Properties

Label 744.2.q.c.625.1
Level $744$
Weight $2$
Character 744.625
Analytic conductor $5.941$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [744,2,Mod(25,744)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(744, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("744.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 744 = 2^{3} \cdot 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 744.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,1,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.94086991038\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 625.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 744.625
Dual form 744.2.q.c.25.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{3} +(-1.00000 - 1.73205i) q^{5} +(2.50000 - 4.33013i) q^{7} +(-0.500000 - 0.866025i) q^{9} +(-1.50000 - 2.59808i) q^{11} -2.00000 q^{15} +(-3.00000 + 5.19615i) q^{17} +(-3.00000 + 5.19615i) q^{19} +(-2.50000 - 4.33013i) q^{21} +(0.500000 - 0.866025i) q^{25} -1.00000 q^{27} -3.00000 q^{29} +(3.50000 + 4.33013i) q^{31} -3.00000 q^{33} -10.0000 q^{35} +(4.00000 - 6.92820i) q^{37} +(-2.00000 - 3.46410i) q^{41} +(4.00000 - 6.92820i) q^{43} +(-1.00000 + 1.73205i) q^{45} +6.00000 q^{47} +(-9.00000 - 15.5885i) q^{49} +(3.00000 + 5.19615i) q^{51} +(-0.500000 - 0.866025i) q^{53} +(-3.00000 + 5.19615i) q^{55} +(3.00000 + 5.19615i) q^{57} +(5.50000 - 9.52628i) q^{59} -8.00000 q^{61} -5.00000 q^{63} +(6.00000 + 10.3923i) q^{67} +(8.00000 + 13.8564i) q^{71} +(-1.00000 - 1.73205i) q^{73} +(-0.500000 - 0.866025i) q^{75} -15.0000 q^{77} +(4.00000 - 6.92820i) q^{79} +(-0.500000 + 0.866025i) q^{81} +(-5.50000 - 9.52628i) q^{83} +12.0000 q^{85} +(-1.50000 + 2.59808i) q^{87} -2.00000 q^{89} +(5.50000 - 0.866025i) q^{93} +12.0000 q^{95} +19.0000 q^{97} +(-1.50000 + 2.59808i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} - 2 q^{5} + 5 q^{7} - q^{9} - 3 q^{11} - 4 q^{15} - 6 q^{17} - 6 q^{19} - 5 q^{21} + q^{25} - 2 q^{27} - 6 q^{29} + 7 q^{31} - 6 q^{33} - 20 q^{35} + 8 q^{37} - 4 q^{41} + 8 q^{43} - 2 q^{45}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/744\mathbb{Z}\right)^\times\).

\(n\) \(313\) \(373\) \(497\) \(559\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) 0 0
\(5\) −1.00000 1.73205i −0.447214 0.774597i 0.550990 0.834512i \(-0.314250\pi\)
−0.998203 + 0.0599153i \(0.980917\pi\)
\(6\) 0 0
\(7\) 2.50000 4.33013i 0.944911 1.63663i 0.188982 0.981981i \(-0.439481\pi\)
0.755929 0.654654i \(-0.227186\pi\)
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) −1.50000 2.59808i −0.452267 0.783349i 0.546259 0.837616i \(-0.316051\pi\)
−0.998526 + 0.0542666i \(0.982718\pi\)
\(12\) 0 0
\(13\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(14\) 0 0
\(15\) −2.00000 −0.516398
\(16\) 0 0
\(17\) −3.00000 + 5.19615i −0.727607 + 1.26025i 0.230285 + 0.973123i \(0.426034\pi\)
−0.957892 + 0.287129i \(0.907299\pi\)
\(18\) 0 0
\(19\) −3.00000 + 5.19615i −0.688247 + 1.19208i 0.284157 + 0.958778i \(0.408286\pi\)
−0.972404 + 0.233301i \(0.925047\pi\)
\(20\) 0 0
\(21\) −2.50000 4.33013i −0.545545 0.944911i
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) 0 0
\(31\) 3.50000 + 4.33013i 0.628619 + 0.777714i
\(32\) 0 0
\(33\) −3.00000 −0.522233
\(34\) 0 0
\(35\) −10.0000 −1.69031
\(36\) 0 0
\(37\) 4.00000 6.92820i 0.657596 1.13899i −0.323640 0.946180i \(-0.604907\pi\)
0.981236 0.192809i \(-0.0617599\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.00000 3.46410i −0.312348 0.541002i 0.666523 0.745485i \(-0.267782\pi\)
−0.978870 + 0.204483i \(0.934449\pi\)
\(42\) 0 0
\(43\) 4.00000 6.92820i 0.609994 1.05654i −0.381246 0.924473i \(-0.624505\pi\)
0.991241 0.132068i \(-0.0421616\pi\)
\(44\) 0 0
\(45\) −1.00000 + 1.73205i −0.149071 + 0.258199i
\(46\) 0 0
\(47\) 6.00000 0.875190 0.437595 0.899172i \(-0.355830\pi\)
0.437595 + 0.899172i \(0.355830\pi\)
\(48\) 0 0
\(49\) −9.00000 15.5885i −1.28571 2.22692i
\(50\) 0 0
\(51\) 3.00000 + 5.19615i 0.420084 + 0.727607i
\(52\) 0 0
\(53\) −0.500000 0.866025i −0.0686803 0.118958i 0.829640 0.558298i \(-0.188546\pi\)
−0.898321 + 0.439340i \(0.855212\pi\)
\(54\) 0 0
\(55\) −3.00000 + 5.19615i −0.404520 + 0.700649i
\(56\) 0 0
\(57\) 3.00000 + 5.19615i 0.397360 + 0.688247i
\(58\) 0 0
\(59\) 5.50000 9.52628i 0.716039 1.24022i −0.246518 0.969138i \(-0.579287\pi\)
0.962557 0.271078i \(-0.0873801\pi\)
\(60\) 0 0
\(61\) −8.00000 −1.02430 −0.512148 0.858898i \(-0.671150\pi\)
−0.512148 + 0.858898i \(0.671150\pi\)
\(62\) 0 0
\(63\) −5.00000 −0.629941
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 6.00000 + 10.3923i 0.733017 + 1.26962i 0.955588 + 0.294706i \(0.0952216\pi\)
−0.222571 + 0.974916i \(0.571445\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.00000 + 13.8564i 0.949425 + 1.64445i 0.746639 + 0.665230i \(0.231667\pi\)
0.202787 + 0.979223i \(0.435000\pi\)
\(72\) 0 0
\(73\) −1.00000 1.73205i −0.117041 0.202721i 0.801553 0.597924i \(-0.204008\pi\)
−0.918594 + 0.395203i \(0.870674\pi\)
\(74\) 0 0
\(75\) −0.500000 0.866025i −0.0577350 0.100000i
\(76\) 0 0
\(77\) −15.0000 −1.70941
\(78\) 0 0
\(79\) 4.00000 6.92820i 0.450035 0.779484i −0.548352 0.836247i \(-0.684745\pi\)
0.998388 + 0.0567635i \(0.0180781\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) −5.50000 9.52628i −0.603703 1.04565i −0.992255 0.124218i \(-0.960358\pi\)
0.388552 0.921427i \(-0.372976\pi\)
\(84\) 0 0
\(85\) 12.0000 1.30158
\(86\) 0 0
\(87\) −1.50000 + 2.59808i −0.160817 + 0.278543i
\(88\) 0 0
\(89\) −2.00000 −0.212000 −0.106000 0.994366i \(-0.533804\pi\)
−0.106000 + 0.994366i \(0.533804\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 5.50000 0.866025i 0.570323 0.0898027i
\(94\) 0 0
\(95\) 12.0000 1.23117
\(96\) 0 0
\(97\) 19.0000 1.92916 0.964579 0.263795i \(-0.0849741\pi\)
0.964579 + 0.263795i \(0.0849741\pi\)
\(98\) 0 0
\(99\) −1.50000 + 2.59808i −0.150756 + 0.261116i
\(100\) 0 0
\(101\) −3.00000 −0.298511 −0.149256 0.988799i \(-0.547688\pi\)
−0.149256 + 0.988799i \(0.547688\pi\)
\(102\) 0 0
\(103\) 0.500000 + 0.866025i 0.0492665 + 0.0853320i 0.889607 0.456727i \(-0.150978\pi\)
−0.840341 + 0.542059i \(0.817645\pi\)
\(104\) 0 0
\(105\) −5.00000 + 8.66025i −0.487950 + 0.845154i
\(106\) 0 0
\(107\) −5.50000 + 9.52628i −0.531705 + 0.920940i 0.467610 + 0.883935i \(0.345115\pi\)
−0.999315 + 0.0370053i \(0.988218\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) −4.00000 6.92820i −0.379663 0.657596i
\(112\) 0 0
\(113\) 2.00000 + 3.46410i 0.188144 + 0.325875i 0.944632 0.328133i \(-0.106419\pi\)
−0.756487 + 0.654008i \(0.773086\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 15.0000 + 25.9808i 1.37505 + 2.38165i
\(120\) 0 0
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) 0 0
\(123\) −4.00000 −0.360668
\(124\) 0 0
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) 1.50000 2.59808i 0.133103 0.230542i −0.791768 0.610822i \(-0.790839\pi\)
0.924871 + 0.380280i \(0.124172\pi\)
\(128\) 0 0
\(129\) −4.00000 6.92820i −0.352180 0.609994i
\(130\) 0 0
\(131\) 6.00000 10.3923i 0.524222 0.907980i −0.475380 0.879781i \(-0.657689\pi\)
0.999602 0.0281993i \(-0.00897729\pi\)
\(132\) 0 0
\(133\) 15.0000 + 25.9808i 1.30066 + 2.25282i
\(134\) 0 0
\(135\) 1.00000 + 1.73205i 0.0860663 + 0.149071i
\(136\) 0 0
\(137\) −9.00000 15.5885i −0.768922 1.33181i −0.938148 0.346235i \(-0.887460\pi\)
0.169226 0.985577i \(-0.445873\pi\)
\(138\) 0 0
\(139\) −14.0000 −1.18746 −0.593732 0.804663i \(-0.702346\pi\)
−0.593732 + 0.804663i \(0.702346\pi\)
\(140\) 0 0
\(141\) 3.00000 5.19615i 0.252646 0.437595i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 3.00000 + 5.19615i 0.249136 + 0.431517i
\(146\) 0 0
\(147\) −18.0000 −1.48461
\(148\) 0 0
\(149\) 2.50000 4.33013i 0.204808 0.354738i −0.745264 0.666770i \(-0.767676\pi\)
0.950072 + 0.312032i \(0.101010\pi\)
\(150\) 0 0
\(151\) 11.0000 0.895167 0.447584 0.894242i \(-0.352285\pi\)
0.447584 + 0.894242i \(0.352285\pi\)
\(152\) 0 0
\(153\) 6.00000 0.485071
\(154\) 0 0
\(155\) 4.00000 10.3923i 0.321288 0.834730i
\(156\) 0 0
\(157\) 16.0000 1.27694 0.638470 0.769647i \(-0.279568\pi\)
0.638470 + 0.769647i \(0.279568\pi\)
\(158\) 0 0
\(159\) −1.00000 −0.0793052
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 0 0
\(165\) 3.00000 + 5.19615i 0.233550 + 0.404520i
\(166\) 0 0
\(167\) 4.00000 6.92820i 0.309529 0.536120i −0.668730 0.743505i \(-0.733162\pi\)
0.978259 + 0.207385i \(0.0664952\pi\)
\(168\) 0 0
\(169\) 6.50000 11.2583i 0.500000 0.866025i
\(170\) 0 0
\(171\) 6.00000 0.458831
\(172\) 0 0
\(173\) 4.50000 + 7.79423i 0.342129 + 0.592584i 0.984828 0.173534i \(-0.0555188\pi\)
−0.642699 + 0.766119i \(0.722185\pi\)
\(174\) 0 0
\(175\) −2.50000 4.33013i −0.188982 0.327327i
\(176\) 0 0
\(177\) −5.50000 9.52628i −0.413405 0.716039i
\(178\) 0 0
\(179\) −4.50000 + 7.79423i −0.336346 + 0.582568i −0.983742 0.179585i \(-0.942524\pi\)
0.647397 + 0.762153i \(0.275858\pi\)
\(180\) 0 0
\(181\) −1.00000 1.73205i −0.0743294 0.128742i 0.826465 0.562988i \(-0.190348\pi\)
−0.900794 + 0.434246i \(0.857015\pi\)
\(182\) 0 0
\(183\) −4.00000 + 6.92820i −0.295689 + 0.512148i
\(184\) 0 0
\(185\) −16.0000 −1.17634
\(186\) 0 0
\(187\) 18.0000 1.31629
\(188\) 0 0
\(189\) −2.50000 + 4.33013i −0.181848 + 0.314970i
\(190\) 0 0
\(191\) 6.00000 + 10.3923i 0.434145 + 0.751961i 0.997225 0.0744412i \(-0.0237173\pi\)
−0.563081 + 0.826402i \(0.690384\pi\)
\(192\) 0 0
\(193\) −6.50000 + 11.2583i −0.467880 + 0.810392i −0.999326 0.0366998i \(-0.988315\pi\)
0.531446 + 0.847092i \(0.321649\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3.00000 5.19615i −0.213741 0.370211i 0.739141 0.673550i \(-0.235232\pi\)
−0.952882 + 0.303340i \(0.901898\pi\)
\(198\) 0 0
\(199\) 6.50000 + 11.2583i 0.460773 + 0.798082i 0.999000 0.0447181i \(-0.0142390\pi\)
−0.538227 + 0.842800i \(0.680906\pi\)
\(200\) 0 0
\(201\) 12.0000 0.846415
\(202\) 0 0
\(203\) −7.50000 + 12.9904i −0.526397 + 0.911746i
\(204\) 0 0
\(205\) −4.00000 + 6.92820i −0.279372 + 0.483887i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 18.0000 1.24509
\(210\) 0 0
\(211\) −1.00000 + 1.73205i −0.0688428 + 0.119239i −0.898392 0.439194i \(-0.855264\pi\)
0.829549 + 0.558433i \(0.188597\pi\)
\(212\) 0 0
\(213\) 16.0000 1.09630
\(214\) 0 0
\(215\) −16.0000 −1.09119
\(216\) 0 0
\(217\) 27.5000 4.33013i 1.86682 0.293948i
\(218\) 0 0
\(219\) −2.00000 −0.135147
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −7.50000 + 12.9904i −0.502237 + 0.869900i 0.497760 + 0.867315i \(0.334156\pi\)
−0.999997 + 0.00258516i \(0.999177\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) 12.5000 + 21.6506i 0.829654 + 1.43700i 0.898310 + 0.439363i \(0.144796\pi\)
−0.0686556 + 0.997640i \(0.521871\pi\)
\(228\) 0 0
\(229\) −8.00000 + 13.8564i −0.528655 + 0.915657i 0.470787 + 0.882247i \(0.343970\pi\)
−0.999442 + 0.0334101i \(0.989363\pi\)
\(230\) 0 0
\(231\) −7.50000 + 12.9904i −0.493464 + 0.854704i
\(232\) 0 0
\(233\) 12.0000 0.786146 0.393073 0.919507i \(-0.371412\pi\)
0.393073 + 0.919507i \(0.371412\pi\)
\(234\) 0 0
\(235\) −6.00000 10.3923i −0.391397 0.677919i
\(236\) 0 0
\(237\) −4.00000 6.92820i −0.259828 0.450035i
\(238\) 0 0
\(239\) −12.0000 20.7846i −0.776215 1.34444i −0.934109 0.356988i \(-0.883804\pi\)
0.157893 0.987456i \(-0.449530\pi\)
\(240\) 0 0
\(241\) −7.50000 + 12.9904i −0.483117 + 0.836784i −0.999812 0.0193858i \(-0.993829\pi\)
0.516695 + 0.856170i \(0.327162\pi\)
\(242\) 0 0
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) −18.0000 + 31.1769i −1.14998 + 1.99182i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −11.0000 −0.697097
\(250\) 0 0
\(251\) 14.0000 24.2487i 0.883672 1.53057i 0.0364441 0.999336i \(-0.488397\pi\)
0.847228 0.531229i \(-0.178270\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 6.00000 10.3923i 0.375735 0.650791i
\(256\) 0 0
\(257\) 8.00000 + 13.8564i 0.499026 + 0.864339i 0.999999 0.00112398i \(-0.000357774\pi\)
−0.500973 + 0.865463i \(0.667024\pi\)
\(258\) 0 0
\(259\) −20.0000 34.6410i −1.24274 2.15249i
\(260\) 0 0
\(261\) 1.50000 + 2.59808i 0.0928477 + 0.160817i
\(262\) 0 0
\(263\) 22.0000 1.35658 0.678289 0.734795i \(-0.262722\pi\)
0.678289 + 0.734795i \(0.262722\pi\)
\(264\) 0 0
\(265\) −1.00000 + 1.73205i −0.0614295 + 0.106399i
\(266\) 0 0
\(267\) −1.00000 + 1.73205i −0.0611990 + 0.106000i
\(268\) 0 0
\(269\) 9.00000 + 15.5885i 0.548740 + 0.950445i 0.998361 + 0.0572259i \(0.0182255\pi\)
−0.449622 + 0.893219i \(0.648441\pi\)
\(270\) 0 0
\(271\) 31.0000 1.88312 0.941558 0.336851i \(-0.109362\pi\)
0.941558 + 0.336851i \(0.109362\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.00000 −0.180907
\(276\) 0 0
\(277\) −6.00000 −0.360505 −0.180253 0.983620i \(-0.557691\pi\)
−0.180253 + 0.983620i \(0.557691\pi\)
\(278\) 0 0
\(279\) 2.00000 5.19615i 0.119737 0.311086i
\(280\) 0 0
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) −24.0000 −1.42665 −0.713326 0.700832i \(-0.752812\pi\)
−0.713326 + 0.700832i \(0.752812\pi\)
\(284\) 0 0
\(285\) 6.00000 10.3923i 0.355409 0.615587i
\(286\) 0 0
\(287\) −20.0000 −1.18056
\(288\) 0 0
\(289\) −9.50000 16.4545i −0.558824 0.967911i
\(290\) 0 0
\(291\) 9.50000 16.4545i 0.556900 0.964579i
\(292\) 0 0
\(293\) −4.50000 + 7.79423i −0.262893 + 0.455344i −0.967009 0.254741i \(-0.918010\pi\)
0.704117 + 0.710084i \(0.251343\pi\)
\(294\) 0 0
\(295\) −22.0000 −1.28089
\(296\) 0 0
\(297\) 1.50000 + 2.59808i 0.0870388 + 0.150756i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −20.0000 34.6410i −1.15278 1.99667i
\(302\) 0 0
\(303\) −1.50000 + 2.59808i −0.0861727 + 0.149256i
\(304\) 0 0
\(305\) 8.00000 + 13.8564i 0.458079 + 0.793416i
\(306\) 0 0
\(307\) 5.00000 8.66025i 0.285365 0.494267i −0.687333 0.726343i \(-0.741218\pi\)
0.972698 + 0.232076i \(0.0745518\pi\)
\(308\) 0 0
\(309\) 1.00000 0.0568880
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −4.50000 + 7.79423i −0.254355 + 0.440556i −0.964720 0.263278i \(-0.915197\pi\)
0.710365 + 0.703833i \(0.248530\pi\)
\(314\) 0 0
\(315\) 5.00000 + 8.66025i 0.281718 + 0.487950i
\(316\) 0 0
\(317\) −10.5000 + 18.1865i −0.589739 + 1.02146i 0.404528 + 0.914526i \(0.367436\pi\)
−0.994266 + 0.106932i \(0.965897\pi\)
\(318\) 0 0
\(319\) 4.50000 + 7.79423i 0.251952 + 0.436393i
\(320\) 0 0
\(321\) 5.50000 + 9.52628i 0.306980 + 0.531705i
\(322\) 0 0
\(323\) −18.0000 31.1769i −1.00155 1.73473i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −1.00000 + 1.73205i −0.0553001 + 0.0957826i
\(328\) 0 0
\(329\) 15.0000 25.9808i 0.826977 1.43237i
\(330\) 0 0
\(331\) −10.0000 17.3205i −0.549650 0.952021i −0.998298 0.0583130i \(-0.981428\pi\)
0.448649 0.893708i \(-0.351905\pi\)
\(332\) 0 0
\(333\) −8.00000 −0.438397
\(334\) 0 0
\(335\) 12.0000 20.7846i 0.655630 1.13558i
\(336\) 0 0
\(337\) −7.00000 −0.381314 −0.190657 0.981657i \(-0.561062\pi\)
−0.190657 + 0.981657i \(0.561062\pi\)
\(338\) 0 0
\(339\) 4.00000 0.217250
\(340\) 0 0
\(341\) 6.00000 15.5885i 0.324918 0.844162i
\(342\) 0 0
\(343\) −55.0000 −2.96972
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 17.5000 30.3109i 0.939449 1.62717i 0.172948 0.984931i \(-0.444671\pi\)
0.766501 0.642243i \(-0.221996\pi\)
\(348\) 0 0
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −13.0000 + 22.5167i −0.691920 + 1.19844i 0.279288 + 0.960207i \(0.409902\pi\)
−0.971208 + 0.238233i \(0.923432\pi\)
\(354\) 0 0
\(355\) 16.0000 27.7128i 0.849192 1.47084i
\(356\) 0 0
\(357\) 30.0000 1.58777
\(358\) 0 0
\(359\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(360\) 0 0
\(361\) −8.50000 14.7224i −0.447368 0.774865i
\(362\) 0 0
\(363\) −1.00000 1.73205i −0.0524864 0.0909091i
\(364\) 0 0
\(365\) −2.00000 + 3.46410i −0.104685 + 0.181319i
\(366\) 0 0
\(367\) −4.00000 6.92820i −0.208798 0.361649i 0.742538 0.669804i \(-0.233622\pi\)
−0.951336 + 0.308155i \(0.900289\pi\)
\(368\) 0 0
\(369\) −2.00000 + 3.46410i −0.104116 + 0.180334i
\(370\) 0 0
\(371\) −5.00000 −0.259587
\(372\) 0 0
\(373\) −6.00000 −0.310668 −0.155334 0.987862i \(-0.549645\pi\)
−0.155334 + 0.987862i \(0.549645\pi\)
\(374\) 0 0
\(375\) −6.00000 + 10.3923i −0.309839 + 0.536656i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −9.00000 + 15.5885i −0.462299 + 0.800725i −0.999075 0.0429994i \(-0.986309\pi\)
0.536776 + 0.843725i \(0.319642\pi\)
\(380\) 0 0
\(381\) −1.50000 2.59808i −0.0768473 0.133103i
\(382\) 0 0
\(383\) 14.0000 + 24.2487i 0.715367 + 1.23905i 0.962818 + 0.270151i \(0.0870736\pi\)
−0.247451 + 0.968900i \(0.579593\pi\)
\(384\) 0 0
\(385\) 15.0000 + 25.9808i 0.764471 + 1.32410i
\(386\) 0 0
\(387\) −8.00000 −0.406663
\(388\) 0 0
\(389\) 15.0000 25.9808i 0.760530 1.31728i −0.182047 0.983290i \(-0.558272\pi\)
0.942578 0.333987i \(-0.108394\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −6.00000 10.3923i −0.302660 0.524222i
\(394\) 0 0
\(395\) −16.0000 −0.805047
\(396\) 0 0
\(397\) 13.0000 22.5167i 0.652451 1.13008i −0.330075 0.943955i \(-0.607074\pi\)
0.982526 0.186124i \(-0.0595926\pi\)
\(398\) 0 0
\(399\) 30.0000 1.50188
\(400\) 0 0
\(401\) 16.0000 0.799002 0.399501 0.916733i \(-0.369183\pi\)
0.399501 + 0.916733i \(0.369183\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 2.00000 0.0993808
\(406\) 0 0
\(407\) −24.0000 −1.18964
\(408\) 0 0
\(409\) −11.5000 + 19.9186i −0.568638 + 0.984911i 0.428063 + 0.903749i \(0.359196\pi\)
−0.996701 + 0.0811615i \(0.974137\pi\)
\(410\) 0 0
\(411\) −18.0000 −0.887875
\(412\) 0 0
\(413\) −27.5000 47.6314i −1.35319 2.34379i
\(414\) 0 0
\(415\) −11.0000 + 19.0526i −0.539969 + 0.935253i
\(416\) 0 0
\(417\) −7.00000 + 12.1244i −0.342791 + 0.593732i
\(418\) 0 0
\(419\) −9.00000 −0.439679 −0.219839 0.975536i \(-0.570553\pi\)
−0.219839 + 0.975536i \(0.570553\pi\)
\(420\) 0 0
\(421\) 4.00000 + 6.92820i 0.194948 + 0.337660i 0.946883 0.321577i \(-0.104213\pi\)
−0.751935 + 0.659237i \(0.770879\pi\)
\(422\) 0 0
\(423\) −3.00000 5.19615i −0.145865 0.252646i
\(424\) 0 0
\(425\) 3.00000 + 5.19615i 0.145521 + 0.252050i
\(426\) 0 0
\(427\) −20.0000 + 34.6410i −0.967868 + 1.67640i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 19.0000 32.9090i 0.915198 1.58517i 0.108586 0.994087i \(-0.465368\pi\)
0.806611 0.591082i \(-0.201299\pi\)
\(432\) 0 0
\(433\) −30.0000 −1.44171 −0.720854 0.693087i \(-0.756250\pi\)
−0.720854 + 0.693087i \(0.756250\pi\)
\(434\) 0 0
\(435\) 6.00000 0.287678
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 8.50000 + 14.7224i 0.405683 + 0.702663i 0.994401 0.105675i \(-0.0337004\pi\)
−0.588718 + 0.808339i \(0.700367\pi\)
\(440\) 0 0
\(441\) −9.00000 + 15.5885i −0.428571 + 0.742307i
\(442\) 0 0
\(443\) −6.00000 10.3923i −0.285069 0.493753i 0.687557 0.726130i \(-0.258683\pi\)
−0.972626 + 0.232377i \(0.925350\pi\)
\(444\) 0 0
\(445\) 2.00000 + 3.46410i 0.0948091 + 0.164214i
\(446\) 0 0
\(447\) −2.50000 4.33013i −0.118246 0.204808i
\(448\) 0 0
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) −6.00000 + 10.3923i −0.282529 + 0.489355i
\(452\) 0 0
\(453\) 5.50000 9.52628i 0.258413 0.447584i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −10.0000 −0.467780 −0.233890 0.972263i \(-0.575146\pi\)
−0.233890 + 0.972263i \(0.575146\pi\)
\(458\) 0 0
\(459\) 3.00000 5.19615i 0.140028 0.242536i
\(460\) 0 0
\(461\) 11.0000 0.512321 0.256161 0.966634i \(-0.417542\pi\)
0.256161 + 0.966634i \(0.417542\pi\)
\(462\) 0 0
\(463\) 1.00000 0.0464739 0.0232370 0.999730i \(-0.492603\pi\)
0.0232370 + 0.999730i \(0.492603\pi\)
\(464\) 0 0
\(465\) −7.00000 8.66025i −0.324617 0.401610i
\(466\) 0 0
\(467\) 3.00000 0.138823 0.0694117 0.997588i \(-0.477888\pi\)
0.0694117 + 0.997588i \(0.477888\pi\)
\(468\) 0 0
\(469\) 60.0000 2.77054
\(470\) 0 0
\(471\) 8.00000 13.8564i 0.368621 0.638470i
\(472\) 0 0
\(473\) −24.0000 −1.10352
\(474\) 0 0
\(475\) 3.00000 + 5.19615i 0.137649 + 0.238416i
\(476\) 0 0
\(477\) −0.500000 + 0.866025i −0.0228934 + 0.0396526i
\(478\) 0 0
\(479\) −5.00000 + 8.66025i −0.228456 + 0.395697i −0.957351 0.288929i \(-0.906701\pi\)
0.728895 + 0.684626i \(0.240034\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −19.0000 32.9090i −0.862746 1.49432i
\(486\) 0 0
\(487\) 8.50000 + 14.7224i 0.385172 + 0.667137i 0.991793 0.127854i \(-0.0408089\pi\)
−0.606621 + 0.794991i \(0.707476\pi\)
\(488\) 0 0
\(489\) 2.00000 3.46410i 0.0904431 0.156652i
\(490\) 0 0
\(491\) 8.50000 + 14.7224i 0.383600 + 0.664414i 0.991574 0.129543i \(-0.0413509\pi\)
−0.607974 + 0.793957i \(0.708018\pi\)
\(492\) 0 0
\(493\) 9.00000 15.5885i 0.405340 0.702069i
\(494\) 0 0
\(495\) 6.00000 0.269680
\(496\) 0 0
\(497\) 80.0000 3.58849
\(498\) 0 0
\(499\) −12.0000 + 20.7846i −0.537194 + 0.930447i 0.461860 + 0.886953i \(0.347182\pi\)
−0.999054 + 0.0434940i \(0.986151\pi\)
\(500\) 0 0
\(501\) −4.00000 6.92820i −0.178707 0.309529i
\(502\) 0 0
\(503\) 20.0000 34.6410i 0.891756 1.54457i 0.0539870 0.998542i \(-0.482807\pi\)
0.837769 0.546025i \(-0.183860\pi\)
\(504\) 0 0
\(505\) 3.00000 + 5.19615i 0.133498 + 0.231226i
\(506\) 0 0
\(507\) −6.50000 11.2583i −0.288675 0.500000i
\(508\) 0 0
\(509\) 3.50000 + 6.06218i 0.155135 + 0.268701i 0.933108 0.359596i \(-0.117085\pi\)
−0.777973 + 0.628297i \(0.783752\pi\)
\(510\) 0 0
\(511\) −10.0000 −0.442374
\(512\) 0 0
\(513\) 3.00000 5.19615i 0.132453 0.229416i
\(514\) 0 0
\(515\) 1.00000 1.73205i 0.0440653 0.0763233i
\(516\) 0 0
\(517\) −9.00000 15.5885i −0.395820 0.685580i
\(518\) 0 0
\(519\) 9.00000 0.395056
\(520\) 0 0
\(521\) −2.00000 + 3.46410i −0.0876216 + 0.151765i −0.906505 0.422194i \(-0.861260\pi\)
0.818884 + 0.573959i \(0.194593\pi\)
\(522\) 0 0
\(523\) −36.0000 −1.57417 −0.787085 0.616844i \(-0.788411\pi\)
−0.787085 + 0.616844i \(0.788411\pi\)
\(524\) 0 0
\(525\) −5.00000 −0.218218
\(526\) 0 0
\(527\) −33.0000 + 5.19615i −1.43750 + 0.226348i
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) −11.0000 −0.477359
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 22.0000 0.951143
\(536\) 0 0
\(537\) 4.50000 + 7.79423i 0.194189 + 0.336346i
\(538\) 0 0
\(539\) −27.0000 + 46.7654i −1.16297 + 2.01433i
\(540\) 0 0
\(541\) 6.00000 10.3923i 0.257960 0.446800i −0.707735 0.706478i \(-0.750283\pi\)
0.965695 + 0.259678i \(0.0836163\pi\)
\(542\) 0 0
\(543\) −2.00000 −0.0858282
\(544\) 0 0
\(545\) 2.00000 + 3.46410i 0.0856706 + 0.148386i
\(546\) 0 0
\(547\) −17.0000 29.4449i −0.726868 1.25897i −0.958201 0.286097i \(-0.907642\pi\)
0.231333 0.972875i \(-0.425691\pi\)
\(548\) 0 0
\(549\) 4.00000 + 6.92820i 0.170716 + 0.295689i
\(550\) 0 0
\(551\) 9.00000 15.5885i 0.383413 0.664091i
\(552\) 0 0
\(553\) −20.0000 34.6410i −0.850487 1.47309i
\(554\) 0 0
\(555\) −8.00000 + 13.8564i −0.339581 + 0.588172i
\(556\) 0 0
\(557\) 23.0000 0.974541 0.487271 0.873251i \(-0.337993\pi\)
0.487271 + 0.873251i \(0.337993\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 9.00000 15.5885i 0.379980 0.658145i
\(562\) 0 0
\(563\) 17.5000 + 30.3109i 0.737537 + 1.27745i 0.953601 + 0.301073i \(0.0973446\pi\)
−0.216064 + 0.976379i \(0.569322\pi\)
\(564\) 0 0
\(565\) 4.00000 6.92820i 0.168281 0.291472i
\(566\) 0 0
\(567\) 2.50000 + 4.33013i 0.104990 + 0.181848i
\(568\) 0 0
\(569\) 12.0000 + 20.7846i 0.503066 + 0.871336i 0.999994 + 0.00354413i \(0.00112814\pi\)
−0.496928 + 0.867792i \(0.665539\pi\)
\(570\) 0 0
\(571\) 13.0000 + 22.5167i 0.544033 + 0.942293i 0.998667 + 0.0516146i \(0.0164367\pi\)
−0.454634 + 0.890678i \(0.650230\pi\)
\(572\) 0 0
\(573\) 12.0000 0.501307
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −19.0000 + 32.9090i −0.790980 + 1.37002i 0.134380 + 0.990930i \(0.457096\pi\)
−0.925361 + 0.379088i \(0.876238\pi\)
\(578\) 0 0
\(579\) 6.50000 + 11.2583i 0.270131 + 0.467880i
\(580\) 0 0
\(581\) −55.0000 −2.28178
\(582\) 0 0
\(583\) −1.50000 + 2.59808i −0.0621237 + 0.107601i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 41.0000 1.69225 0.846126 0.532984i \(-0.178929\pi\)
0.846126 + 0.532984i \(0.178929\pi\)
\(588\) 0 0
\(589\) −33.0000 + 5.19615i −1.35974 + 0.214104i
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) 0 0
\(593\) −42.0000 −1.72473 −0.862367 0.506284i \(-0.831019\pi\)
−0.862367 + 0.506284i \(0.831019\pi\)
\(594\) 0 0
\(595\) 30.0000 51.9615i 1.22988 2.13021i
\(596\) 0 0
\(597\) 13.0000 0.532055
\(598\) 0 0
\(599\) 20.0000 + 34.6410i 0.817178 + 1.41539i 0.907754 + 0.419504i \(0.137796\pi\)
−0.0905757 + 0.995890i \(0.528871\pi\)
\(600\) 0 0
\(601\) −11.0000 + 19.0526i −0.448699 + 0.777170i −0.998302 0.0582563i \(-0.981446\pi\)
0.549602 + 0.835426i \(0.314779\pi\)
\(602\) 0 0
\(603\) 6.00000 10.3923i 0.244339 0.423207i
\(604\) 0 0
\(605\) −4.00000 −0.162623
\(606\) 0 0
\(607\) 12.0000 + 20.7846i 0.487065 + 0.843621i 0.999889 0.0148722i \(-0.00473415\pi\)
−0.512824 + 0.858494i \(0.671401\pi\)
\(608\) 0 0
\(609\) 7.50000 + 12.9904i 0.303915 + 0.526397i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −14.0000 + 24.2487i −0.565455 + 0.979396i 0.431553 + 0.902088i \(0.357966\pi\)
−0.997007 + 0.0773084i \(0.975367\pi\)
\(614\) 0 0
\(615\) 4.00000 + 6.92820i 0.161296 + 0.279372i
\(616\) 0 0
\(617\) −6.00000 + 10.3923i −0.241551 + 0.418378i −0.961156 0.276005i \(-0.910989\pi\)
0.719605 + 0.694383i \(0.244323\pi\)
\(618\) 0 0
\(619\) 10.0000 0.401934 0.200967 0.979598i \(-0.435592\pi\)
0.200967 + 0.979598i \(0.435592\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −5.00000 + 8.66025i −0.200321 + 0.346966i
\(624\) 0 0
\(625\) 9.50000 + 16.4545i 0.380000 + 0.658179i
\(626\) 0 0
\(627\) 9.00000 15.5885i 0.359425 0.622543i
\(628\) 0 0
\(629\) 24.0000 + 41.5692i 0.956943 + 1.65747i
\(630\) 0 0
\(631\) 2.50000 + 4.33013i 0.0995234 + 0.172380i 0.911487 0.411328i \(-0.134935\pi\)
−0.811964 + 0.583707i \(0.801602\pi\)
\(632\) 0 0
\(633\) 1.00000 + 1.73205i 0.0397464 + 0.0688428i
\(634\) 0 0
\(635\) −6.00000 −0.238103
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 8.00000 13.8564i 0.316475 0.548151i
\(640\) 0 0
\(641\) −6.00000 10.3923i −0.236986 0.410471i 0.722862 0.690992i \(-0.242826\pi\)
−0.959848 + 0.280521i \(0.909493\pi\)
\(642\) 0 0
\(643\) −16.0000 −0.630978 −0.315489 0.948929i \(-0.602169\pi\)
−0.315489 + 0.948929i \(0.602169\pi\)
\(644\) 0 0
\(645\) −8.00000 + 13.8564i −0.315000 + 0.545595i
\(646\) 0 0
\(647\) −6.00000 −0.235884 −0.117942 0.993020i \(-0.537630\pi\)
−0.117942 + 0.993020i \(0.537630\pi\)
\(648\) 0 0
\(649\) −33.0000 −1.29536
\(650\) 0 0
\(651\) 10.0000 25.9808i 0.391931 1.01827i
\(652\) 0 0
\(653\) −41.0000 −1.60445 −0.802227 0.597019i \(-0.796352\pi\)
−0.802227 + 0.597019i \(0.796352\pi\)
\(654\) 0 0
\(655\) −24.0000 −0.937758
\(656\) 0 0
\(657\) −1.00000 + 1.73205i −0.0390137 + 0.0675737i
\(658\) 0 0
\(659\) 33.0000 1.28550 0.642749 0.766077i \(-0.277794\pi\)
0.642749 + 0.766077i \(0.277794\pi\)
\(660\) 0 0
\(661\) 20.0000 + 34.6410i 0.777910 + 1.34738i 0.933144 + 0.359502i \(0.117053\pi\)
−0.155235 + 0.987878i \(0.549613\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 30.0000 51.9615i 1.16335 2.01498i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 7.50000 + 12.9904i 0.289967 + 0.502237i
\(670\) 0 0
\(671\) 12.0000 + 20.7846i 0.463255 + 0.802381i
\(672\) 0 0
\(673\) −6.50000 11.2583i −0.250557 0.433977i 0.713123 0.701039i \(-0.247280\pi\)
−0.963679 + 0.267063i \(0.913947\pi\)
\(674\) 0 0
\(675\) −0.500000 + 0.866025i −0.0192450 + 0.0333333i
\(676\) 0 0
\(677\) 18.5000 + 32.0429i 0.711013 + 1.23151i 0.964477 + 0.264166i \(0.0850965\pi\)
−0.253465 + 0.967345i \(0.581570\pi\)
\(678\) 0 0
\(679\) 47.5000 82.2724i 1.82288 3.15733i
\(680\) 0 0
\(681\) 25.0000 0.958002
\(682\) 0 0
\(683\) 5.00000 0.191320 0.0956598 0.995414i \(-0.469504\pi\)
0.0956598 + 0.995414i \(0.469504\pi\)
\(684\) 0 0
\(685\) −18.0000 + 31.1769i −0.687745 + 1.19121i
\(686\) 0 0
\(687\) 8.00000 + 13.8564i 0.305219 + 0.528655i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 11.0000 + 19.0526i 0.418460 + 0.724793i 0.995785 0.0917209i \(-0.0292368\pi\)
−0.577325 + 0.816514i \(0.695903\pi\)
\(692\) 0 0
\(693\) 7.50000 + 12.9904i 0.284901 + 0.493464i
\(694\) 0 0
\(695\) 14.0000 + 24.2487i 0.531050 + 0.919806i
\(696\) 0 0
\(697\) 24.0000 0.909065
\(698\) 0 0
\(699\) 6.00000 10.3923i 0.226941 0.393073i
\(700\) 0 0
\(701\) 7.50000 12.9904i 0.283271 0.490640i −0.688917 0.724840i \(-0.741914\pi\)
0.972188 + 0.234200i \(0.0752470\pi\)
\(702\) 0 0
\(703\) 24.0000 + 41.5692i 0.905177 + 1.56781i
\(704\) 0 0
\(705\) −12.0000 −0.451946
\(706\) 0 0
\(707\) −7.50000 + 12.9904i −0.282067 + 0.488554i
\(708\) 0 0
\(709\) −4.00000 −0.150223 −0.0751116 0.997175i \(-0.523931\pi\)
−0.0751116 + 0.997175i \(0.523931\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −24.0000 −0.896296
\(718\) 0 0
\(719\) 1.00000 1.73205i 0.0372937 0.0645946i −0.846776 0.531949i \(-0.821460\pi\)
0.884070 + 0.467355i \(0.154793\pi\)
\(720\) 0 0
\(721\) 5.00000 0.186210
\(722\) 0 0
\(723\) 7.50000 + 12.9904i 0.278928 + 0.483117i
\(724\) 0 0
\(725\) −1.50000 + 2.59808i −0.0557086 + 0.0964901i
\(726\) 0 0
\(727\) 23.5000 40.7032i 0.871567 1.50960i 0.0111912 0.999937i \(-0.496438\pi\)
0.860376 0.509661i \(-0.170229\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 24.0000 + 41.5692i 0.887672 + 1.53749i
\(732\) 0 0
\(733\) −17.0000 29.4449i −0.627909 1.08757i −0.987971 0.154642i \(-0.950578\pi\)
0.360061 0.932929i \(-0.382756\pi\)
\(734\) 0 0
\(735\) 18.0000 + 31.1769i 0.663940 + 1.14998i
\(736\) 0 0
\(737\) 18.0000 31.1769i 0.663039 1.14842i
\(738\) 0 0
\(739\) −7.00000 12.1244i −0.257499 0.446002i 0.708072 0.706140i \(-0.249565\pi\)
−0.965571 + 0.260138i \(0.916232\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −30.0000 −1.10059 −0.550297 0.834969i \(-0.685485\pi\)
−0.550297 + 0.834969i \(0.685485\pi\)
\(744\) 0 0
\(745\) −10.0000 −0.366372
\(746\) 0 0
\(747\) −5.50000 + 9.52628i −0.201234 + 0.348548i
\(748\) 0 0
\(749\) 27.5000 + 47.6314i 1.00483 + 1.74041i
\(750\) 0 0
\(751\) 16.5000 28.5788i 0.602094 1.04286i −0.390410 0.920641i \(-0.627667\pi\)
0.992504 0.122216i \(-0.0389999\pi\)
\(752\) 0 0
\(753\) −14.0000 24.2487i −0.510188 0.883672i
\(754\) 0 0
\(755\) −11.0000 19.0526i −0.400331 0.693394i
\(756\) 0 0
\(757\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 21.0000 36.3731i 0.761249 1.31852i −0.180957 0.983491i \(-0.557920\pi\)
0.942207 0.335032i \(-0.108747\pi\)
\(762\) 0 0
\(763\) −5.00000 + 8.66025i −0.181012 + 0.313522i
\(764\) 0 0
\(765\) −6.00000 10.3923i −0.216930 0.375735i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 27.5000 47.6314i 0.991675 1.71763i 0.384325 0.923198i \(-0.374434\pi\)
0.607350 0.794434i \(-0.292233\pi\)
\(770\) 0 0
\(771\) 16.0000 0.576226
\(772\) 0 0
\(773\) −26.0000 −0.935155 −0.467578 0.883952i \(-0.654873\pi\)
−0.467578 + 0.883952i \(0.654873\pi\)
\(774\) 0 0
\(775\) 5.50000 0.866025i 0.197566 0.0311086i
\(776\) 0 0
\(777\) −40.0000 −1.43499
\(778\) 0 0
\(779\) 24.0000 0.859889
\(780\) 0 0
\(781\) 24.0000 41.5692i 0.858788 1.48746i
\(782\) 0 0
\(783\) 3.00000 0.107211
\(784\) 0 0
\(785\) −16.0000 27.7128i −0.571064 0.989113i
\(786\) 0 0
\(787\) −14.0000 + 24.2487i −0.499046 + 0.864373i −0.999999 0.00110111i \(-0.999650\pi\)
0.500953 + 0.865474i \(0.332983\pi\)
\(788\) 0 0
\(789\) 11.0000 19.0526i 0.391610 0.678289i
\(790\) 0 0
\(791\) 20.0000 0.711118
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 1.00000 + 1.73205i 0.0354663 + 0.0614295i
\(796\) 0 0
\(797\) 4.50000 + 7.79423i 0.159398 + 0.276086i 0.934652 0.355564i \(-0.115711\pi\)
−0.775254 + 0.631650i \(0.782378\pi\)
\(798\) 0 0
\(799\) −18.0000 + 31.1769i −0.636794 + 1.10296i
\(800\) 0 0
\(801\) 1.00000 + 1.73205i 0.0353333 + 0.0611990i
\(802\) 0 0
\(803\) −3.00000 + 5.19615i −0.105868 + 0.183368i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 18.0000 0.633630
\(808\) 0 0
\(809\) 15.0000 25.9808i 0.527372 0.913435i −0.472119 0.881535i \(-0.656511\pi\)
0.999491 0.0319002i \(-0.0101559\pi\)
\(810\) 0 0
\(811\) −1.00000 1.73205i −0.0351147 0.0608205i 0.847934 0.530102i \(-0.177846\pi\)
−0.883049 + 0.469281i \(0.844513\pi\)
\(812\) 0 0
\(813\) 15.5000 26.8468i 0.543609 0.941558i
\(814\) 0 0
\(815\) −4.00000 6.92820i −0.140114 0.242684i
\(816\) 0 0
\(817\) 24.0000 + 41.5692i 0.839654 + 1.45432i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −3.00000 −0.104701 −0.0523504 0.998629i \(-0.516671\pi\)
−0.0523504 + 0.998629i \(0.516671\pi\)
\(822\) 0 0
\(823\) −24.5000 + 42.4352i −0.854016 + 1.47920i 0.0235383 + 0.999723i \(0.492507\pi\)
−0.877555 + 0.479477i \(0.840826\pi\)
\(824\) 0 0
\(825\) −1.50000 + 2.59808i −0.0522233 + 0.0904534i
\(826\) 0 0
\(827\) −12.0000 20.7846i −0.417281 0.722752i 0.578384 0.815765i \(-0.303684\pi\)
−0.995665 + 0.0930129i \(0.970350\pi\)
\(828\) 0 0
\(829\) −6.00000 −0.208389 −0.104194 0.994557i \(-0.533226\pi\)
−0.104194 + 0.994557i \(0.533226\pi\)
\(830\) 0 0
\(831\) −3.00000 + 5.19615i −0.104069 + 0.180253i
\(832\) 0 0
\(833\) 108.000 3.74198
\(834\) 0 0
\(835\) −16.0000 −0.553703
\(836\) 0 0
\(837\) −3.50000 4.33013i −0.120978 0.149671i
\(838\) 0 0
\(839\) −46.0000 −1.58810 −0.794048 0.607855i \(-0.792030\pi\)
−0.794048 + 0.607855i \(0.792030\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 0 0
\(843\) −5.00000 + 8.66025i −0.172209 + 0.298275i
\(844\) 0 0
\(845\) −26.0000 −0.894427
\(846\) 0 0
\(847\) −5.00000 8.66025i −0.171802 0.297570i
\(848\) 0 0
\(849\) −12.0000 + 20.7846i −0.411839 + 0.713326i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 16.0000 0.547830 0.273915 0.961754i \(-0.411681\pi\)
0.273915 + 0.961754i \(0.411681\pi\)
\(854\) 0 0
\(855\) −6.00000 10.3923i −0.205196 0.355409i
\(856\) 0 0
\(857\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(858\) 0 0
\(859\) 24.0000 + 41.5692i 0.818869 + 1.41832i 0.906516 + 0.422172i \(0.138732\pi\)
−0.0876464 + 0.996152i \(0.527935\pi\)
\(860\) 0 0
\(861\) −10.0000 + 17.3205i −0.340799 + 0.590281i
\(862\) 0 0
\(863\) −12.0000 20.7846i −0.408485 0.707516i 0.586235 0.810141i \(-0.300609\pi\)
−0.994720 + 0.102624i \(0.967276\pi\)
\(864\) 0 0
\(865\) 9.00000 15.5885i 0.306009 0.530023i
\(866\) 0 0
\(867\) −19.0000 −0.645274
\(868\) 0 0
\(869\) −24.0000 −0.814144
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −9.50000 16.4545i −0.321526 0.556900i
\(874\) 0 0
\(875\) −30.0000 + 51.9615i −1.01419 + 1.75662i
\(876\) 0 0
\(877\) −12.0000 20.7846i −0.405211 0.701846i 0.589135 0.808035i \(-0.299469\pi\)
−0.994346 + 0.106188i \(0.966135\pi\)
\(878\) 0 0
\(879\) 4.50000 + 7.79423i 0.151781 + 0.262893i
\(880\) 0 0
\(881\) 8.00000 + 13.8564i 0.269527 + 0.466834i 0.968740 0.248079i \(-0.0797994\pi\)
−0.699213 + 0.714914i \(0.746466\pi\)
\(882\) 0 0
\(883\) 36.0000 1.21150 0.605748 0.795656i \(-0.292874\pi\)
0.605748 + 0.795656i \(0.292874\pi\)
\(884\) 0 0
\(885\) −11.0000 + 19.0526i −0.369761 + 0.640445i
\(886\) 0 0
\(887\) 13.0000 22.5167i 0.436497 0.756035i −0.560919 0.827871i \(-0.689552\pi\)
0.997417 + 0.0718351i \(0.0228855\pi\)
\(888\) 0 0
\(889\) −7.50000 12.9904i −0.251542 0.435683i
\(890\) 0 0
\(891\) 3.00000 0.100504
\(892\) 0 0
\(893\) −18.0000 + 31.1769i −0.602347 + 1.04330i
\(894\) 0 0
\(895\) 18.0000 0.601674
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −10.5000 12.9904i −0.350195 0.433253i
\(900\) 0 0
\(901\) 6.00000 0.199889
\(902\) 0 0
\(903\) −40.0000 −1.33112
\(904\) 0 0
\(905\) −2.00000 + 3.46410i −0.0664822 + 0.115151i
\(906\) 0 0
\(907\) −16.0000 −0.531271 −0.265636 0.964073i \(-0.585582\pi\)
−0.265636 + 0.964073i \(0.585582\pi\)
\(908\) 0 0
\(909\) 1.50000 + 2.59808i 0.0497519 + 0.0861727i
\(910\) 0 0
\(911\) −15.0000 + 25.9808i −0.496972 + 0.860781i −0.999994 0.00349271i \(-0.998888\pi\)
0.503022 + 0.864274i \(0.332222\pi\)
\(912\) 0 0
\(913\) −16.5000 + 28.5788i −0.546070 + 0.945822i
\(914\) 0 0
\(915\) 16.0000 0.528944
\(916\) 0 0
\(917\) −30.0000 51.9615i −0.990687 1.71592i
\(918\) 0 0
\(919\) 5.50000 + 9.52628i 0.181428 + 0.314243i 0.942367 0.334581i \(-0.108595\pi\)
−0.760939 + 0.648824i \(0.775261\pi\)
\(920\) 0 0
\(921\) −5.00000 8.66025i −0.164756 0.285365i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −4.00000 6.92820i −0.131519 0.227798i
\(926\) 0 0
\(927\) 0.500000 0.866025i 0.0164222 0.0284440i
\(928\) 0 0
\(929\) 18.0000 0.590561 0.295280 0.955411i \(-0.404587\pi\)
0.295280 + 0.955411i \(0.404587\pi\)
\(930\) 0 0
\(931\) 108.000 3.53956
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −18.0000 31.1769i −0.588663 1.01959i
\(936\) 0 0
\(937\) −15.0000 + 25.9808i −0.490029 + 0.848755i −0.999934 0.0114759i \(-0.996347\pi\)
0.509906 + 0.860230i \(0.329680\pi\)
\(938\) 0 0
\(939\) 4.50000 + 7.79423i 0.146852 + 0.254355i
\(940\) 0 0
\(941\) 10.5000 + 18.1865i 0.342290 + 0.592864i 0.984858 0.173365i \(-0.0554641\pi\)
−0.642567 + 0.766229i \(0.722131\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 10.0000 0.325300
\(946\) 0 0
\(947\) −26.0000 + 45.0333i −0.844886 + 1.46339i 0.0408333 + 0.999166i \(0.486999\pi\)
−0.885720 + 0.464220i \(0.846335\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 10.5000 + 18.1865i 0.340486 + 0.589739i
\(952\) 0 0
\(953\) −40.0000 −1.29573 −0.647864 0.761756i \(-0.724337\pi\)
−0.647864 + 0.761756i \(0.724337\pi\)
\(954\) 0 0
\(955\) 12.0000 20.7846i 0.388311 0.672574i
\(956\) 0 0
\(957\) 9.00000 0.290929
\(958\) 0 0
\(959\) −90.0000 −2.90625
\(960\) 0 0
\(961\) −6.50000 + 30.3109i −0.209677 + 0.977771i
\(962\) 0 0
\(963\) 11.0000 0.354470
\(964\) 0 0
\(965\) 26.0000 0.836970
\(966\) 0 0
\(967\) 12.0000 20.7846i 0.385894 0.668388i −0.605999 0.795466i \(-0.707226\pi\)
0.991893 + 0.127078i \(0.0405597\pi\)
\(968\) 0 0
\(969\) −36.0000 −1.15649
\(970\) 0 0
\(971\) −10.5000 18.1865i −0.336961 0.583634i 0.646899 0.762576i \(-0.276066\pi\)
−0.983860 + 0.178942i \(0.942732\pi\)
\(972\) 0 0
\(973\) −35.0000 + 60.6218i −1.12205 + 1.94344i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24.0000 0.767828 0.383914 0.923369i \(-0.374576\pi\)
0.383914 + 0.923369i \(0.374576\pi\)
\(978\) 0 0
\(979\) 3.00000 + 5.19615i 0.0958804 + 0.166070i
\(980\) 0 0
\(981\) 1.00000 + 1.73205i 0.0319275 + 0.0553001i
\(982\) 0 0
\(983\) −17.0000 29.4449i −0.542216 0.939145i −0.998776 0.0494530i \(-0.984252\pi\)
0.456561 0.889692i \(-0.349081\pi\)
\(984\) 0 0
\(985\) −6.00000 + 10.3923i −0.191176 + 0.331126i
\(986\) 0 0
\(987\) −15.0000 25.9808i −0.477455 0.826977i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −44.0000 −1.39771 −0.698853 0.715265i \(-0.746306\pi\)
−0.698853 + 0.715265i \(0.746306\pi\)
\(992\) 0 0
\(993\) −20.0000 −0.634681
\(994\) 0 0
\(995\) 13.0000 22.5167i 0.412128 0.713826i
\(996\) 0 0
\(997\) −6.00000 10.3923i −0.190022 0.329128i 0.755235 0.655454i \(-0.227523\pi\)
−0.945257 + 0.326326i \(0.894189\pi\)
\(998\) 0 0
\(999\) −4.00000 + 6.92820i −0.126554 + 0.219199i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 744.2.q.c.625.1 yes 2
3.2 odd 2 2232.2.q.e.1369.1 2
4.3 odd 2 1488.2.q.a.625.1 2
31.25 even 3 inner 744.2.q.c.25.1 2
93.56 odd 6 2232.2.q.e.1513.1 2
124.87 odd 6 1488.2.q.a.769.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
744.2.q.c.25.1 2 31.25 even 3 inner
744.2.q.c.625.1 yes 2 1.1 even 1 trivial
1488.2.q.a.625.1 2 4.3 odd 2
1488.2.q.a.769.1 2 124.87 odd 6
2232.2.q.e.1369.1 2 3.2 odd 2
2232.2.q.e.1513.1 2 93.56 odd 6