Properties

Label 750.2.a.c.1.1
Level 750750
Weight 22
Character 750.1
Self dual yes
Analytic conductor 5.9895.989
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [750,2,Mod(1,750)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(750, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("750.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 750=2353 750 = 2 \cdot 3 \cdot 5^{3}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 750.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,2,2,0,-2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 5.988780151605.98878015160
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ10)+\Q(\zeta_{10})^+
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x1 x^{2} - x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 0.618034-0.618034 of defining polynomial
Character χ\chi == 750.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q1.00000q2+1.00000q3+1.00000q41.00000q61.23607q71.00000q8+1.00000q9+1.38197q11+1.00000q12+2.85410q13+1.23607q14+1.00000q164.85410q171.00000q18+6.00000q191.23607q211.38197q22+3.09017q231.00000q242.85410q26+1.00000q271.23607q28+9.32624q29+2.14590q311.00000q32+1.38197q33+4.85410q34+1.00000q36+7.85410q376.00000q38+2.85410q393.23607q41+1.23607q42+0.145898q43+1.38197q443.09017q4610.8541q47+1.00000q485.47214q494.85410q51+2.85410q523.23607q531.00000q54+1.23607q56+6.00000q579.32624q58+6.38197q59+13.4164q612.14590q621.23607q63+1.00000q641.38197q66+2.38197q674.85410q68+3.09017q698.94427q711.00000q72+12.0000q737.85410q74+6.00000q761.70820q772.85410q781.14590q79+1.00000q81+3.23607q82+8.18034q831.23607q840.145898q86+9.32624q871.38197q889.23607q893.52786q91+3.09017q92+2.14590q93+10.8541q941.00000q96+18.1803q97+5.47214q98+1.38197q99+O(q100)q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} -1.23607 q^{7} -1.00000 q^{8} +1.00000 q^{9} +1.38197 q^{11} +1.00000 q^{12} +2.85410 q^{13} +1.23607 q^{14} +1.00000 q^{16} -4.85410 q^{17} -1.00000 q^{18} +6.00000 q^{19} -1.23607 q^{21} -1.38197 q^{22} +3.09017 q^{23} -1.00000 q^{24} -2.85410 q^{26} +1.00000 q^{27} -1.23607 q^{28} +9.32624 q^{29} +2.14590 q^{31} -1.00000 q^{32} +1.38197 q^{33} +4.85410 q^{34} +1.00000 q^{36} +7.85410 q^{37} -6.00000 q^{38} +2.85410 q^{39} -3.23607 q^{41} +1.23607 q^{42} +0.145898 q^{43} +1.38197 q^{44} -3.09017 q^{46} -10.8541 q^{47} +1.00000 q^{48} -5.47214 q^{49} -4.85410 q^{51} +2.85410 q^{52} -3.23607 q^{53} -1.00000 q^{54} +1.23607 q^{56} +6.00000 q^{57} -9.32624 q^{58} +6.38197 q^{59} +13.4164 q^{61} -2.14590 q^{62} -1.23607 q^{63} +1.00000 q^{64} -1.38197 q^{66} +2.38197 q^{67} -4.85410 q^{68} +3.09017 q^{69} -8.94427 q^{71} -1.00000 q^{72} +12.0000 q^{73} -7.85410 q^{74} +6.00000 q^{76} -1.70820 q^{77} -2.85410 q^{78} -1.14590 q^{79} +1.00000 q^{81} +3.23607 q^{82} +8.18034 q^{83} -1.23607 q^{84} -0.145898 q^{86} +9.32624 q^{87} -1.38197 q^{88} -9.23607 q^{89} -3.52786 q^{91} +3.09017 q^{92} +2.14590 q^{93} +10.8541 q^{94} -1.00000 q^{96} +18.1803 q^{97} +5.47214 q^{98} +1.38197 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q2+2q3+2q42q6+2q72q8+2q9+5q11+2q12q132q14+2q163q172q18+12q19+2q215q225q232q24++5q99+O(q100) 2 q - 2 q^{2} + 2 q^{3} + 2 q^{4} - 2 q^{6} + 2 q^{7} - 2 q^{8} + 2 q^{9} + 5 q^{11} + 2 q^{12} - q^{13} - 2 q^{14} + 2 q^{16} - 3 q^{17} - 2 q^{18} + 12 q^{19} + 2 q^{21} - 5 q^{22} - 5 q^{23} - 2 q^{24}+ \cdots + 5 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.00000 −0.707107
33 1.00000 0.577350
44 1.00000 0.500000
55 0 0
66 −1.00000 −0.408248
77 −1.23607 −0.467190 −0.233595 0.972334i 0.575049π-0.575049\pi
−0.233595 + 0.972334i 0.575049π0.575049\pi
88 −1.00000 −0.353553
99 1.00000 0.333333
1010 0 0
1111 1.38197 0.416678 0.208339 0.978057i 0.433194π-0.433194\pi
0.208339 + 0.978057i 0.433194π0.433194\pi
1212 1.00000 0.288675
1313 2.85410 0.791585 0.395793 0.918340i 0.370470π-0.370470\pi
0.395793 + 0.918340i 0.370470π0.370470\pi
1414 1.23607 0.330353
1515 0 0
1616 1.00000 0.250000
1717 −4.85410 −1.17729 −0.588646 0.808391i 0.700339π-0.700339\pi
−0.588646 + 0.808391i 0.700339π0.700339\pi
1818 −1.00000 −0.235702
1919 6.00000 1.37649 0.688247 0.725476i 0.258380π-0.258380\pi
0.688247 + 0.725476i 0.258380π0.258380\pi
2020 0 0
2121 −1.23607 −0.269732
2222 −1.38197 −0.294636
2323 3.09017 0.644345 0.322172 0.946681i 0.395587π-0.395587\pi
0.322172 + 0.946681i 0.395587π0.395587\pi
2424 −1.00000 −0.204124
2525 0 0
2626 −2.85410 −0.559735
2727 1.00000 0.192450
2828 −1.23607 −0.233595
2929 9.32624 1.73184 0.865919 0.500183i 0.166734π-0.166734\pi
0.865919 + 0.500183i 0.166734π0.166734\pi
3030 0 0
3131 2.14590 0.385415 0.192707 0.981256i 0.438273π-0.438273\pi
0.192707 + 0.981256i 0.438273π0.438273\pi
3232 −1.00000 −0.176777
3333 1.38197 0.240569
3434 4.85410 0.832472
3535 0 0
3636 1.00000 0.166667
3737 7.85410 1.29121 0.645603 0.763673i 0.276606π-0.276606\pi
0.645603 + 0.763673i 0.276606π0.276606\pi
3838 −6.00000 −0.973329
3939 2.85410 0.457022
4040 0 0
4141 −3.23607 −0.505389 −0.252694 0.967546i 0.581317π-0.581317\pi
−0.252694 + 0.967546i 0.581317π0.581317\pi
4242 1.23607 0.190729
4343 0.145898 0.0222492 0.0111246 0.999938i 0.496459π-0.496459\pi
0.0111246 + 0.999938i 0.496459π0.496459\pi
4444 1.38197 0.208339
4545 0 0
4646 −3.09017 −0.455621
4747 −10.8541 −1.58323 −0.791617 0.611018i 0.790760π-0.790760\pi
−0.791617 + 0.611018i 0.790760π0.790760\pi
4848 1.00000 0.144338
4949 −5.47214 −0.781734
5050 0 0
5151 −4.85410 −0.679710
5252 2.85410 0.395793
5353 −3.23607 −0.444508 −0.222254 0.974989i 0.571341π-0.571341\pi
−0.222254 + 0.974989i 0.571341π0.571341\pi
5454 −1.00000 −0.136083
5555 0 0
5656 1.23607 0.165177
5757 6.00000 0.794719
5858 −9.32624 −1.22460
5959 6.38197 0.830861 0.415431 0.909625i 0.363631π-0.363631\pi
0.415431 + 0.909625i 0.363631π0.363631\pi
6060 0 0
6161 13.4164 1.71780 0.858898 0.512148i 0.171150π-0.171150\pi
0.858898 + 0.512148i 0.171150π0.171150\pi
6262 −2.14590 −0.272529
6363 −1.23607 −0.155730
6464 1.00000 0.125000
6565 0 0
6666 −1.38197 −0.170108
6767 2.38197 0.291003 0.145502 0.989358i 0.453520π-0.453520\pi
0.145502 + 0.989358i 0.453520π0.453520\pi
6868 −4.85410 −0.588646
6969 3.09017 0.372013
7070 0 0
7171 −8.94427 −1.06149 −0.530745 0.847532i 0.678088π-0.678088\pi
−0.530745 + 0.847532i 0.678088π0.678088\pi
7272 −1.00000 −0.117851
7373 12.0000 1.40449 0.702247 0.711934i 0.252180π-0.252180\pi
0.702247 + 0.711934i 0.252180π0.252180\pi
7474 −7.85410 −0.913021
7575 0 0
7676 6.00000 0.688247
7777 −1.70820 −0.194668
7878 −2.85410 −0.323163
7979 −1.14590 −0.128924 −0.0644618 0.997920i 0.520533π-0.520533\pi
−0.0644618 + 0.997920i 0.520533π0.520533\pi
8080 0 0
8181 1.00000 0.111111
8282 3.23607 0.357364
8383 8.18034 0.897909 0.448954 0.893555i 0.351797π-0.351797\pi
0.448954 + 0.893555i 0.351797π0.351797\pi
8484 −1.23607 −0.134866
8585 0 0
8686 −0.145898 −0.0157326
8787 9.32624 0.999878
8888 −1.38197 −0.147318
8989 −9.23607 −0.979021 −0.489511 0.871997i 0.662825π-0.662825\pi
−0.489511 + 0.871997i 0.662825π0.662825\pi
9090 0 0
9191 −3.52786 −0.369821
9292 3.09017 0.322172
9393 2.14590 0.222519
9494 10.8541 1.11952
9595 0 0
9696 −1.00000 −0.102062
9797 18.1803 1.84593 0.922967 0.384879i 0.125757π-0.125757\pi
0.922967 + 0.384879i 0.125757π0.125757\pi
9898 5.47214 0.552769
9999 1.38197 0.138893
100100 0 0
101101 −2.32624 −0.231469 −0.115735 0.993280i 0.536922π-0.536922\pi
−0.115735 + 0.993280i 0.536922π0.536922\pi
102102 4.85410 0.480628
103103 −4.00000 −0.394132 −0.197066 0.980390i 0.563141π-0.563141\pi
−0.197066 + 0.980390i 0.563141π0.563141\pi
104104 −2.85410 −0.279868
105105 0 0
106106 3.23607 0.314315
107107 −8.18034 −0.790823 −0.395412 0.918504i 0.629398π-0.629398\pi
−0.395412 + 0.918504i 0.629398π0.629398\pi
108108 1.00000 0.0962250
109109 −13.4164 −1.28506 −0.642529 0.766261i 0.722115π-0.722115\pi
−0.642529 + 0.766261i 0.722115π0.722115\pi
110110 0 0
111111 7.85410 0.745478
112112 −1.23607 −0.116797
113113 12.3262 1.15955 0.579777 0.814775i 0.303139π-0.303139\pi
0.579777 + 0.814775i 0.303139π0.303139\pi
114114 −6.00000 −0.561951
115115 0 0
116116 9.32624 0.865919
117117 2.85410 0.263862
118118 −6.38197 −0.587508
119119 6.00000 0.550019
120120 0 0
121121 −9.09017 −0.826379
122122 −13.4164 −1.21466
123123 −3.23607 −0.291786
124124 2.14590 0.192707
125125 0 0
126126 1.23607 0.110118
127127 −13.4164 −1.19051 −0.595257 0.803535i 0.702950π-0.702950\pi
−0.595257 + 0.803535i 0.702950π0.702950\pi
128128 −1.00000 −0.0883883
129129 0.145898 0.0128456
130130 0 0
131131 17.8885 1.56293 0.781465 0.623949i 0.214473π-0.214473\pi
0.781465 + 0.623949i 0.214473π0.214473\pi
132132 1.38197 0.120285
133133 −7.41641 −0.643084
134134 −2.38197 −0.205771
135135 0 0
136136 4.85410 0.416236
137137 4.61803 0.394545 0.197273 0.980349i 0.436792π-0.436792\pi
0.197273 + 0.980349i 0.436792π0.436792\pi
138138 −3.09017 −0.263053
139139 −21.2361 −1.80122 −0.900610 0.434628i 0.856880π-0.856880\pi
−0.900610 + 0.434628i 0.856880π0.856880\pi
140140 0 0
141141 −10.8541 −0.914080
142142 8.94427 0.750587
143143 3.94427 0.329837
144144 1.00000 0.0833333
145145 0 0
146146 −12.0000 −0.993127
147147 −5.47214 −0.451334
148148 7.85410 0.645603
149149 −20.4721 −1.67714 −0.838571 0.544792i 0.816609π-0.816609\pi
−0.838571 + 0.544792i 0.816609π0.816609\pi
150150 0 0
151151 −17.8541 −1.45295 −0.726473 0.687195i 0.758842π-0.758842\pi
−0.726473 + 0.687195i 0.758842π0.758842\pi
152152 −6.00000 −0.486664
153153 −4.85410 −0.392431
154154 1.70820 0.137651
155155 0 0
156156 2.85410 0.228511
157157 −0.437694 −0.0349318 −0.0174659 0.999847i 0.505560π-0.505560\pi
−0.0174659 + 0.999847i 0.505560π0.505560\pi
158158 1.14590 0.0911628
159159 −3.23607 −0.256637
160160 0 0
161161 −3.81966 −0.301031
162162 −1.00000 −0.0785674
163163 20.2705 1.58771 0.793854 0.608108i 0.208071π-0.208071\pi
0.793854 + 0.608108i 0.208071π0.208071\pi
164164 −3.23607 −0.252694
165165 0 0
166166 −8.18034 −0.634918
167167 −23.0902 −1.78677 −0.893385 0.449291i 0.851677π-0.851677\pi
−0.893385 + 0.449291i 0.851677π0.851677\pi
168168 1.23607 0.0953647
169169 −4.85410 −0.373392
170170 0 0
171171 6.00000 0.458831
172172 0.145898 0.0111246
173173 −9.23607 −0.702205 −0.351103 0.936337i 0.614193π-0.614193\pi
−0.351103 + 0.936337i 0.614193π0.614193\pi
174174 −9.32624 −0.707020
175175 0 0
176176 1.38197 0.104170
177177 6.38197 0.479698
178178 9.23607 0.692273
179179 7.41641 0.554328 0.277164 0.960823i 0.410605π-0.410605\pi
0.277164 + 0.960823i 0.410605π0.410605\pi
180180 0 0
181181 7.41641 0.551257 0.275629 0.961264i 0.411114π-0.411114\pi
0.275629 + 0.961264i 0.411114π0.411114\pi
182182 3.52786 0.261503
183183 13.4164 0.991769
184184 −3.09017 −0.227810
185185 0 0
186186 −2.14590 −0.157345
187187 −6.70820 −0.490552
188188 −10.8541 −0.791617
189189 −1.23607 −0.0899107
190190 0 0
191191 6.00000 0.434145 0.217072 0.976156i 0.430349π-0.430349\pi
0.217072 + 0.976156i 0.430349π0.430349\pi
192192 1.00000 0.0721688
193193 −17.1246 −1.23266 −0.616328 0.787489i 0.711381π-0.711381\pi
−0.616328 + 0.787489i 0.711381π0.711381\pi
194194 −18.1803 −1.30527
195195 0 0
196196 −5.47214 −0.390867
197197 −1.52786 −0.108856 −0.0544279 0.998518i 0.517334π-0.517334\pi
−0.0544279 + 0.998518i 0.517334π0.517334\pi
198198 −1.38197 −0.0982120
199199 −15.6180 −1.10713 −0.553567 0.832805i 0.686734π-0.686734\pi
−0.553567 + 0.832805i 0.686734π0.686734\pi
200200 0 0
201201 2.38197 0.168011
202202 2.32624 0.163674
203203 −11.5279 −0.809097
204204 −4.85410 −0.339855
205205 0 0
206206 4.00000 0.278693
207207 3.09017 0.214782
208208 2.85410 0.197896
209209 8.29180 0.573556
210210 0 0
211211 3.41641 0.235195 0.117598 0.993061i 0.462481π-0.462481\pi
0.117598 + 0.993061i 0.462481π0.462481\pi
212212 −3.23607 −0.222254
213213 −8.94427 −0.612851
214214 8.18034 0.559197
215215 0 0
216216 −1.00000 −0.0680414
217217 −2.65248 −0.180062
218218 13.4164 0.908674
219219 12.0000 0.810885
220220 0 0
221221 −13.8541 −0.931928
222222 −7.85410 −0.527133
223223 −21.7082 −1.45369 −0.726844 0.686802i 0.759014π-0.759014\pi
−0.726844 + 0.686802i 0.759014π0.759014\pi
224224 1.23607 0.0825883
225225 0 0
226226 −12.3262 −0.819929
227227 −16.4721 −1.09329 −0.546647 0.837363i 0.684096π-0.684096\pi
−0.546647 + 0.837363i 0.684096π0.684096\pi
228228 6.00000 0.397360
229229 −1.70820 −0.112881 −0.0564406 0.998406i 0.517975π-0.517975\pi
−0.0564406 + 0.998406i 0.517975π0.517975\pi
230230 0 0
231231 −1.70820 −0.112392
232232 −9.32624 −0.612298
233233 7.32624 0.479958 0.239979 0.970778i 0.422859π-0.422859\pi
0.239979 + 0.970778i 0.422859π0.422859\pi
234234 −2.85410 −0.186578
235235 0 0
236236 6.38197 0.415431
237237 −1.14590 −0.0744341
238238 −6.00000 −0.388922
239239 −26.6525 −1.72401 −0.862003 0.506904i 0.830790π-0.830790\pi
−0.862003 + 0.506904i 0.830790π0.830790\pi
240240 0 0
241241 0.0901699 0.00580836 0.00290418 0.999996i 0.499076π-0.499076\pi
0.00290418 + 0.999996i 0.499076π0.499076\pi
242242 9.09017 0.584338
243243 1.00000 0.0641500
244244 13.4164 0.858898
245245 0 0
246246 3.23607 0.206324
247247 17.1246 1.08961
248248 −2.14590 −0.136265
249249 8.18034 0.518408
250250 0 0
251251 7.90983 0.499264 0.249632 0.968341i 0.419690π-0.419690\pi
0.249632 + 0.968341i 0.419690π0.419690\pi
252252 −1.23607 −0.0778650
253253 4.27051 0.268485
254254 13.4164 0.841820
255255 0 0
256256 1.00000 0.0625000
257257 23.5066 1.46630 0.733150 0.680067i 0.238049π-0.238049\pi
0.733150 + 0.680067i 0.238049π0.238049\pi
258258 −0.145898 −0.00908321
259259 −9.70820 −0.603238
260260 0 0
261261 9.32624 0.577280
262262 −17.8885 −1.10516
263263 −15.9787 −0.985290 −0.492645 0.870230i 0.663970π-0.663970\pi
−0.492645 + 0.870230i 0.663970π0.663970\pi
264264 −1.38197 −0.0850541
265265 0 0
266266 7.41641 0.454729
267267 −9.23607 −0.565238
268268 2.38197 0.145502
269269 22.6180 1.37905 0.689523 0.724264i 0.257820π-0.257820\pi
0.689523 + 0.724264i 0.257820π0.257820\pi
270270 0 0
271271 −8.56231 −0.520123 −0.260062 0.965592i 0.583743π-0.583743\pi
−0.260062 + 0.965592i 0.583743π0.583743\pi
272272 −4.85410 −0.294323
273273 −3.52786 −0.213516
274274 −4.61803 −0.278986
275275 0 0
276276 3.09017 0.186006
277277 14.3607 0.862850 0.431425 0.902149i 0.358011π-0.358011\pi
0.431425 + 0.902149i 0.358011π0.358011\pi
278278 21.2361 1.27365
279279 2.14590 0.128472
280280 0 0
281281 22.4721 1.34058 0.670288 0.742101i 0.266171π-0.266171\pi
0.670288 + 0.742101i 0.266171π0.266171\pi
282282 10.8541 0.646352
283283 −21.0902 −1.25368 −0.626840 0.779148i 0.715652π-0.715652\pi
−0.626840 + 0.779148i 0.715652π0.715652\pi
284284 −8.94427 −0.530745
285285 0 0
286286 −3.94427 −0.233230
287287 4.00000 0.236113
288288 −1.00000 −0.0589256
289289 6.56231 0.386018
290290 0 0
291291 18.1803 1.06575
292292 12.0000 0.702247
293293 −15.5967 −0.911172 −0.455586 0.890192i 0.650570π-0.650570\pi
−0.455586 + 0.890192i 0.650570π0.650570\pi
294294 5.47214 0.319141
295295 0 0
296296 −7.85410 −0.456510
297297 1.38197 0.0801898
298298 20.4721 1.18592
299299 8.81966 0.510054
300300 0 0
301301 −0.180340 −0.0103946
302302 17.8541 1.02739
303303 −2.32624 −0.133639
304304 6.00000 0.344124
305305 0 0
306306 4.85410 0.277491
307307 −33.0902 −1.88856 −0.944278 0.329149i 0.893238π-0.893238\pi
−0.944278 + 0.329149i 0.893238π0.893238\pi
308308 −1.70820 −0.0973340
309309 −4.00000 −0.227552
310310 0 0
311311 −4.47214 −0.253592 −0.126796 0.991929i 0.540469π-0.540469\pi
−0.126796 + 0.991929i 0.540469π0.540469\pi
312312 −2.85410 −0.161582
313313 30.9443 1.74907 0.874537 0.484959i 0.161166π-0.161166\pi
0.874537 + 0.484959i 0.161166π0.161166\pi
314314 0.437694 0.0247005
315315 0 0
316316 −1.14590 −0.0644618
317317 9.70820 0.545267 0.272634 0.962118i 0.412105π-0.412105\pi
0.272634 + 0.962118i 0.412105π0.412105\pi
318318 3.23607 0.181470
319319 12.8885 0.721620
320320 0 0
321321 −8.18034 −0.456582
322322 3.81966 0.212861
323323 −29.1246 −1.62054
324324 1.00000 0.0555556
325325 0 0
326326 −20.2705 −1.12268
327327 −13.4164 −0.741929
328328 3.23607 0.178682
329329 13.4164 0.739671
330330 0 0
331331 −21.4164 −1.17715 −0.588576 0.808442i 0.700311π-0.700311\pi
−0.588576 + 0.808442i 0.700311π0.700311\pi
332332 8.18034 0.448954
333333 7.85410 0.430402
334334 23.0902 1.26344
335335 0 0
336336 −1.23607 −0.0674330
337337 −12.9443 −0.705119 −0.352560 0.935789i 0.614689π-0.614689\pi
−0.352560 + 0.935789i 0.614689π0.614689\pi
338338 4.85410 0.264028
339339 12.3262 0.669469
340340 0 0
341341 2.96556 0.160594
342342 −6.00000 −0.324443
343343 15.4164 0.832408
344344 −0.145898 −0.00786629
345345 0 0
346346 9.23607 0.496534
347347 24.3607 1.30775 0.653875 0.756603i 0.273142π-0.273142\pi
0.653875 + 0.756603i 0.273142π0.273142\pi
348348 9.32624 0.499939
349349 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
350350 0 0
351351 2.85410 0.152341
352352 −1.38197 −0.0736590
353353 1.20163 0.0639561 0.0319781 0.999489i 0.489819π-0.489819\pi
0.0319781 + 0.999489i 0.489819π0.489819\pi
354354 −6.38197 −0.339198
355355 0 0
356356 −9.23607 −0.489511
357357 6.00000 0.317554
358358 −7.41641 −0.391969
359359 23.8885 1.26079 0.630395 0.776275i 0.282893π-0.282893\pi
0.630395 + 0.776275i 0.282893π0.282893\pi
360360 0 0
361361 17.0000 0.894737
362362 −7.41641 −0.389798
363363 −9.09017 −0.477110
364364 −3.52786 −0.184910
365365 0 0
366366 −13.4164 −0.701287
367367 10.2918 0.537227 0.268614 0.963248i 0.413434π-0.413434\pi
0.268614 + 0.963248i 0.413434π0.413434\pi
368368 3.09017 0.161086
369369 −3.23607 −0.168463
370370 0 0
371371 4.00000 0.207670
372372 2.14590 0.111260
373373 −32.7426 −1.69535 −0.847675 0.530516i 0.821998π-0.821998\pi
−0.847675 + 0.530516i 0.821998π0.821998\pi
374374 6.70820 0.346873
375375 0 0
376376 10.8541 0.559758
377377 26.6180 1.37090
378378 1.23607 0.0635765
379379 −1.23607 −0.0634925 −0.0317463 0.999496i 0.510107π-0.510107\pi
−0.0317463 + 0.999496i 0.510107π0.510107\pi
380380 0 0
381381 −13.4164 −0.687343
382382 −6.00000 −0.306987
383383 17.8885 0.914062 0.457031 0.889451i 0.348913π-0.348913\pi
0.457031 + 0.889451i 0.348913π0.348913\pi
384384 −1.00000 −0.0510310
385385 0 0
386386 17.1246 0.871620
387387 0.145898 0.00741641
388388 18.1803 0.922967
389389 18.2705 0.926352 0.463176 0.886266i 0.346710π-0.346710\pi
0.463176 + 0.886266i 0.346710π0.346710\pi
390390 0 0
391391 −15.0000 −0.758583
392392 5.47214 0.276385
393393 17.8885 0.902358
394394 1.52786 0.0769727
395395 0 0
396396 1.38197 0.0694464
397397 32.4721 1.62973 0.814865 0.579651i 0.196811π-0.196811\pi
0.814865 + 0.579651i 0.196811π0.196811\pi
398398 15.6180 0.782861
399399 −7.41641 −0.371285
400400 0 0
401401 −10.4721 −0.522954 −0.261477 0.965210i 0.584209π-0.584209\pi
−0.261477 + 0.965210i 0.584209π0.584209\pi
402402 −2.38197 −0.118802
403403 6.12461 0.305089
404404 −2.32624 −0.115735
405405 0 0
406406 11.5279 0.572118
407407 10.8541 0.538018
408408 4.85410 0.240314
409409 13.5623 0.670613 0.335306 0.942109i 0.391160π-0.391160\pi
0.335306 + 0.942109i 0.391160π0.391160\pi
410410 0 0
411411 4.61803 0.227791
412412 −4.00000 −0.197066
413413 −7.88854 −0.388170
414414 −3.09017 −0.151874
415415 0 0
416416 −2.85410 −0.139934
417417 −21.2361 −1.03993
418418 −8.29180 −0.405565
419419 −8.94427 −0.436956 −0.218478 0.975842i 0.570109π-0.570109\pi
−0.218478 + 0.975842i 0.570109π0.570109\pi
420420 0 0
421421 14.4721 0.705329 0.352664 0.935750i 0.385276π-0.385276\pi
0.352664 + 0.935750i 0.385276π0.385276\pi
422422 −3.41641 −0.166308
423423 −10.8541 −0.527744
424424 3.23607 0.157157
425425 0 0
426426 8.94427 0.433351
427427 −16.5836 −0.802536
428428 −8.18034 −0.395412
429429 3.94427 0.190431
430430 0 0
431431 −21.7082 −1.04565 −0.522824 0.852441i 0.675121π-0.675121\pi
−0.522824 + 0.852441i 0.675121π0.675121\pi
432432 1.00000 0.0481125
433433 −0.180340 −0.00866658 −0.00433329 0.999991i 0.501379π-0.501379\pi
−0.00433329 + 0.999991i 0.501379π0.501379\pi
434434 2.65248 0.127323
435435 0 0
436436 −13.4164 −0.642529
437437 18.5410 0.886937
438438 −12.0000 −0.573382
439439 28.3262 1.35194 0.675969 0.736930i 0.263725π-0.263725\pi
0.675969 + 0.736930i 0.263725π0.263725\pi
440440 0 0
441441 −5.47214 −0.260578
442442 13.8541 0.658972
443443 32.6525 1.55137 0.775683 0.631123i 0.217406π-0.217406\pi
0.775683 + 0.631123i 0.217406π0.217406\pi
444444 7.85410 0.372739
445445 0 0
446446 21.7082 1.02791
447447 −20.4721 −0.968299
448448 −1.23607 −0.0583987
449449 2.94427 0.138949 0.0694744 0.997584i 0.477868π-0.477868\pi
0.0694744 + 0.997584i 0.477868π0.477868\pi
450450 0 0
451451 −4.47214 −0.210585
452452 12.3262 0.579777
453453 −17.8541 −0.838859
454454 16.4721 0.773076
455455 0 0
456456 −6.00000 −0.280976
457457 −22.9443 −1.07329 −0.536644 0.843809i 0.680308π-0.680308\pi
−0.536644 + 0.843809i 0.680308π0.680308\pi
458458 1.70820 0.0798191
459459 −4.85410 −0.226570
460460 0 0
461461 −15.9787 −0.744203 −0.372101 0.928192i 0.621363π-0.621363\pi
−0.372101 + 0.928192i 0.621363π0.621363\pi
462462 1.70820 0.0794728
463463 −2.29180 −0.106509 −0.0532544 0.998581i 0.516959π-0.516959\pi
−0.0532544 + 0.998581i 0.516959π0.516959\pi
464464 9.32624 0.432960
465465 0 0
466466 −7.32624 −0.339381
467467 2.29180 0.106052 0.0530258 0.998593i 0.483113π-0.483113\pi
0.0530258 + 0.998593i 0.483113π0.483113\pi
468468 2.85410 0.131931
469469 −2.94427 −0.135954
470470 0 0
471471 −0.437694 −0.0201679
472472 −6.38197 −0.293754
473473 0.201626 0.00927078
474474 1.14590 0.0526328
475475 0 0
476476 6.00000 0.275010
477477 −3.23607 −0.148169
478478 26.6525 1.21906
479479 6.65248 0.303959 0.151980 0.988384i 0.451435π-0.451435\pi
0.151980 + 0.988384i 0.451435π0.451435\pi
480480 0 0
481481 22.4164 1.02210
482482 −0.0901699 −0.00410713
483483 −3.81966 −0.173801
484484 −9.09017 −0.413190
485485 0 0
486486 −1.00000 −0.0453609
487487 −17.5967 −0.797385 −0.398692 0.917085i 0.630536π-0.630536\pi
−0.398692 + 0.917085i 0.630536π0.630536\pi
488488 −13.4164 −0.607332
489489 20.2705 0.916664
490490 0 0
491491 2.61803 0.118150 0.0590751 0.998254i 0.481185π-0.481185\pi
0.0590751 + 0.998254i 0.481185π0.481185\pi
492492 −3.23607 −0.145893
493493 −45.2705 −2.03888
494494 −17.1246 −0.770473
495495 0 0
496496 2.14590 0.0963537
497497 11.0557 0.495917
498498 −8.18034 −0.366570
499499 13.2361 0.592528 0.296264 0.955106i 0.404259π-0.404259\pi
0.296264 + 0.955106i 0.404259π0.404259\pi
500500 0 0
501501 −23.0902 −1.03159
502502 −7.90983 −0.353033
503503 −10.4721 −0.466929 −0.233465 0.972365i 0.575006π-0.575006\pi
−0.233465 + 0.972365i 0.575006π0.575006\pi
504504 1.23607 0.0550588
505505 0 0
506506 −4.27051 −0.189847
507507 −4.85410 −0.215578
508508 −13.4164 −0.595257
509509 2.94427 0.130503 0.0652513 0.997869i 0.479215π-0.479215\pi
0.0652513 + 0.997869i 0.479215π0.479215\pi
510510 0 0
511511 −14.8328 −0.656165
512512 −1.00000 −0.0441942
513513 6.00000 0.264906
514514 −23.5066 −1.03683
515515 0 0
516516 0.145898 0.00642280
517517 −15.0000 −0.659699
518518 9.70820 0.426554
519519 −9.23607 −0.405418
520520 0 0
521521 −8.18034 −0.358387 −0.179194 0.983814i 0.557349π-0.557349\pi
−0.179194 + 0.983814i 0.557349π0.557349\pi
522522 −9.32624 −0.408198
523523 11.9098 0.520781 0.260390 0.965503i 0.416149π-0.416149\pi
0.260390 + 0.965503i 0.416149π0.416149\pi
524524 17.8885 0.781465
525525 0 0
526526 15.9787 0.696705
527527 −10.4164 −0.453746
528528 1.38197 0.0601424
529529 −13.4508 −0.584820
530530 0 0
531531 6.38197 0.276954
532532 −7.41641 −0.321542
533533 −9.23607 −0.400059
534534 9.23607 0.399684
535535 0 0
536536 −2.38197 −0.102885
537537 7.41641 0.320042
538538 −22.6180 −0.975133
539539 −7.56231 −0.325732
540540 0 0
541541 11.7082 0.503375 0.251688 0.967809i 0.419014π-0.419014\pi
0.251688 + 0.967809i 0.419014π0.419014\pi
542542 8.56231 0.367783
543543 7.41641 0.318269
544544 4.85410 0.208118
545545 0 0
546546 3.52786 0.150979
547547 −5.43769 −0.232499 −0.116250 0.993220i 0.537087π-0.537087\pi
−0.116250 + 0.993220i 0.537087π0.537087\pi
548548 4.61803 0.197273
549549 13.4164 0.572598
550550 0 0
551551 55.9574 2.38387
552552 −3.09017 −0.131526
553553 1.41641 0.0602318
554554 −14.3607 −0.610127
555555 0 0
556556 −21.2361 −0.900610
557557 10.3607 0.438996 0.219498 0.975613i 0.429558π-0.429558\pi
0.219498 + 0.975613i 0.429558π0.429558\pi
558558 −2.14590 −0.0908431
559559 0.416408 0.0176122
560560 0 0
561561 −6.70820 −0.283221
562562 −22.4721 −0.947930
563563 −12.6525 −0.533238 −0.266619 0.963802i 0.585907π-0.585907\pi
−0.266619 + 0.963802i 0.585907π0.585907\pi
564564 −10.8541 −0.457040
565565 0 0
566566 21.0902 0.886486
567567 −1.23607 −0.0519100
568568 8.94427 0.375293
569569 −13.0557 −0.547325 −0.273662 0.961826i 0.588235π-0.588235\pi
−0.273662 + 0.961826i 0.588235π0.588235\pi
570570 0 0
571571 12.3607 0.517278 0.258639 0.965974i 0.416726π-0.416726\pi
0.258639 + 0.965974i 0.416726π0.416726\pi
572572 3.94427 0.164918
573573 6.00000 0.250654
574574 −4.00000 −0.166957
575575 0 0
576576 1.00000 0.0416667
577577 4.11146 0.171162 0.0855811 0.996331i 0.472725π-0.472725\pi
0.0855811 + 0.996331i 0.472725π0.472725\pi
578578 −6.56231 −0.272956
579579 −17.1246 −0.711675
580580 0 0
581581 −10.1115 −0.419494
582582 −18.1803 −0.753599
583583 −4.47214 −0.185217
584584 −12.0000 −0.496564
585585 0 0
586586 15.5967 0.644296
587587 18.6525 0.769870 0.384935 0.922944i 0.374224π-0.374224\pi
0.384935 + 0.922944i 0.374224π0.374224\pi
588588 −5.47214 −0.225667
589589 12.8754 0.530521
590590 0 0
591591 −1.52786 −0.0628479
592592 7.85410 0.322802
593593 34.7984 1.42900 0.714499 0.699636i 0.246655π-0.246655\pi
0.714499 + 0.699636i 0.246655π0.246655\pi
594594 −1.38197 −0.0567028
595595 0 0
596596 −20.4721 −0.838571
597597 −15.6180 −0.639204
598598 −8.81966 −0.360663
599599 −31.8885 −1.30293 −0.651465 0.758678i 0.725845π-0.725845\pi
−0.651465 + 0.758678i 0.725845π0.725845\pi
600600 0 0
601601 40.6869 1.65965 0.829827 0.558021i 0.188439π-0.188439\pi
0.829827 + 0.558021i 0.188439π0.188439\pi
602602 0.180340 0.00735011
603603 2.38197 0.0970012
604604 −17.8541 −0.726473
605605 0 0
606606 2.32624 0.0944970
607607 −47.4164 −1.92457 −0.962286 0.272039i 0.912302π-0.912302\pi
−0.962286 + 0.272039i 0.912302π0.912302\pi
608608 −6.00000 −0.243332
609609 −11.5279 −0.467133
610610 0 0
611611 −30.9787 −1.25326
612612 −4.85410 −0.196215
613613 37.7771 1.52580 0.762901 0.646515i 0.223774π-0.223774\pi
0.762901 + 0.646515i 0.223774π0.223774\pi
614614 33.0902 1.33541
615615 0 0
616616 1.70820 0.0688255
617617 −31.3050 −1.26029 −0.630145 0.776478i 0.717005π-0.717005\pi
−0.630145 + 0.776478i 0.717005π0.717005\pi
618618 4.00000 0.160904
619619 −47.7082 −1.91755 −0.958777 0.284159i 0.908286π-0.908286\pi
−0.958777 + 0.284159i 0.908286π0.908286\pi
620620 0 0
621621 3.09017 0.124004
622622 4.47214 0.179316
623623 11.4164 0.457389
624624 2.85410 0.114256
625625 0 0
626626 −30.9443 −1.23678
627627 8.29180 0.331142
628628 −0.437694 −0.0174659
629629 −38.1246 −1.52013
630630 0 0
631631 −15.0344 −0.598512 −0.299256 0.954173i 0.596738π-0.596738\pi
−0.299256 + 0.954173i 0.596738π0.596738\pi
632632 1.14590 0.0455814
633633 3.41641 0.135790
634634 −9.70820 −0.385562
635635 0 0
636636 −3.23607 −0.128318
637637 −15.6180 −0.618809
638638 −12.8885 −0.510262
639639 −8.94427 −0.353830
640640 0 0
641641 −30.6525 −1.21070 −0.605350 0.795959i 0.706967π-0.706967\pi
−0.605350 + 0.795959i 0.706967π0.706967\pi
642642 8.18034 0.322852
643643 −31.5623 −1.24470 −0.622348 0.782741i 0.713821π-0.713821\pi
−0.622348 + 0.782741i 0.713821π0.713821\pi
644644 −3.81966 −0.150516
645645 0 0
646646 29.1246 1.14589
647647 12.6180 0.496066 0.248033 0.968752i 0.420216π-0.420216\pi
0.248033 + 0.968752i 0.420216π0.420216\pi
648648 −1.00000 −0.0392837
649649 8.81966 0.346202
650650 0 0
651651 −2.65248 −0.103959
652652 20.2705 0.793854
653653 −9.88854 −0.386969 −0.193484 0.981103i 0.561979π-0.561979\pi
−0.193484 + 0.981103i 0.561979π0.561979\pi
654654 13.4164 0.524623
655655 0 0
656656 −3.23607 −0.126347
657657 12.0000 0.468165
658658 −13.4164 −0.523026
659659 2.02129 0.0787381 0.0393691 0.999225i 0.487465π-0.487465\pi
0.0393691 + 0.999225i 0.487465π0.487465\pi
660660 0 0
661661 5.70820 0.222023 0.111012 0.993819i 0.464591π-0.464591\pi
0.111012 + 0.993819i 0.464591π0.464591\pi
662662 21.4164 0.832372
663663 −13.8541 −0.538049
664664 −8.18034 −0.317459
665665 0 0
666666 −7.85410 −0.304340
667667 28.8197 1.11590
668668 −23.0902 −0.893385
669669 −21.7082 −0.839288
670670 0 0
671671 18.5410 0.715768
672672 1.23607 0.0476824
673673 47.3050 1.82347 0.911736 0.410777i 0.134742π-0.134742\pi
0.911736 + 0.410777i 0.134742π0.134742\pi
674674 12.9443 0.498595
675675 0 0
676676 −4.85410 −0.186696
677677 31.2361 1.20050 0.600250 0.799813i 0.295068π-0.295068\pi
0.600250 + 0.799813i 0.295068π0.295068\pi
678678 −12.3262 −0.473386
679679 −22.4721 −0.862401
680680 0 0
681681 −16.4721 −0.631214
682682 −2.96556 −0.113557
683683 10.7639 0.411870 0.205935 0.978566i 0.433976π-0.433976\pi
0.205935 + 0.978566i 0.433976π0.433976\pi
684684 6.00000 0.229416
685685 0 0
686686 −15.4164 −0.588601
687687 −1.70820 −0.0651720
688688 0.145898 0.00556231
689689 −9.23607 −0.351866
690690 0 0
691691 26.7639 1.01815 0.509074 0.860723i 0.329988π-0.329988\pi
0.509074 + 0.860723i 0.329988π0.329988\pi
692692 −9.23607 −0.351103
693693 −1.70820 −0.0648893
694694 −24.3607 −0.924719
695695 0 0
696696 −9.32624 −0.353510
697697 15.7082 0.594991
698698 0 0
699699 7.32624 0.277104
700700 0 0
701701 12.2148 0.461346 0.230673 0.973031i 0.425907π-0.425907\pi
0.230673 + 0.973031i 0.425907π0.425907\pi
702702 −2.85410 −0.107721
703703 47.1246 1.77734
704704 1.38197 0.0520848
705705 0 0
706706 −1.20163 −0.0452238
707707 2.87539 0.108140
708708 6.38197 0.239849
709709 −6.87539 −0.258211 −0.129105 0.991631i 0.541211π-0.541211\pi
−0.129105 + 0.991631i 0.541211π0.541211\pi
710710 0 0
711711 −1.14590 −0.0429745
712712 9.23607 0.346136
713713 6.63119 0.248340
714714 −6.00000 −0.224544
715715 0 0
716716 7.41641 0.277164
717717 −26.6525 −0.995355
718718 −23.8885 −0.891513
719719 −7.23607 −0.269860 −0.134930 0.990855i 0.543081π-0.543081\pi
−0.134930 + 0.990855i 0.543081π0.543081\pi
720720 0 0
721721 4.94427 0.184134
722722 −17.0000 −0.632674
723723 0.0901699 0.00335346
724724 7.41641 0.275629
725725 0 0
726726 9.09017 0.337368
727727 −7.34752 −0.272505 −0.136252 0.990674i 0.543506π-0.543506\pi
−0.136252 + 0.990674i 0.543506π0.543506\pi
728728 3.52786 0.130751
729729 1.00000 0.0370370
730730 0 0
731731 −0.708204 −0.0261939
732732 13.4164 0.495885
733733 −34.6869 −1.28119 −0.640595 0.767879i 0.721312π-0.721312\pi
−0.640595 + 0.767879i 0.721312π0.721312\pi
734734 −10.2918 −0.379877
735735 0 0
736736 −3.09017 −0.113905
737737 3.29180 0.121255
738738 3.23607 0.119121
739739 8.65248 0.318286 0.159143 0.987256i 0.449127π-0.449127\pi
0.159143 + 0.987256i 0.449127π0.449127\pi
740740 0 0
741741 17.1246 0.629088
742742 −4.00000 −0.146845
743743 19.6180 0.719716 0.359858 0.933007i 0.382825π-0.382825\pi
0.359858 + 0.933007i 0.382825π0.382825\pi
744744 −2.14590 −0.0786724
745745 0 0
746746 32.7426 1.19879
747747 8.18034 0.299303
748748 −6.70820 −0.245276
749749 10.1115 0.369465
750750 0 0
751751 −43.4164 −1.58429 −0.792144 0.610335i 0.791035π-0.791035\pi
−0.792144 + 0.610335i 0.791035π0.791035\pi
752752 −10.8541 −0.395808
753753 7.90983 0.288250
754754 −26.6180 −0.969372
755755 0 0
756756 −1.23607 −0.0449554
757757 −4.83282 −0.175652 −0.0878258 0.996136i 0.527992π-0.527992\pi
−0.0878258 + 0.996136i 0.527992π0.527992\pi
758758 1.23607 0.0448960
759759 4.27051 0.155010
760760 0 0
761761 −32.6525 −1.18365 −0.591826 0.806066i 0.701593π-0.701593\pi
−0.591826 + 0.806066i 0.701593π0.701593\pi
762762 13.4164 0.486025
763763 16.5836 0.600366
764764 6.00000 0.217072
765765 0 0
766766 −17.8885 −0.646339
767767 18.2148 0.657698
768768 1.00000 0.0360844
769769 −22.9230 −0.826624 −0.413312 0.910589i 0.635628π-0.635628\pi
−0.413312 + 0.910589i 0.635628π0.635628\pi
770770 0 0
771771 23.5066 0.846569
772772 −17.1246 −0.616328
773773 6.47214 0.232787 0.116393 0.993203i 0.462867π-0.462867\pi
0.116393 + 0.993203i 0.462867π0.462867\pi
774774 −0.145898 −0.00524420
775775 0 0
776776 −18.1803 −0.652636
777777 −9.70820 −0.348280
778778 −18.2705 −0.655030
779779 −19.4164 −0.695665
780780 0 0
781781 −12.3607 −0.442300
782782 15.0000 0.536399
783783 9.32624 0.333293
784784 −5.47214 −0.195433
785785 0 0
786786 −17.8885 −0.638063
787787 38.5623 1.37460 0.687299 0.726375i 0.258796π-0.258796\pi
0.687299 + 0.726375i 0.258796π0.258796\pi
788788 −1.52786 −0.0544279
789789 −15.9787 −0.568857
790790 0 0
791791 −15.2361 −0.541732
792792 −1.38197 −0.0491060
793793 38.2918 1.35978
794794 −32.4721 −1.15239
795795 0 0
796796 −15.6180 −0.553567
797797 −34.4721 −1.22107 −0.610533 0.791991i 0.709045π-0.709045\pi
−0.610533 + 0.791991i 0.709045π0.709045\pi
798798 7.41641 0.262538
799799 52.6869 1.86393
800800 0 0
801801 −9.23607 −0.326340
802802 10.4721 0.369784
803803 16.5836 0.585222
804804 2.38197 0.0840055
805805 0 0
806806 −6.12461 −0.215730
807807 22.6180 0.796193
808808 2.32624 0.0818368
809809 −29.5279 −1.03814 −0.519072 0.854730i 0.673722π-0.673722\pi
−0.519072 + 0.854730i 0.673722π0.673722\pi
810810 0 0
811811 −34.0000 −1.19390 −0.596951 0.802278i 0.703621π-0.703621\pi
−0.596951 + 0.802278i 0.703621π0.703621\pi
812812 −11.5279 −0.404549
813813 −8.56231 −0.300293
814814 −10.8541 −0.380436
815815 0 0
816816 −4.85410 −0.169928
817817 0.875388 0.0306260
818818 −13.5623 −0.474195
819819 −3.52786 −0.123274
820820 0 0
821821 36.2148 1.26390 0.631952 0.775007i 0.282254π-0.282254\pi
0.631952 + 0.775007i 0.282254π0.282254\pi
822822 −4.61803 −0.161072
823823 −15.1246 −0.527211 −0.263605 0.964631i 0.584912π-0.584912\pi
−0.263605 + 0.964631i 0.584912π0.584912\pi
824824 4.00000 0.139347
825825 0 0
826826 7.88854 0.274478
827827 −18.0000 −0.625921 −0.312961 0.949766i 0.601321π-0.601321\pi
−0.312961 + 0.949766i 0.601321π0.601321\pi
828828 3.09017 0.107391
829829 34.1803 1.18713 0.593566 0.804785i 0.297720π-0.297720\pi
0.593566 + 0.804785i 0.297720π0.297720\pi
830830 0 0
831831 14.3607 0.498166
832832 2.85410 0.0989482
833833 26.5623 0.920329
834834 21.2361 0.735345
835835 0 0
836836 8.29180 0.286778
837837 2.14590 0.0741731
838838 8.94427 0.308975
839839 −11.1246 −0.384064 −0.192032 0.981389i 0.561508π-0.561508\pi
−0.192032 + 0.981389i 0.561508π0.561508\pi
840840 0 0
841841 57.9787 1.99927
842842 −14.4721 −0.498743
843843 22.4721 0.773981
844844 3.41641 0.117598
845845 0 0
846846 10.8541 0.373172
847847 11.2361 0.386076
848848 −3.23607 −0.111127
849849 −21.0902 −0.723813
850850 0 0
851851 24.2705 0.831982
852852 −8.94427 −0.306426
853853 −29.0902 −0.996028 −0.498014 0.867169i 0.665937π-0.665937\pi
−0.498014 + 0.867169i 0.665937π0.665937\pi
854854 16.5836 0.567479
855855 0 0
856856 8.18034 0.279598
857857 12.3262 0.421056 0.210528 0.977588i 0.432482π-0.432482\pi
0.210528 + 0.977588i 0.432482π0.432482\pi
858858 −3.94427 −0.134655
859859 −15.7082 −0.535957 −0.267979 0.963425i 0.586356π-0.586356\pi
−0.267979 + 0.963425i 0.586356π0.586356\pi
860860 0 0
861861 4.00000 0.136320
862862 21.7082 0.739384
863863 −8.56231 −0.291464 −0.145732 0.989324i 0.546554π-0.546554\pi
−0.145732 + 0.989324i 0.546554π0.546554\pi
864864 −1.00000 −0.0340207
865865 0 0
866866 0.180340 0.00612820
867867 6.56231 0.222868
868868 −2.65248 −0.0900309
869869 −1.58359 −0.0537197
870870 0 0
871871 6.79837 0.230354
872872 13.4164 0.454337
873873 18.1803 0.615311
874874 −18.5410 −0.627159
875875 0 0
876876 12.0000 0.405442
877877 26.3951 0.891300 0.445650 0.895207i 0.352973π-0.352973\pi
0.445650 + 0.895207i 0.352973π0.352973\pi
878878 −28.3262 −0.955964
879879 −15.5967 −0.526065
880880 0 0
881881 −5.05573 −0.170332 −0.0851659 0.996367i 0.527142π-0.527142\pi
−0.0851659 + 0.996367i 0.527142π0.527142\pi
882882 5.47214 0.184256
883883 46.9787 1.58096 0.790480 0.612488i 0.209831π-0.209831\pi
0.790480 + 0.612488i 0.209831π0.209831\pi
884884 −13.8541 −0.465964
885885 0 0
886886 −32.6525 −1.09698
887887 54.4721 1.82900 0.914498 0.404591i 0.132586π-0.132586\pi
0.914498 + 0.404591i 0.132586π0.132586\pi
888888 −7.85410 −0.263566
889889 16.5836 0.556196
890890 0 0
891891 1.38197 0.0462976
892892 −21.7082 −0.726844
893893 −65.1246 −2.17931
894894 20.4721 0.684691
895895 0 0
896896 1.23607 0.0412941
897897 8.81966 0.294480
898898 −2.94427 −0.0982516
899899 20.0132 0.667476
900900 0 0
901901 15.7082 0.523316
902902 4.47214 0.148906
903903 −0.180340 −0.00600134
904904 −12.3262 −0.409965
905905 0 0
906906 17.8541 0.593163
907907 23.1459 0.768547 0.384273 0.923219i 0.374452π-0.374452\pi
0.384273 + 0.923219i 0.374452π0.374452\pi
908908 −16.4721 −0.546647
909909 −2.32624 −0.0771564
910910 0 0
911911 37.5279 1.24335 0.621677 0.783274i 0.286452π-0.286452\pi
0.621677 + 0.783274i 0.286452π0.286452\pi
912912 6.00000 0.198680
913913 11.3050 0.374139
914914 22.9443 0.758929
915915 0 0
916916 −1.70820 −0.0564406
917917 −22.1115 −0.730185
918918 4.85410 0.160209
919919 21.8885 0.722036 0.361018 0.932559i 0.382429π-0.382429\pi
0.361018 + 0.932559i 0.382429π0.382429\pi
920920 0 0
921921 −33.0902 −1.09036
922922 15.9787 0.526231
923923 −25.5279 −0.840260
924924 −1.70820 −0.0561958
925925 0 0
926926 2.29180 0.0753131
927927 −4.00000 −0.131377
928928 −9.32624 −0.306149
929929 −24.5410 −0.805165 −0.402582 0.915384i 0.631887π-0.631887\pi
−0.402582 + 0.915384i 0.631887π0.631887\pi
930930 0 0
931931 −32.8328 −1.07605
932932 7.32624 0.239979
933933 −4.47214 −0.146411
934934 −2.29180 −0.0749899
935935 0 0
936936 −2.85410 −0.0932892
937937 −27.4164 −0.895655 −0.447828 0.894120i 0.647802π-0.647802\pi
−0.447828 + 0.894120i 0.647802π0.647802\pi
938938 2.94427 0.0961339
939939 30.9443 1.00983
940940 0 0
941941 −22.4508 −0.731877 −0.365938 0.930639i 0.619252π-0.619252\pi
−0.365938 + 0.930639i 0.619252π0.619252\pi
942942 0.437694 0.0142608
943943 −10.0000 −0.325645
944944 6.38197 0.207715
945945 0 0
946946 −0.201626 −0.00655543
947947 −55.3050 −1.79717 −0.898585 0.438800i 0.855404π-0.855404\pi
−0.898585 + 0.438800i 0.855404π0.855404\pi
948948 −1.14590 −0.0372170
949949 34.2492 1.11178
950950 0 0
951951 9.70820 0.314810
952952 −6.00000 −0.194461
953953 −1.63932 −0.0531028 −0.0265514 0.999647i 0.508453π-0.508453\pi
−0.0265514 + 0.999647i 0.508453π0.508453\pi
954954 3.23607 0.104772
955955 0 0
956956 −26.6525 −0.862003
957957 12.8885 0.416627
958958 −6.65248 −0.214932
959959 −5.70820 −0.184328
960960 0 0
961961 −26.3951 −0.851456
962962 −22.4164 −0.722734
963963 −8.18034 −0.263608
964964 0.0901699 0.00290418
965965 0 0
966966 3.81966 0.122896
967967 39.0132 1.25458 0.627289 0.778786i 0.284164π-0.284164\pi
0.627289 + 0.778786i 0.284164π0.284164\pi
968968 9.09017 0.292169
969969 −29.1246 −0.935617
970970 0 0
971971 52.0902 1.67165 0.835827 0.548994i 0.184989π-0.184989\pi
0.835827 + 0.548994i 0.184989π0.184989\pi
972972 1.00000 0.0320750
973973 26.2492 0.841511
974974 17.5967 0.563836
975975 0 0
976976 13.4164 0.429449
977977 −54.2837 −1.73669 −0.868344 0.495962i 0.834815π-0.834815\pi
−0.868344 + 0.495962i 0.834815π0.834815\pi
978978 −20.2705 −0.648179
979979 −12.7639 −0.407937
980980 0 0
981981 −13.4164 −0.428353
982982 −2.61803 −0.0835448
983983 −24.9787 −0.796697 −0.398349 0.917234i 0.630417π-0.630417\pi
−0.398349 + 0.917234i 0.630417π0.630417\pi
984984 3.23607 0.103162
985985 0 0
986986 45.2705 1.44171
987987 13.4164 0.427049
988988 17.1246 0.544806
989989 0.450850 0.0143362
990990 0 0
991991 −8.68692 −0.275949 −0.137975 0.990436i 0.544059π-0.544059\pi
−0.137975 + 0.990436i 0.544059π0.544059\pi
992992 −2.14590 −0.0681323
993993 −21.4164 −0.679629
994994 −11.0557 −0.350666
995995 0 0
996996 8.18034 0.259204
997997 −38.2705 −1.21204 −0.606020 0.795450i 0.707235π-0.707235\pi
−0.606020 + 0.795450i 0.707235π0.707235\pi
998998 −13.2361 −0.418980
999999 7.85410 0.248493
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 750.2.a.c.1.1 2
3.2 odd 2 2250.2.a.n.1.1 2
4.3 odd 2 6000.2.a.d.1.2 2
5.2 odd 4 750.2.c.b.499.1 4
5.3 odd 4 750.2.c.b.499.4 4
5.4 even 2 750.2.a.f.1.2 yes 2
15.2 even 4 2250.2.c.b.1999.3 4
15.8 even 4 2250.2.c.b.1999.2 4
15.14 odd 2 2250.2.a.c.1.2 2
20.3 even 4 6000.2.f.a.1249.1 4
20.7 even 4 6000.2.f.a.1249.4 4
20.19 odd 2 6000.2.a.y.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
750.2.a.c.1.1 2 1.1 even 1 trivial
750.2.a.f.1.2 yes 2 5.4 even 2
750.2.c.b.499.1 4 5.2 odd 4
750.2.c.b.499.4 4 5.3 odd 4
2250.2.a.c.1.2 2 15.14 odd 2
2250.2.a.n.1.1 2 3.2 odd 2
2250.2.c.b.1999.2 4 15.8 even 4
2250.2.c.b.1999.3 4 15.2 even 4
6000.2.a.d.1.2 2 4.3 odd 2
6000.2.a.y.1.1 2 20.19 odd 2
6000.2.f.a.1249.1 4 20.3 even 4
6000.2.f.a.1249.4 4 20.7 even 4