Properties

Label 7497.2.a.be
Level $7497$
Weight $2$
Character orbit 7497.a
Self dual yes
Analytic conductor $59.864$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7497,2,Mod(1,7497)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7497, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7497.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7497 = 3^{2} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7497.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,0,6,-2,0,0,-6,0,-4,-2,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.8638463954\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.7232.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 5x^{2} + 4x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 357)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} + ( - \beta_{3} - \beta_{2} + 1) q^{4} + \beta_1 q^{5} + (\beta_{3} + 2 \beta_{2} + \beta_1) q^{8} + ( - \beta_{3} - \beta_{2} - \beta_1 - 2) q^{10} + ( - \beta_{3} + \beta_{2}) q^{11}+ \cdots + (2 \beta_{3} + 4 \beta_{2} - 2 \beta_1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 6 q^{4} - 2 q^{5} - 6 q^{8} - 4 q^{10} - 2 q^{11} - 2 q^{13} + 6 q^{16} - 4 q^{17} - 10 q^{19} + 4 q^{20} + 20 q^{22} - 6 q^{23} + 10 q^{25} - 4 q^{26} + 4 q^{29} + 4 q^{31} - 14 q^{32}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 5x^{2} + 4x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - 2\nu^{2} - \nu ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 2\nu^{2} - 5\nu + 2 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 4\nu^{2} + \nu - 8 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 4\beta_{3} - \beta_{2} + 9\beta _1 + 17 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.22219
3.06644
−1.63640
−0.652223
−2.63640 0 4.95063 −1.19202 0 0 −7.77906 0 3.14265
1.2 −1.65222 0 0.729840 3.48065 0 0 2.09859 0 −5.75081
1.3 0.222191 0 −1.95063 −4.05062 0 0 −0.877796 0 −0.900012
1.4 2.06644 0 2.27016 −0.238009 0 0 0.558268 0 −0.491831
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7497.2.a.be 4
3.b odd 2 1 2499.2.a.z 4
7.b odd 2 1 1071.2.a.j 4
21.c even 2 1 357.2.a.h 4
84.h odd 2 1 5712.2.a.bx 4
105.g even 2 1 8925.2.a.bs 4
357.c even 2 1 6069.2.a.s 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
357.2.a.h 4 21.c even 2 1
1071.2.a.j 4 7.b odd 2 1
2499.2.a.z 4 3.b odd 2 1
5712.2.a.bx 4 84.h odd 2 1
6069.2.a.s 4 357.c even 2 1
7497.2.a.be 4 1.a even 1 1 trivial
8925.2.a.bs 4 105.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7497))\):

\( T_{2}^{4} + 2T_{2}^{3} - 5T_{2}^{2} - 8T_{2} + 2 \) Copy content Toggle raw display
\( T_{5}^{4} + 2T_{5}^{3} - 13T_{5}^{2} - 20T_{5} - 4 \) Copy content Toggle raw display
\( T_{11}^{4} + 2T_{11}^{3} - 23T_{11}^{2} - 80T_{11} - 64 \) Copy content Toggle raw display
\( T_{19}^{4} + 10T_{19}^{3} + 7T_{19}^{2} - 80T_{19} - 32 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 2 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 2 T^{3} + \cdots - 4 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 2 T^{3} + \cdots - 64 \) Copy content Toggle raw display
$13$ \( T^{4} + 2 T^{3} + \cdots - 4 \) Copy content Toggle raw display
$17$ \( (T + 1)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} + 10 T^{3} + \cdots - 32 \) Copy content Toggle raw display
$23$ \( T^{4} + 6 T^{3} + \cdots + 272 \) Copy content Toggle raw display
$29$ \( T^{4} - 4 T^{3} + \cdots + 32 \) Copy content Toggle raw display
$31$ \( T^{4} - 4 T^{3} + \cdots + 2176 \) Copy content Toggle raw display
$37$ \( T^{4} - 42 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$41$ \( T^{4} + 18 T^{3} + \cdots - 2788 \) Copy content Toggle raw display
$43$ \( T^{4} - 26 T^{3} + \cdots - 752 \) Copy content Toggle raw display
$47$ \( T^{4} + 4 T^{3} + \cdots + 2176 \) Copy content Toggle raw display
$53$ \( T^{4} + 20 T^{3} + \cdots + 184 \) Copy content Toggle raw display
$59$ \( T^{4} - 4 T^{3} + \cdots + 2848 \) Copy content Toggle raw display
$61$ \( T^{4} - 4 T^{3} + \cdots - 968 \) Copy content Toggle raw display
$67$ \( T^{4} - 28 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$71$ \( T^{4} + 4 T^{3} + \cdots + 3136 \) Copy content Toggle raw display
$73$ \( T^{4} + 8 T^{3} + \cdots - 5648 \) Copy content Toggle raw display
$79$ \( T^{4} + 8 T^{3} + \cdots + 256 \) Copy content Toggle raw display
$83$ \( T^{4} - 28 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$89$ \( T^{4} + 28 T^{3} + \cdots - 736 \) Copy content Toggle raw display
$97$ \( T^{4} + 4 T^{3} + \cdots + 3136 \) Copy content Toggle raw display
show more
show less