Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [74,8,Mod(7,74)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(74, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([16]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("74.7");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 74 = 2 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 74.f (of order \(9\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(23.1164918858\) |
Analytic rank: | \(0\) |
Dimension: | \(66\) |
Relative dimension: | \(11\) over \(\Q(\zeta_{9})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 | 7.51754 | − | 2.73616i | −83.1185 | − | 30.2527i | 49.0268 | − | 41.1384i | 77.4784 | + | 439.402i | −707.623 | −71.3442 | − | 404.613i | 256.000 | − | 443.405i | 4318.12 | + | 3623.33i | 1784.72 | + | 3091.23i | ||
7.2 | 7.51754 | − | 2.73616i | −62.7580 | − | 22.8420i | 49.0268 | − | 41.1384i | 1.66323 | + | 9.43265i | −534.285 | 141.286 | + | 801.274i | 256.000 | − | 443.405i | 1741.46 | + | 1461.26i | 38.3126 | + | 66.3594i | ||
7.3 | 7.51754 | − | 2.73616i | −56.1799 | − | 20.4478i | 49.0268 | − | 41.1384i | −76.5259 | − | 434.000i | −478.283 | −144.408 | − | 818.976i | 256.000 | − | 443.405i | 1062.73 | + | 891.735i | −1762.78 | − | 3053.23i | ||
7.4 | 7.51754 | − | 2.73616i | −36.4042 | − | 13.2501i | 49.0268 | − | 41.1384i | −1.10281 | − | 6.25436i | −309.925 | 125.532 | + | 711.929i | 256.000 | − | 443.405i | −525.635 | − | 441.061i | −25.4034 | − | 43.9999i | ||
7.5 | 7.51754 | − | 2.73616i | −19.5402 | − | 7.11207i | 49.0268 | − | 41.1384i | 69.5532 | + | 394.456i | −166.354 | −65.8495 | − | 373.451i | 256.000 | − | 443.405i | −1344.10 | − | 1127.83i | 1602.16 | + | 2775.03i | ||
7.6 | 7.51754 | − | 2.73616i | 6.89307 | + | 2.50887i | 49.0268 | − | 41.1384i | −27.8528 | − | 157.961i | 58.6836 | 117.132 | + | 664.288i | 256.000 | − | 443.405i | −1634.12 | − | 1371.19i | −641.591 | − | 1111.27i | ||
7.7 | 7.51754 | − | 2.73616i | 25.6856 | + | 9.34879i | 49.0268 | − | 41.1384i | 46.1726 | + | 261.858i | 218.672 | −206.971 | − | 1173.79i | 256.000 | − | 443.405i | −1102.99 | − | 925.518i | 1063.59 | + | 1842.19i | ||
7.8 | 7.51754 | − | 2.73616i | 28.9563 | + | 10.5392i | 49.0268 | − | 41.1384i | −48.7600 | − | 276.532i | 246.517 | −219.425 | − | 1244.42i | 256.000 | − | 443.405i | −947.948 | − | 795.422i | −1123.19 | − | 1945.43i | ||
7.9 | 7.51754 | − | 2.73616i | 46.7880 | + | 17.0295i | 49.0268 | − | 41.1384i | 58.4927 | + | 331.728i | 398.326 | 201.162 | + | 1140.85i | 256.000 | − | 443.405i | 223.779 | + | 187.773i | 1347.38 | + | 2333.74i | ||
7.10 | 7.51754 | − | 2.73616i | 65.8840 | + | 23.9798i | 49.0268 | − | 41.1384i | 42.5352 | + | 241.229i | 560.898 | 44.8916 | + | 254.593i | 256.000 | − | 443.405i | 2090.33 | + | 1754.00i | 979.802 | + | 1697.07i | ||
7.11 | 7.51754 | − | 2.73616i | 79.5512 | + | 28.9543i | 49.0268 | − | 41.1384i | −57.6869 | − | 327.158i | 677.253 | −6.84167 | − | 38.8010i | 256.000 | − | 443.405i | 3814.71 | + | 3200.92i | −1328.82 | − | 2301.59i | ||
9.1 | −1.38919 | − | 7.87846i | −14.0898 | + | 79.9071i | −60.1403 | + | 21.8893i | −46.9471 | − | 39.3933i | 649.118 | −514.898 | − | 432.050i | 256.000 | + | 443.405i | −4131.51 | − | 1503.75i | −245.140 | + | 424.595i | ||
9.2 | −1.38919 | − | 7.87846i | −11.0757 | + | 62.8133i | −60.1403 | + | 21.8893i | 48.5860 | + | 40.7685i | 510.258 | 745.438 | + | 625.497i | 256.000 | + | 443.405i | −1767.73 | − | 643.401i | 253.698 | − | 439.418i | ||
9.3 | −1.38919 | − | 7.87846i | −8.32711 | + | 47.2254i | −60.1403 | + | 21.8893i | −300.074 | − | 251.792i | 383.631 | −303.488 | − | 254.657i | 256.000 | + | 443.405i | −105.789 | − | 38.5041i | −1566.88 | + | 2713.91i | ||
9.4 | −1.38919 | − | 7.87846i | −6.48463 | + | 36.7762i | −60.1403 | + | 21.8893i | 381.143 | + | 319.817i | 298.748 | 975.665 | + | 818.680i | 256.000 | + | 443.405i | 744.672 | + | 271.038i | 1990.19 | − | 3447.11i | ||
9.5 | −1.38919 | − | 7.87846i | −2.39984 | + | 13.6102i | −60.1403 | + | 21.8893i | −34.7022 | − | 29.1186i | 110.561 | −140.013 | − | 117.485i | 256.000 | + | 443.405i | 1875.63 | + | 682.674i | −181.202 | + | 313.852i | ||
9.6 | −1.38919 | − | 7.87846i | −0.307798 | + | 1.74561i | −60.1403 | + | 21.8893i | 323.926 | + | 271.806i | 14.1803 | −1225.86 | − | 1028.62i | 256.000 | + | 443.405i | 2052.16 | + | 746.923i | 1691.42 | − | 2929.63i | ||
9.7 | −1.38919 | − | 7.87846i | 2.48533 | − | 14.0950i | −60.1403 | + | 21.8893i | −356.271 | − | 298.947i | −114.500 | 1364.62 | + | 1145.05i | 256.000 | + | 443.405i | 1862.62 | + | 677.936i | −1860.32 | + | 3222.16i | ||
9.8 | −1.38919 | − | 7.87846i | 6.70779 | − | 38.0417i | −60.1403 | + | 21.8893i | 124.780 | + | 104.703i | −309.029 | 25.1771 | + | 21.1261i | 256.000 | + | 443.405i | 652.928 | + | 237.646i | 651.556 | − | 1128.53i | ||
9.9 | −1.38919 | − | 7.87846i | 9.76159 | − | 55.3608i | −60.1403 | + | 21.8893i | −282.513 | − | 237.057i | −449.718 | −1337.20 | − | 1122.04i | 256.000 | + | 443.405i | −914.416 | − | 332.820i | −1475.18 | + | 2555.09i | ||
See all 66 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
37.f | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 74.8.f.b | ✓ | 66 |
37.f | even | 9 | 1 | inner | 74.8.f.b | ✓ | 66 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
74.8.f.b | ✓ | 66 | 1.a | even | 1 | 1 | trivial |
74.8.f.b | ✓ | 66 | 37.f | even | 9 | 1 | inner |