Properties

Label 738.2.n.a
Level $738$
Weight $2$
Character orbit 738.n
Analytic conductor $5.893$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [738,2,Mod(127,738)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(738, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("738.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 738 = 2 \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 738.n (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,0,-1,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.89295966917\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{10}^{3} q^{2} - \zeta_{10} q^{4} + ( - 3 \zeta_{10}^{2} + \zeta_{10} - 3) q^{5} + ( - \zeta_{10}^{2} + 2 \zeta_{10} - 2) q^{7} + (\zeta_{10}^{3} - \zeta_{10}^{2} + \cdots - 1) q^{8} + (2 \zeta_{10}^{3} + \zeta_{10}^{2} + \cdots - 2) q^{10} + \cdots + (4 \zeta_{10}^{3} + 4 \zeta_{10}) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - q^{4} - 8 q^{5} - 5 q^{7} - q^{8} - 8 q^{10} - 5 q^{11} - q^{16} - 10 q^{17} - 5 q^{19} + 7 q^{20} + 5 q^{22} - 4 q^{23} + q^{25} + 15 q^{26} + 5 q^{28} + 5 q^{29} - 5 q^{31} + 4 q^{32}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/738\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(703\)
\(\chi(n)\) \(1\) \(\zeta_{10}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
127.1
−0.309017 + 0.951057i
0.809017 + 0.587785i
0.809017 0.587785i
−0.309017 0.951057i
−0.809017 + 0.587785i 0 0.309017 0.951057i −0.881966 + 2.71441i 0 −1.80902 + 2.48990i 0.309017 + 0.951057i 0 −0.881966 2.71441i
271.1 0.309017 0.951057i 0 −0.809017 0.587785i −3.11803 2.26538i 0 −0.690983 + 0.224514i −0.809017 + 0.587785i 0 −3.11803 + 2.26538i
433.1 0.309017 + 0.951057i 0 −0.809017 + 0.587785i −3.11803 + 2.26538i 0 −0.690983 0.224514i −0.809017 0.587785i 0 −3.11803 2.26538i
523.1 −0.809017 0.587785i 0 0.309017 + 0.951057i −0.881966 2.71441i 0 −1.80902 2.48990i 0.309017 0.951057i 0 −0.881966 + 2.71441i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
41.f even 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 738.2.n.a 4
3.b odd 2 1 738.2.n.b yes 4
41.f even 10 1 inner 738.2.n.a 4
123.l odd 10 1 738.2.n.b yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
738.2.n.a 4 1.a even 1 1 trivial
738.2.n.a 4 41.f even 10 1 inner
738.2.n.b yes 4 3.b odd 2 1
738.2.n.b yes 4 123.l odd 10 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(738, [\chi])\):

\( T_{5}^{4} + 8T_{5}^{3} + 34T_{5}^{2} + 77T_{5} + 121 \) Copy content Toggle raw display
\( T_{7}^{4} + 5T_{7}^{3} + 15T_{7}^{2} + 15T_{7} + 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 8 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$7$ \( T^{4} + 5 T^{3} + \cdots + 5 \) Copy content Toggle raw display
$11$ \( T^{4} + 5 T^{3} + \cdots + 5 \) Copy content Toggle raw display
$13$ \( T^{4} - 135T + 405 \) Copy content Toggle raw display
$17$ \( T^{4} + 10 T^{3} + \cdots + 80 \) Copy content Toggle raw display
$19$ \( T^{4} + 5 T^{3} + \cdots + 1805 \) Copy content Toggle raw display
$23$ \( T^{4} + 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{4} - 5 T^{3} + \cdots + 605 \) Copy content Toggle raw display
$31$ \( T^{4} + 5 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$37$ \( T^{4} - 12 T^{3} + \cdots + 256 \) Copy content Toggle raw display
$41$ \( T^{4} - 16 T^{3} + \cdots + 1681 \) Copy content Toggle raw display
$43$ \( T^{4} + 11 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$47$ \( T^{4} + 20 T^{3} + \cdots + 1280 \) Copy content Toggle raw display
$53$ \( T^{4} + 10T^{3} + 2000 \) Copy content Toggle raw display
$59$ \( T^{4} + 6 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$61$ \( T^{4} + 15 T^{3} + \cdots + 3025 \) Copy content Toggle raw display
$67$ \( T^{4} - 5 T^{3} + \cdots + 8405 \) Copy content Toggle raw display
$71$ \( T^{4} + 40 T^{3} + \cdots + 31205 \) Copy content Toggle raw display
$73$ \( (T + 9)^{4} \) Copy content Toggle raw display
$79$ \( T^{4} + 65T^{2} + 605 \) Copy content Toggle raw display
$83$ \( (T^{2} + 18 T + 36)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} - 5 T^{3} + \cdots + 605 \) Copy content Toggle raw display
$97$ \( T^{4} - 45 T^{3} + \cdots + 39605 \) Copy content Toggle raw display
show more
show less