\) 11.7608 + 8.54474i 0.387532 + 0.281559i
\(922\) 1.02807 + 0.746939i 0.0338578 + 0.0245991i
\(923\) 15.5776 47.9429i 0.512743 1.57806i
\(924\) 17.1275 0.563453
\(925\) 0 0
\(926\) −8.93349 −0.293573
\(927\) −2.20973 + 6.80085i −0.0725771 + 0.223369i
\(928\) 0.210961 + 0.153272i 0.00692512 + 0.00503140i
\(929\) 13.1559 + 9.55836i 0.431633 + 0.313599i 0.782301 0.622900i \(-0.214046\pi\)
−0.350669 + 0.936500i \(0.614046\pi\)
\(930\) 0 0
\(931\) 12.5513 9.11908i 0.411353 0.298866i
\(932\) 18.7893 0.615465
\(933\) −11.7246 + 8.51844i −0.383847 + 0.278881i
\(934\) 1.77896 + 5.47507i 0.0582092 + 0.179150i
\(935\) 0 0
\(936\) 1.82456 5.61543i 0.0596377 0.183546i
\(937\) 0.176101 + 0.541982i 0.00575296 + 0.0177058i 0.953892 0.300151i \(-0.0970370\pi\)
−0.948139 + 0.317857i \(0.897037\pi\)
\(938\) 9.27878 + 28.5571i 0.302963 + 0.932424i
\(939\) −9.74294 + 29.9857i −0.317949 + 0.978545i
\(940\) 0 0
\(941\) 2.16169 + 6.65300i 0.0704691 + 0.216882i 0.980089 0.198561i \(-0.0636267\pi\)
−0.909619 + 0.415443i \(0.863627\pi\)
\(942\) 5.53616 4.02225i 0.180378 0.131052i
\(943\) −19.2078 −0.625491
\(944\) 5.25216 3.81592i 0.170943 0.124198i
\(945\) 0 0
\(946\) 22.7335 + 16.5169i 0.739131 + 0.537010i
\(947\) −27.8804 20.2563i −0.905991 0.658241i 0.0340070 0.999422i \(-0.489173\pi\)
−0.939998 + 0.341181i \(0.889173\pi\)
\(948\) −4.13198 + 12.7169i −0.134201 + 0.413027i
\(949\) 23.3473 0.757886
\(950\) 0 0
\(951\) −14.9810 −0.485794
\(952\) 1.02322 3.14916i 0.0331629 0.102065i
\(953\) −34.0081 24.7083i −1.10163 0.800382i −0.120305 0.992737i \(-0.538387\pi\)
−0.981325 + 0.192355i \(0.938387\pi\)
\(954\) 1.86970 + 1.35841i 0.0605337 + 0.0439803i
\(955\) 0 0
\(956\) 7.88942 5.73200i 0.255162 0.185386i
\(957\) −1.38211 −0.0446773
\(958\) 3.74616 2.72175i 0.121033 0.0879356i
\(959\) 6.00804 + 18.4908i 0.194010 + 0.597100i
\(960\) 0 0
\(961\) −8.02616 + 24.7020i −0.258909 + 0.796839i
\(962\) −17.4310 53.6472i −0.561999 1.72966i
\(963\) 0.989034 + 3.04393i 0.0318712 + 0.0980894i
\(964\) 5.84694 17.9950i 0.188317 0.579580i
\(965\) 0 0
\(966\) 1.92551 + 5.92611i 0.0619523 + 0.190669i
\(967\) 9.68283 7.03499i 0.311379 0.226230i −0.421109 0.907010i \(-0.638359\pi\)
0.732488 + 0.680780i \(0.238359\pi\)
\(968\) 17.0930 0.549391
\(969\) 3.73643 2.71468i 0.120031 0.0872080i
\(970\) 0 0
\(971\) −1.09374 0.794651i −0.0350999 0.0255016i 0.570097 0.821577i \(-0.306906\pi\)
−0.605197 + 0.796076i \(0.706906\pi\)
\(972\) −0.809017 0.587785i −0.0259492 0.0188532i
\(973\) −5.61913 + 17.2939i −0.180141 + 0.554417i
\(974\) −15.9235 −0.510223
\(975\) 0 0
\(976\) −3.94494 −0.126274
\(977\) 5.73065 17.6371i 0.183340 0.564262i −0.816576 0.577238i \(-0.804131\pi\)
0.999916 + 0.0129761i \(0.00413053\pi\)
\(978\) 7.59438 + 5.51764i 0.242842 + 0.176435i
\(979\) 3.14558 + 2.28540i 0.100533 + 0.0730417i
\(980\) 0 0
\(981\) −8.00567 + 5.81646i −0.255601 + 0.185705i
\(982\) −6.38076 −0.203618
\(983\) 13.2534 9.62915i 0.422718 0.307122i −0.356013 0.934481i \(-0.615864\pi\)
0.778730 + 0.627359i \(0.215864\pi\)
\(984\) −3.07816 9.47359i −0.0981280 0.302007i
\(985\) 0 0
\(986\) −0.0825696 + 0.254123i −0.00262955 + 0.00809293i
\(987\) −10.5131 32.3559i −0.334635 1.02990i
\(988\) −8.22365 25.3098i −0.261629 0.805211i
\(989\) −3.15909 + 9.72267i −0.100453 + 0.309163i
\(990\) 0 0
\(991\) 6.12790 + 18.8597i 0.194659 + 0.599099i 0.999980 + 0.00626045i \(0.00199278\pi\)
−0.805321 + 0.592839i \(0.798007\pi\)
\(992\) 1.81386 1.31784i 0.0575900 0.0418416i
\(993\) −21.6174 −0.686007
\(994\) −22.3200 + 16.2164i −0.707946 + 0.514353i
\(995\) 0 0
\(996\) −6.05709 4.40074i −0.191926 0.139443i
\(997\) 8.46835 + 6.15262i 0.268195 + 0.194855i 0.713752 0.700398i \(-0.246994\pi\)
−0.445557 + 0.895254i \(0.646994\pi\)
\(998\) 3.99049 12.2815i 0.126317 0.388763i
\(999\) −9.55354 −0.302261
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 750.2.g.f.601.4 16
5.2 odd 4 150.2.h.b.79.3 yes 16
5.3 odd 4 750.2.h.d.649.1 16
5.4 even 2 750.2.g.g.601.1 16
15.2 even 4 450.2.l.c.379.2 16
25.6 even 5 inner 750.2.g.f.151.4 16
25.8 odd 20 150.2.h.b.19.3 16
25.9 even 10 3750.2.a.u.1.2 8
25.12 odd 20 3750.2.c.k.1249.15 16
25.13 odd 20 3750.2.c.k.1249.2 16
25.16 even 5 3750.2.a.v.1.7 8
25.17 odd 20 750.2.h.d.349.2 16
25.19 even 10 750.2.g.g.151.1 16
75.8 even 20 450.2.l.c.19.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.2.h.b.19.3 16 25.8 odd 20
150.2.h.b.79.3 yes 16 5.2 odd 4
450.2.l.c.19.2 16 75.8 even 20
450.2.l.c.379.2 16 15.2 even 4
750.2.g.f.151.4 16 25.6 even 5 inner
750.2.g.f.601.4 16 1.1 even 1 trivial
750.2.g.g.151.1 16 25.19 even 10
750.2.g.g.601.1 16 5.4 even 2
750.2.h.d.349.2 16 25.17 odd 20
750.2.h.d.649.1 16 5.3 odd 4
3750.2.a.u.1.2 8 25.9 even 10
3750.2.a.v.1.7 8 25.16 even 5
3750.2.c.k.1249.2 16 25.13 odd 20
3750.2.c.k.1249.15 16 25.12 odd 20