Properties

Label 736.4.a.h.1.3
Level $736$
Weight $4$
Character 736.1
Self dual yes
Analytic conductor $43.425$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [736,4,Mod(1,736)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("736.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(736, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 736 = 2^{5} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 736.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,0,0,0,0,0,-42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.4254057642\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 3x^{8} - 147x^{7} - 97x^{6} + 4561x^{5} + 7383x^{4} - 31427x^{3} - 43981x^{2} + 17596x + 12306 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(12.7496\) of defining polynomial
Character \(\chi\) \(=\) 736.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.48281 q^{3} +1.44246 q^{5} +5.95524 q^{7} +3.06121 q^{9} -34.3096 q^{11} +76.5477 q^{13} -7.90873 q^{15} -13.1296 q^{17} -45.0212 q^{19} -32.6514 q^{21} -23.0000 q^{23} -122.919 q^{25} +131.252 q^{27} +92.3349 q^{29} +231.013 q^{31} +188.113 q^{33} +8.59019 q^{35} +438.001 q^{37} -419.696 q^{39} +91.0056 q^{41} -415.535 q^{43} +4.41567 q^{45} -476.936 q^{47} -307.535 q^{49} +71.9873 q^{51} -262.366 q^{53} -49.4902 q^{55} +246.843 q^{57} +352.842 q^{59} +685.060 q^{61} +18.2302 q^{63} +110.417 q^{65} -543.860 q^{67} +126.105 q^{69} -840.263 q^{71} +195.510 q^{73} +673.943 q^{75} -204.322 q^{77} +337.507 q^{79} -802.282 q^{81} -1269.79 q^{83} -18.9390 q^{85} -506.255 q^{87} -1112.84 q^{89} +455.860 q^{91} -1266.60 q^{93} -64.9413 q^{95} -605.888 q^{97} -105.029 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 42 q^{7} + 71 q^{9} - 66 q^{11} + 48 q^{13} - 90 q^{15} - 32 q^{17} + 6 q^{21} - 207 q^{23} + 135 q^{25} - 88 q^{29} - 556 q^{31} - 230 q^{33} - 368 q^{35} - 368 q^{37} - 468 q^{39} - 216 q^{41} + 552 q^{43}+ \cdots - 552 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.48281 −1.05517 −0.527584 0.849503i \(-0.676902\pi\)
−0.527584 + 0.849503i \(0.676902\pi\)
\(4\) 0 0
\(5\) 1.44246 0.129017 0.0645087 0.997917i \(-0.479452\pi\)
0.0645087 + 0.997917i \(0.479452\pi\)
\(6\) 0 0
\(7\) 5.95524 0.321553 0.160776 0.986991i \(-0.448600\pi\)
0.160776 + 0.986991i \(0.448600\pi\)
\(8\) 0 0
\(9\) 3.06121 0.113378
\(10\) 0 0
\(11\) −34.3096 −0.940431 −0.470215 0.882552i \(-0.655824\pi\)
−0.470215 + 0.882552i \(0.655824\pi\)
\(12\) 0 0
\(13\) 76.5477 1.63312 0.816558 0.577263i \(-0.195879\pi\)
0.816558 + 0.577263i \(0.195879\pi\)
\(14\) 0 0
\(15\) −7.90873 −0.136135
\(16\) 0 0
\(17\) −13.1296 −0.187318 −0.0936590 0.995604i \(-0.529856\pi\)
−0.0936590 + 0.995604i \(0.529856\pi\)
\(18\) 0 0
\(19\) −45.0212 −0.543609 −0.271805 0.962352i \(-0.587620\pi\)
−0.271805 + 0.962352i \(0.587620\pi\)
\(20\) 0 0
\(21\) −32.6514 −0.339292
\(22\) 0 0
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) −122.919 −0.983354
\(26\) 0 0
\(27\) 131.252 0.935534
\(28\) 0 0
\(29\) 92.3349 0.591247 0.295624 0.955305i \(-0.404473\pi\)
0.295624 + 0.955305i \(0.404473\pi\)
\(30\) 0 0
\(31\) 231.013 1.33843 0.669213 0.743071i \(-0.266631\pi\)
0.669213 + 0.743071i \(0.266631\pi\)
\(32\) 0 0
\(33\) 188.113 0.992312
\(34\) 0 0
\(35\) 8.59019 0.0414859
\(36\) 0 0
\(37\) 438.001 1.94613 0.973067 0.230524i \(-0.0740439\pi\)
0.973067 + 0.230524i \(0.0740439\pi\)
\(38\) 0 0
\(39\) −419.696 −1.72321
\(40\) 0 0
\(41\) 91.0056 0.346651 0.173325 0.984865i \(-0.444549\pi\)
0.173325 + 0.984865i \(0.444549\pi\)
\(42\) 0 0
\(43\) −415.535 −1.47369 −0.736843 0.676064i \(-0.763684\pi\)
−0.736843 + 0.676064i \(0.763684\pi\)
\(44\) 0 0
\(45\) 4.41567 0.0146278
\(46\) 0 0
\(47\) −476.936 −1.48018 −0.740088 0.672510i \(-0.765216\pi\)
−0.740088 + 0.672510i \(0.765216\pi\)
\(48\) 0 0
\(49\) −307.535 −0.896604
\(50\) 0 0
\(51\) 71.9873 0.197652
\(52\) 0 0
\(53\) −262.366 −0.679975 −0.339988 0.940430i \(-0.610423\pi\)
−0.339988 + 0.940430i \(0.610423\pi\)
\(54\) 0 0
\(55\) −49.4902 −0.121332
\(56\) 0 0
\(57\) 246.843 0.573599
\(58\) 0 0
\(59\) 352.842 0.778578 0.389289 0.921116i \(-0.372721\pi\)
0.389289 + 0.921116i \(0.372721\pi\)
\(60\) 0 0
\(61\) 685.060 1.43792 0.718959 0.695052i \(-0.244619\pi\)
0.718959 + 0.695052i \(0.244619\pi\)
\(62\) 0 0
\(63\) 18.2302 0.0364570
\(64\) 0 0
\(65\) 110.417 0.210701
\(66\) 0 0
\(67\) −543.860 −0.991688 −0.495844 0.868412i \(-0.665141\pi\)
−0.495844 + 0.868412i \(0.665141\pi\)
\(68\) 0 0
\(69\) 126.105 0.220018
\(70\) 0 0
\(71\) −840.263 −1.40452 −0.702259 0.711921i \(-0.747825\pi\)
−0.702259 + 0.711921i \(0.747825\pi\)
\(72\) 0 0
\(73\) 195.510 0.313462 0.156731 0.987641i \(-0.449904\pi\)
0.156731 + 0.987641i \(0.449904\pi\)
\(74\) 0 0
\(75\) 673.943 1.03760
\(76\) 0 0
\(77\) −204.322 −0.302398
\(78\) 0 0
\(79\) 337.507 0.480664 0.240332 0.970691i \(-0.422744\pi\)
0.240332 + 0.970691i \(0.422744\pi\)
\(80\) 0 0
\(81\) −802.282 −1.10052
\(82\) 0 0
\(83\) −1269.79 −1.67925 −0.839625 0.543166i \(-0.817226\pi\)
−0.839625 + 0.543166i \(0.817226\pi\)
\(84\) 0 0
\(85\) −18.9390 −0.0241673
\(86\) 0 0
\(87\) −506.255 −0.623865
\(88\) 0 0
\(89\) −1112.84 −1.32541 −0.662703 0.748882i \(-0.730591\pi\)
−0.662703 + 0.748882i \(0.730591\pi\)
\(90\) 0 0
\(91\) 455.860 0.525133
\(92\) 0 0
\(93\) −1266.60 −1.41226
\(94\) 0 0
\(95\) −64.9413 −0.0701351
\(96\) 0 0
\(97\) −605.888 −0.634212 −0.317106 0.948390i \(-0.602711\pi\)
−0.317106 + 0.948390i \(0.602711\pi\)
\(98\) 0 0
\(99\) −105.029 −0.106624
\(100\) 0 0
\(101\) 1546.51 1.52360 0.761800 0.647812i \(-0.224316\pi\)
0.761800 + 0.647812i \(0.224316\pi\)
\(102\) 0 0
\(103\) −49.4195 −0.0472762 −0.0236381 0.999721i \(-0.507525\pi\)
−0.0236381 + 0.999721i \(0.507525\pi\)
\(104\) 0 0
\(105\) −47.0984 −0.0437746
\(106\) 0 0
\(107\) −1338.48 −1.20930 −0.604652 0.796490i \(-0.706688\pi\)
−0.604652 + 0.796490i \(0.706688\pi\)
\(108\) 0 0
\(109\) −1421.06 −1.24874 −0.624369 0.781130i \(-0.714644\pi\)
−0.624369 + 0.781130i \(0.714644\pi\)
\(110\) 0 0
\(111\) −2401.48 −2.05350
\(112\) 0 0
\(113\) −1231.68 −1.02537 −0.512683 0.858578i \(-0.671348\pi\)
−0.512683 + 0.858578i \(0.671348\pi\)
\(114\) 0 0
\(115\) −33.1766 −0.0269020
\(116\) 0 0
\(117\) 234.329 0.185160
\(118\) 0 0
\(119\) −78.1901 −0.0602326
\(120\) 0 0
\(121\) −153.850 −0.115590
\(122\) 0 0
\(123\) −498.966 −0.365775
\(124\) 0 0
\(125\) −357.614 −0.255887
\(126\) 0 0
\(127\) −1314.59 −0.918515 −0.459258 0.888303i \(-0.651884\pi\)
−0.459258 + 0.888303i \(0.651884\pi\)
\(128\) 0 0
\(129\) 2278.30 1.55499
\(130\) 0 0
\(131\) 470.698 0.313932 0.156966 0.987604i \(-0.449829\pi\)
0.156966 + 0.987604i \(0.449829\pi\)
\(132\) 0 0
\(133\) −268.112 −0.174799
\(134\) 0 0
\(135\) 189.325 0.120700
\(136\) 0 0
\(137\) −1359.42 −0.847757 −0.423879 0.905719i \(-0.639332\pi\)
−0.423879 + 0.905719i \(0.639332\pi\)
\(138\) 0 0
\(139\) −972.983 −0.593722 −0.296861 0.954921i \(-0.595940\pi\)
−0.296861 + 0.954921i \(0.595940\pi\)
\(140\) 0 0
\(141\) 2614.95 1.56183
\(142\) 0 0
\(143\) −2626.32 −1.53583
\(144\) 0 0
\(145\) 133.189 0.0762812
\(146\) 0 0
\(147\) 1686.16 0.946067
\(148\) 0 0
\(149\) −2894.03 −1.59119 −0.795597 0.605826i \(-0.792843\pi\)
−0.795597 + 0.605826i \(0.792843\pi\)
\(150\) 0 0
\(151\) −2235.60 −1.20484 −0.602418 0.798181i \(-0.705796\pi\)
−0.602418 + 0.798181i \(0.705796\pi\)
\(152\) 0 0
\(153\) −40.1926 −0.0212378
\(154\) 0 0
\(155\) 333.227 0.172680
\(156\) 0 0
\(157\) 917.699 0.466499 0.233250 0.972417i \(-0.425064\pi\)
0.233250 + 0.972417i \(0.425064\pi\)
\(158\) 0 0
\(159\) 1438.50 0.717488
\(160\) 0 0
\(161\) −136.970 −0.0670484
\(162\) 0 0
\(163\) 3160.70 1.51880 0.759401 0.650623i \(-0.225492\pi\)
0.759401 + 0.650623i \(0.225492\pi\)
\(164\) 0 0
\(165\) 271.346 0.128026
\(166\) 0 0
\(167\) −1475.73 −0.683806 −0.341903 0.939735i \(-0.611071\pi\)
−0.341903 + 0.939735i \(0.611071\pi\)
\(168\) 0 0
\(169\) 3662.55 1.66707
\(170\) 0 0
\(171\) −137.819 −0.0616334
\(172\) 0 0
\(173\) 2327.25 1.02276 0.511381 0.859354i \(-0.329134\pi\)
0.511381 + 0.859354i \(0.329134\pi\)
\(174\) 0 0
\(175\) −732.014 −0.316200
\(176\) 0 0
\(177\) −1934.57 −0.821531
\(178\) 0 0
\(179\) 3465.62 1.44711 0.723555 0.690267i \(-0.242507\pi\)
0.723555 + 0.690267i \(0.242507\pi\)
\(180\) 0 0
\(181\) −2340.00 −0.960945 −0.480473 0.877010i \(-0.659535\pi\)
−0.480473 + 0.877010i \(0.659535\pi\)
\(182\) 0 0
\(183\) −3756.06 −1.51724
\(184\) 0 0
\(185\) 631.799 0.251085
\(186\) 0 0
\(187\) 450.473 0.176160
\(188\) 0 0
\(189\) 781.636 0.300824
\(190\) 0 0
\(191\) −719.948 −0.272741 −0.136371 0.990658i \(-0.543544\pi\)
−0.136371 + 0.990658i \(0.543544\pi\)
\(192\) 0 0
\(193\) −722.665 −0.269526 −0.134763 0.990878i \(-0.543027\pi\)
−0.134763 + 0.990878i \(0.543027\pi\)
\(194\) 0 0
\(195\) −605.395 −0.222324
\(196\) 0 0
\(197\) −4516.25 −1.63335 −0.816673 0.577100i \(-0.804184\pi\)
−0.816673 + 0.577100i \(0.804184\pi\)
\(198\) 0 0
\(199\) 2482.98 0.884493 0.442246 0.896894i \(-0.354182\pi\)
0.442246 + 0.896894i \(0.354182\pi\)
\(200\) 0 0
\(201\) 2981.88 1.04640
\(202\) 0 0
\(203\) 549.877 0.190117
\(204\) 0 0
\(205\) 131.272 0.0447240
\(206\) 0 0
\(207\) −70.4078 −0.0236410
\(208\) 0 0
\(209\) 1544.66 0.511227
\(210\) 0 0
\(211\) −4832.66 −1.57675 −0.788374 0.615196i \(-0.789077\pi\)
−0.788374 + 0.615196i \(0.789077\pi\)
\(212\) 0 0
\(213\) 4607.00 1.48200
\(214\) 0 0
\(215\) −599.392 −0.190131
\(216\) 0 0
\(217\) 1375.74 0.430374
\(218\) 0 0
\(219\) −1071.94 −0.330755
\(220\) 0 0
\(221\) −1005.04 −0.305912
\(222\) 0 0
\(223\) −1278.76 −0.384000 −0.192000 0.981395i \(-0.561497\pi\)
−0.192000 + 0.981395i \(0.561497\pi\)
\(224\) 0 0
\(225\) −376.282 −0.111491
\(226\) 0 0
\(227\) 4662.45 1.36325 0.681625 0.731702i \(-0.261274\pi\)
0.681625 + 0.731702i \(0.261274\pi\)
\(228\) 0 0
\(229\) −4162.21 −1.20108 −0.600539 0.799595i \(-0.705047\pi\)
−0.600539 + 0.799595i \(0.705047\pi\)
\(230\) 0 0
\(231\) 1120.26 0.319081
\(232\) 0 0
\(233\) 5668.59 1.59383 0.796914 0.604093i \(-0.206465\pi\)
0.796914 + 0.604093i \(0.206465\pi\)
\(234\) 0 0
\(235\) −687.961 −0.190969
\(236\) 0 0
\(237\) −1850.49 −0.507181
\(238\) 0 0
\(239\) 3530.16 0.955426 0.477713 0.878516i \(-0.341466\pi\)
0.477713 + 0.878516i \(0.341466\pi\)
\(240\) 0 0
\(241\) −99.0121 −0.0264644 −0.0132322 0.999912i \(-0.504212\pi\)
−0.0132322 + 0.999912i \(0.504212\pi\)
\(242\) 0 0
\(243\) 854.959 0.225702
\(244\) 0 0
\(245\) −443.607 −0.115678
\(246\) 0 0
\(247\) −3446.27 −0.887777
\(248\) 0 0
\(249\) 6962.03 1.77189
\(250\) 0 0
\(251\) 293.478 0.0738016 0.0369008 0.999319i \(-0.488251\pi\)
0.0369008 + 0.999319i \(0.488251\pi\)
\(252\) 0 0
\(253\) 789.121 0.196093
\(254\) 0 0
\(255\) 103.839 0.0255005
\(256\) 0 0
\(257\) −2503.83 −0.607723 −0.303862 0.952716i \(-0.598276\pi\)
−0.303862 + 0.952716i \(0.598276\pi\)
\(258\) 0 0
\(259\) 2608.40 0.625784
\(260\) 0 0
\(261\) 282.657 0.0670345
\(262\) 0 0
\(263\) 3599.41 0.843914 0.421957 0.906616i \(-0.361343\pi\)
0.421957 + 0.906616i \(0.361343\pi\)
\(264\) 0 0
\(265\) −378.452 −0.0877287
\(266\) 0 0
\(267\) 6101.51 1.39853
\(268\) 0 0
\(269\) 6821.24 1.54609 0.773045 0.634351i \(-0.218732\pi\)
0.773045 + 0.634351i \(0.218732\pi\)
\(270\) 0 0
\(271\) 2584.33 0.579287 0.289644 0.957135i \(-0.406463\pi\)
0.289644 + 0.957135i \(0.406463\pi\)
\(272\) 0 0
\(273\) −2499.39 −0.554103
\(274\) 0 0
\(275\) 4217.32 0.924777
\(276\) 0 0
\(277\) 2093.40 0.454081 0.227041 0.973885i \(-0.427095\pi\)
0.227041 + 0.973885i \(0.427095\pi\)
\(278\) 0 0
\(279\) 707.180 0.151748
\(280\) 0 0
\(281\) −3435.43 −0.729325 −0.364663 0.931140i \(-0.618816\pi\)
−0.364663 + 0.931140i \(0.618816\pi\)
\(282\) 0 0
\(283\) 5136.95 1.07901 0.539505 0.841982i \(-0.318611\pi\)
0.539505 + 0.841982i \(0.318611\pi\)
\(284\) 0 0
\(285\) 356.061 0.0740043
\(286\) 0 0
\(287\) 541.960 0.111466
\(288\) 0 0
\(289\) −4740.61 −0.964912
\(290\) 0 0
\(291\) 3321.97 0.669200
\(292\) 0 0
\(293\) −505.986 −0.100887 −0.0504437 0.998727i \(-0.516064\pi\)
−0.0504437 + 0.998727i \(0.516064\pi\)
\(294\) 0 0
\(295\) 508.960 0.100450
\(296\) 0 0
\(297\) −4503.20 −0.879805
\(298\) 0 0
\(299\) −1760.60 −0.340528
\(300\) 0 0
\(301\) −2474.61 −0.473868
\(302\) 0 0
\(303\) −8479.23 −1.60765
\(304\) 0 0
\(305\) 988.172 0.185517
\(306\) 0 0
\(307\) 3913.39 0.727522 0.363761 0.931492i \(-0.381492\pi\)
0.363761 + 0.931492i \(0.381492\pi\)
\(308\) 0 0
\(309\) 270.958 0.0498843
\(310\) 0 0
\(311\) −2376.02 −0.433221 −0.216610 0.976258i \(-0.569500\pi\)
−0.216610 + 0.976258i \(0.569500\pi\)
\(312\) 0 0
\(313\) 1946.78 0.351560 0.175780 0.984429i \(-0.443755\pi\)
0.175780 + 0.984429i \(0.443755\pi\)
\(314\) 0 0
\(315\) 26.2964 0.00470360
\(316\) 0 0
\(317\) 1207.06 0.213865 0.106933 0.994266i \(-0.465897\pi\)
0.106933 + 0.994266i \(0.465897\pi\)
\(318\) 0 0
\(319\) −3167.98 −0.556027
\(320\) 0 0
\(321\) 7338.62 1.27602
\(322\) 0 0
\(323\) 591.112 0.101828
\(324\) 0 0
\(325\) −9409.19 −1.60593
\(326\) 0 0
\(327\) 7791.38 1.31763
\(328\) 0 0
\(329\) −2840.27 −0.475955
\(330\) 0 0
\(331\) 4311.83 0.716011 0.358005 0.933720i \(-0.383457\pi\)
0.358005 + 0.933720i \(0.383457\pi\)
\(332\) 0 0
\(333\) 1340.81 0.220649
\(334\) 0 0
\(335\) −784.496 −0.127945
\(336\) 0 0
\(337\) −6342.26 −1.02518 −0.512589 0.858634i \(-0.671314\pi\)
−0.512589 + 0.858634i \(0.671314\pi\)
\(338\) 0 0
\(339\) 6753.05 1.08193
\(340\) 0 0
\(341\) −7925.98 −1.25870
\(342\) 0 0
\(343\) −3874.09 −0.609858
\(344\) 0 0
\(345\) 181.901 0.0283861
\(346\) 0 0
\(347\) −6635.25 −1.02651 −0.513255 0.858236i \(-0.671561\pi\)
−0.513255 + 0.858236i \(0.671561\pi\)
\(348\) 0 0
\(349\) −3695.13 −0.566750 −0.283375 0.959009i \(-0.591454\pi\)
−0.283375 + 0.959009i \(0.591454\pi\)
\(350\) 0 0
\(351\) 10047.0 1.52784
\(352\) 0 0
\(353\) −1734.41 −0.261510 −0.130755 0.991415i \(-0.541740\pi\)
−0.130755 + 0.991415i \(0.541740\pi\)
\(354\) 0 0
\(355\) −1212.04 −0.181207
\(356\) 0 0
\(357\) 428.702 0.0635554
\(358\) 0 0
\(359\) −8420.19 −1.23788 −0.618942 0.785437i \(-0.712438\pi\)
−0.618942 + 0.785437i \(0.712438\pi\)
\(360\) 0 0
\(361\) −4832.09 −0.704489
\(362\) 0 0
\(363\) 843.530 0.121966
\(364\) 0 0
\(365\) 282.015 0.0404421
\(366\) 0 0
\(367\) 13947.7 1.98382 0.991910 0.126947i \(-0.0405178\pi\)
0.991910 + 0.126947i \(0.0405178\pi\)
\(368\) 0 0
\(369\) 278.587 0.0393026
\(370\) 0 0
\(371\) −1562.45 −0.218648
\(372\) 0 0
\(373\) 2567.77 0.356445 0.178222 0.983990i \(-0.442965\pi\)
0.178222 + 0.983990i \(0.442965\pi\)
\(374\) 0 0
\(375\) 1960.73 0.270004
\(376\) 0 0
\(377\) 7068.03 0.965575
\(378\) 0 0
\(379\) 4549.39 0.616587 0.308293 0.951291i \(-0.400242\pi\)
0.308293 + 0.951291i \(0.400242\pi\)
\(380\) 0 0
\(381\) 7207.67 0.969187
\(382\) 0 0
\(383\) 2053.57 0.273976 0.136988 0.990573i \(-0.456258\pi\)
0.136988 + 0.990573i \(0.456258\pi\)
\(384\) 0 0
\(385\) −294.726 −0.0390146
\(386\) 0 0
\(387\) −1272.04 −0.167084
\(388\) 0 0
\(389\) −6626.47 −0.863690 −0.431845 0.901948i \(-0.642137\pi\)
−0.431845 + 0.901948i \(0.642137\pi\)
\(390\) 0 0
\(391\) 301.982 0.0390585
\(392\) 0 0
\(393\) −2580.75 −0.331250
\(394\) 0 0
\(395\) 486.840 0.0620141
\(396\) 0 0
\(397\) −1245.53 −0.157459 −0.0787296 0.996896i \(-0.525086\pi\)
−0.0787296 + 0.996896i \(0.525086\pi\)
\(398\) 0 0
\(399\) 1470.01 0.184442
\(400\) 0 0
\(401\) −4526.90 −0.563747 −0.281874 0.959452i \(-0.590956\pi\)
−0.281874 + 0.959452i \(0.590956\pi\)
\(402\) 0 0
\(403\) 17683.5 2.18580
\(404\) 0 0
\(405\) −1157.26 −0.141987
\(406\) 0 0
\(407\) −15027.7 −1.83020
\(408\) 0 0
\(409\) −9959.61 −1.20409 −0.602043 0.798464i \(-0.705646\pi\)
−0.602043 + 0.798464i \(0.705646\pi\)
\(410\) 0 0
\(411\) 7453.42 0.894526
\(412\) 0 0
\(413\) 2101.26 0.250354
\(414\) 0 0
\(415\) −1831.62 −0.216653
\(416\) 0 0
\(417\) 5334.68 0.626476
\(418\) 0 0
\(419\) −6823.75 −0.795613 −0.397807 0.917469i \(-0.630229\pi\)
−0.397807 + 0.917469i \(0.630229\pi\)
\(420\) 0 0
\(421\) 9291.42 1.07562 0.537810 0.843066i \(-0.319252\pi\)
0.537810 + 0.843066i \(0.319252\pi\)
\(422\) 0 0
\(423\) −1460.00 −0.167820
\(424\) 0 0
\(425\) 1613.89 0.184200
\(426\) 0 0
\(427\) 4079.70 0.462366
\(428\) 0 0
\(429\) 14399.6 1.62056
\(430\) 0 0
\(431\) 15751.8 1.76042 0.880208 0.474589i \(-0.157403\pi\)
0.880208 + 0.474589i \(0.157403\pi\)
\(432\) 0 0
\(433\) −11994.0 −1.33116 −0.665582 0.746325i \(-0.731817\pi\)
−0.665582 + 0.746325i \(0.731817\pi\)
\(434\) 0 0
\(435\) −730.252 −0.0804895
\(436\) 0 0
\(437\) 1035.49 0.113350
\(438\) 0 0
\(439\) 10701.3 1.16343 0.581714 0.813394i \(-0.302382\pi\)
0.581714 + 0.813394i \(0.302382\pi\)
\(440\) 0 0
\(441\) −941.430 −0.101655
\(442\) 0 0
\(443\) −6834.67 −0.733014 −0.366507 0.930415i \(-0.619446\pi\)
−0.366507 + 0.930415i \(0.619446\pi\)
\(444\) 0 0
\(445\) −1605.23 −0.171001
\(446\) 0 0
\(447\) 15867.4 1.67898
\(448\) 0 0
\(449\) −13907.7 −1.46179 −0.730894 0.682491i \(-0.760897\pi\)
−0.730894 + 0.682491i \(0.760897\pi\)
\(450\) 0 0
\(451\) −3122.37 −0.326001
\(452\) 0 0
\(453\) 12257.3 1.27130
\(454\) 0 0
\(455\) 657.559 0.0677513
\(456\) 0 0
\(457\) 5690.52 0.582476 0.291238 0.956651i \(-0.405933\pi\)
0.291238 + 0.956651i \(0.405933\pi\)
\(458\) 0 0
\(459\) −1723.29 −0.175242
\(460\) 0 0
\(461\) −5547.09 −0.560420 −0.280210 0.959939i \(-0.590404\pi\)
−0.280210 + 0.959939i \(0.590404\pi\)
\(462\) 0 0
\(463\) −8973.41 −0.900712 −0.450356 0.892849i \(-0.648703\pi\)
−0.450356 + 0.892849i \(0.648703\pi\)
\(464\) 0 0
\(465\) −1827.02 −0.182207
\(466\) 0 0
\(467\) −19200.3 −1.90254 −0.951269 0.308363i \(-0.900219\pi\)
−0.951269 + 0.308363i \(0.900219\pi\)
\(468\) 0 0
\(469\) −3238.82 −0.318880
\(470\) 0 0
\(471\) −5031.57 −0.492235
\(472\) 0 0
\(473\) 14256.8 1.38590
\(474\) 0 0
\(475\) 5533.98 0.534561
\(476\) 0 0
\(477\) −803.156 −0.0770944
\(478\) 0 0
\(479\) 4974.38 0.474499 0.237250 0.971449i \(-0.423754\pi\)
0.237250 + 0.971449i \(0.423754\pi\)
\(480\) 0 0
\(481\) 33528.0 3.17826
\(482\) 0 0
\(483\) 750.983 0.0707472
\(484\) 0 0
\(485\) −873.969 −0.0818245
\(486\) 0 0
\(487\) 1009.47 0.0939294 0.0469647 0.998897i \(-0.485045\pi\)
0.0469647 + 0.998897i \(0.485045\pi\)
\(488\) 0 0
\(489\) −17329.5 −1.60259
\(490\) 0 0
\(491\) −14220.0 −1.30700 −0.653502 0.756925i \(-0.726701\pi\)
−0.653502 + 0.756925i \(0.726701\pi\)
\(492\) 0 0
\(493\) −1212.32 −0.110751
\(494\) 0 0
\(495\) −151.500 −0.0137564
\(496\) 0 0
\(497\) −5003.96 −0.451627
\(498\) 0 0
\(499\) −4040.61 −0.362490 −0.181245 0.983438i \(-0.558013\pi\)
−0.181245 + 0.983438i \(0.558013\pi\)
\(500\) 0 0
\(501\) 8091.16 0.721530
\(502\) 0 0
\(503\) −3383.69 −0.299943 −0.149971 0.988690i \(-0.547918\pi\)
−0.149971 + 0.988690i \(0.547918\pi\)
\(504\) 0 0
\(505\) 2230.78 0.196571
\(506\) 0 0
\(507\) −20081.1 −1.75904
\(508\) 0 0
\(509\) −10557.0 −0.919310 −0.459655 0.888097i \(-0.652027\pi\)
−0.459655 + 0.888097i \(0.652027\pi\)
\(510\) 0 0
\(511\) 1164.31 0.100795
\(512\) 0 0
\(513\) −5909.12 −0.508565
\(514\) 0 0
\(515\) −71.2856 −0.00609946
\(516\) 0 0
\(517\) 16363.5 1.39200
\(518\) 0 0
\(519\) −12759.9 −1.07919
\(520\) 0 0
\(521\) −562.524 −0.0473025 −0.0236513 0.999720i \(-0.507529\pi\)
−0.0236513 + 0.999720i \(0.507529\pi\)
\(522\) 0 0
\(523\) −9026.26 −0.754667 −0.377333 0.926077i \(-0.623159\pi\)
−0.377333 + 0.926077i \(0.623159\pi\)
\(524\) 0 0
\(525\) 4013.49 0.333644
\(526\) 0 0
\(527\) −3033.12 −0.250711
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 1080.12 0.0882738
\(532\) 0 0
\(533\) 6966.26 0.566121
\(534\) 0 0
\(535\) −1930.70 −0.156021
\(536\) 0 0
\(537\) −19001.3 −1.52694
\(538\) 0 0
\(539\) 10551.4 0.843194
\(540\) 0 0
\(541\) 17974.9 1.42847 0.714235 0.699906i \(-0.246775\pi\)
0.714235 + 0.699906i \(0.246775\pi\)
\(542\) 0 0
\(543\) 12829.8 1.01396
\(544\) 0 0
\(545\) −2049.81 −0.161109
\(546\) 0 0
\(547\) 22408.7 1.75160 0.875800 0.482673i \(-0.160334\pi\)
0.875800 + 0.482673i \(0.160334\pi\)
\(548\) 0 0
\(549\) 2097.11 0.163029
\(550\) 0 0
\(551\) −4157.03 −0.321408
\(552\) 0 0
\(553\) 2009.93 0.154559
\(554\) 0 0
\(555\) −3464.03 −0.264937
\(556\) 0 0
\(557\) 3607.56 0.274429 0.137215 0.990541i \(-0.456185\pi\)
0.137215 + 0.990541i \(0.456185\pi\)
\(558\) 0 0
\(559\) −31808.2 −2.40670
\(560\) 0 0
\(561\) −2469.86 −0.185878
\(562\) 0 0
\(563\) 14383.2 1.07669 0.538346 0.842724i \(-0.319049\pi\)
0.538346 + 0.842724i \(0.319049\pi\)
\(564\) 0 0
\(565\) −1776.64 −0.132290
\(566\) 0 0
\(567\) −4777.78 −0.353876
\(568\) 0 0
\(569\) 20252.0 1.49211 0.746053 0.665886i \(-0.231946\pi\)
0.746053 + 0.665886i \(0.231946\pi\)
\(570\) 0 0
\(571\) −24666.8 −1.80784 −0.903919 0.427705i \(-0.859322\pi\)
−0.903919 + 0.427705i \(0.859322\pi\)
\(572\) 0 0
\(573\) 3947.34 0.287788
\(574\) 0 0
\(575\) 2827.14 0.205044
\(576\) 0 0
\(577\) 13339.4 0.962436 0.481218 0.876601i \(-0.340195\pi\)
0.481218 + 0.876601i \(0.340195\pi\)
\(578\) 0 0
\(579\) 3962.23 0.284395
\(580\) 0 0
\(581\) −7561.92 −0.539968
\(582\) 0 0
\(583\) 9001.66 0.639470
\(584\) 0 0
\(585\) 338.009 0.0238888
\(586\) 0 0
\(587\) −9352.70 −0.657628 −0.328814 0.944395i \(-0.606649\pi\)
−0.328814 + 0.944395i \(0.606649\pi\)
\(588\) 0 0
\(589\) −10400.5 −0.727581
\(590\) 0 0
\(591\) 24761.7 1.72345
\(592\) 0 0
\(593\) 19319.6 1.33788 0.668939 0.743317i \(-0.266749\pi\)
0.668939 + 0.743317i \(0.266749\pi\)
\(594\) 0 0
\(595\) −112.786 −0.00777105
\(596\) 0 0
\(597\) −13613.7 −0.933288
\(598\) 0 0
\(599\) 6214.10 0.423875 0.211938 0.977283i \(-0.432023\pi\)
0.211938 + 0.977283i \(0.432023\pi\)
\(600\) 0 0
\(601\) −13398.9 −0.909403 −0.454702 0.890644i \(-0.650254\pi\)
−0.454702 + 0.890644i \(0.650254\pi\)
\(602\) 0 0
\(603\) −1664.87 −0.112436
\(604\) 0 0
\(605\) −221.922 −0.0149131
\(606\) 0 0
\(607\) 6729.05 0.449957 0.224978 0.974364i \(-0.427769\pi\)
0.224978 + 0.974364i \(0.427769\pi\)
\(608\) 0 0
\(609\) −3014.87 −0.200605
\(610\) 0 0
\(611\) −36508.4 −2.41730
\(612\) 0 0
\(613\) −14280.2 −0.940901 −0.470450 0.882426i \(-0.655909\pi\)
−0.470450 + 0.882426i \(0.655909\pi\)
\(614\) 0 0
\(615\) −719.739 −0.0471913
\(616\) 0 0
\(617\) 13519.7 0.882146 0.441073 0.897471i \(-0.354598\pi\)
0.441073 + 0.897471i \(0.354598\pi\)
\(618\) 0 0
\(619\) −25300.2 −1.64281 −0.821407 0.570343i \(-0.806810\pi\)
−0.821407 + 0.570343i \(0.806810\pi\)
\(620\) 0 0
\(621\) −3018.79 −0.195072
\(622\) 0 0
\(623\) −6627.25 −0.426188
\(624\) 0 0
\(625\) 14849.1 0.950341
\(626\) 0 0
\(627\) −8469.09 −0.539430
\(628\) 0 0
\(629\) −5750.80 −0.364546
\(630\) 0 0
\(631\) 5030.37 0.317363 0.158681 0.987330i \(-0.449276\pi\)
0.158681 + 0.987330i \(0.449276\pi\)
\(632\) 0 0
\(633\) 26496.5 1.66373
\(634\) 0 0
\(635\) −1896.25 −0.118505
\(636\) 0 0
\(637\) −23541.1 −1.46426
\(638\) 0 0
\(639\) −2572.22 −0.159242
\(640\) 0 0
\(641\) −3814.93 −0.235071 −0.117536 0.993069i \(-0.537499\pi\)
−0.117536 + 0.993069i \(0.537499\pi\)
\(642\) 0 0
\(643\) 26470.2 1.62346 0.811729 0.584035i \(-0.198527\pi\)
0.811729 + 0.584035i \(0.198527\pi\)
\(644\) 0 0
\(645\) 3286.35 0.200620
\(646\) 0 0
\(647\) −12390.2 −0.752871 −0.376435 0.926443i \(-0.622850\pi\)
−0.376435 + 0.926443i \(0.622850\pi\)
\(648\) 0 0
\(649\) −12105.9 −0.732199
\(650\) 0 0
\(651\) −7542.92 −0.454117
\(652\) 0 0
\(653\) −11527.9 −0.690843 −0.345421 0.938448i \(-0.612264\pi\)
−0.345421 + 0.938448i \(0.612264\pi\)
\(654\) 0 0
\(655\) 678.962 0.0405027
\(656\) 0 0
\(657\) 598.498 0.0355397
\(658\) 0 0
\(659\) −29611.8 −1.75040 −0.875199 0.483763i \(-0.839270\pi\)
−0.875199 + 0.483763i \(0.839270\pi\)
\(660\) 0 0
\(661\) 2767.89 0.162872 0.0814361 0.996679i \(-0.474049\pi\)
0.0814361 + 0.996679i \(0.474049\pi\)
\(662\) 0 0
\(663\) 5510.46 0.322788
\(664\) 0 0
\(665\) −386.741 −0.0225521
\(666\) 0 0
\(667\) −2123.70 −0.123284
\(668\) 0 0
\(669\) 7011.19 0.405184
\(670\) 0 0
\(671\) −23504.2 −1.35226
\(672\) 0 0
\(673\) −16779.6 −0.961079 −0.480540 0.876973i \(-0.659559\pi\)
−0.480540 + 0.876973i \(0.659559\pi\)
\(674\) 0 0
\(675\) −16133.4 −0.919962
\(676\) 0 0
\(677\) −1354.04 −0.0768684 −0.0384342 0.999261i \(-0.512237\pi\)
−0.0384342 + 0.999261i \(0.512237\pi\)
\(678\) 0 0
\(679\) −3608.21 −0.203933
\(680\) 0 0
\(681\) −25563.3 −1.43846
\(682\) 0 0
\(683\) −34512.3 −1.93349 −0.966746 0.255740i \(-0.917681\pi\)
−0.966746 + 0.255740i \(0.917681\pi\)
\(684\) 0 0
\(685\) −1960.90 −0.109376
\(686\) 0 0
\(687\) 22820.6 1.26734
\(688\) 0 0
\(689\) −20083.5 −1.11048
\(690\) 0 0
\(691\) 26091.9 1.43644 0.718222 0.695814i \(-0.244956\pi\)
0.718222 + 0.695814i \(0.244956\pi\)
\(692\) 0 0
\(693\) −625.473 −0.0342853
\(694\) 0 0
\(695\) −1403.49 −0.0766005
\(696\) 0 0
\(697\) −1194.87 −0.0649339
\(698\) 0 0
\(699\) −31079.8 −1.68175
\(700\) 0 0
\(701\) −13703.5 −0.738337 −0.369168 0.929363i \(-0.620357\pi\)
−0.369168 + 0.929363i \(0.620357\pi\)
\(702\) 0 0
\(703\) −19719.4 −1.05794
\(704\) 0 0
\(705\) 3771.96 0.201504
\(706\) 0 0
\(707\) 9209.84 0.489918
\(708\) 0 0
\(709\) −33264.6 −1.76203 −0.881013 0.473091i \(-0.843138\pi\)
−0.881013 + 0.473091i \(0.843138\pi\)
\(710\) 0 0
\(711\) 1033.18 0.0544968
\(712\) 0 0
\(713\) −5313.30 −0.279081
\(714\) 0 0
\(715\) −3788.36 −0.198149
\(716\) 0 0
\(717\) −19355.2 −1.00813
\(718\) 0 0
\(719\) 6519.81 0.338175 0.169088 0.985601i \(-0.445918\pi\)
0.169088 + 0.985601i \(0.445918\pi\)
\(720\) 0 0
\(721\) −294.305 −0.0152018
\(722\) 0 0
\(723\) 542.864 0.0279244
\(724\) 0 0
\(725\) −11349.7 −0.581406
\(726\) 0 0
\(727\) 30762.0 1.56933 0.784663 0.619923i \(-0.212836\pi\)
0.784663 + 0.619923i \(0.212836\pi\)
\(728\) 0 0
\(729\) 16974.0 0.862370
\(730\) 0 0
\(731\) 5455.82 0.276048
\(732\) 0 0
\(733\) 2866.80 0.144458 0.0722290 0.997388i \(-0.476989\pi\)
0.0722290 + 0.997388i \(0.476989\pi\)
\(734\) 0 0
\(735\) 2432.21 0.122059
\(736\) 0 0
\(737\) 18659.6 0.932614
\(738\) 0 0
\(739\) −26130.3 −1.30070 −0.650351 0.759634i \(-0.725378\pi\)
−0.650351 + 0.759634i \(0.725378\pi\)
\(740\) 0 0
\(741\) 18895.3 0.936754
\(742\) 0 0
\(743\) −14423.8 −0.712192 −0.356096 0.934449i \(-0.615892\pi\)
−0.356096 + 0.934449i \(0.615892\pi\)
\(744\) 0 0
\(745\) −4174.52 −0.205292
\(746\) 0 0
\(747\) −3887.10 −0.190390
\(748\) 0 0
\(749\) −7970.95 −0.388855
\(750\) 0 0
\(751\) 32892.1 1.59820 0.799100 0.601198i \(-0.205310\pi\)
0.799100 + 0.601198i \(0.205310\pi\)
\(752\) 0 0
\(753\) −1609.09 −0.0778730
\(754\) 0 0
\(755\) −3224.76 −0.155445
\(756\) 0 0
\(757\) 26854.4 1.28935 0.644676 0.764456i \(-0.276992\pi\)
0.644676 + 0.764456i \(0.276992\pi\)
\(758\) 0 0
\(759\) −4326.60 −0.206911
\(760\) 0 0
\(761\) 7087.42 0.337607 0.168803 0.985650i \(-0.446010\pi\)
0.168803 + 0.985650i \(0.446010\pi\)
\(762\) 0 0
\(763\) −8462.72 −0.401535
\(764\) 0 0
\(765\) −57.9762 −0.00274004
\(766\) 0 0
\(767\) 27009.2 1.27151
\(768\) 0 0
\(769\) −8889.76 −0.416870 −0.208435 0.978036i \(-0.566837\pi\)
−0.208435 + 0.978036i \(0.566837\pi\)
\(770\) 0 0
\(771\) 13728.0 0.641250
\(772\) 0 0
\(773\) 5361.22 0.249456 0.124728 0.992191i \(-0.460194\pi\)
0.124728 + 0.992191i \(0.460194\pi\)
\(774\) 0 0
\(775\) −28396.0 −1.31615
\(776\) 0 0
\(777\) −14301.4 −0.660307
\(778\) 0 0
\(779\) −4097.18 −0.188443
\(780\) 0 0
\(781\) 28829.1 1.32085
\(782\) 0 0
\(783\) 12119.1 0.553132
\(784\) 0 0
\(785\) 1323.74 0.0601866
\(786\) 0 0
\(787\) 11774.9 0.533329 0.266665 0.963789i \(-0.414078\pi\)
0.266665 + 0.963789i \(0.414078\pi\)
\(788\) 0 0
\(789\) −19734.9 −0.890470
\(790\) 0 0
\(791\) −7334.92 −0.329709
\(792\) 0 0
\(793\) 52439.8 2.34829
\(794\) 0 0
\(795\) 2074.98 0.0925685
\(796\) 0 0
\(797\) −2534.85 −0.112659 −0.0563293 0.998412i \(-0.517940\pi\)
−0.0563293 + 0.998412i \(0.517940\pi\)
\(798\) 0 0
\(799\) 6262.00 0.277264
\(800\) 0 0
\(801\) −3406.65 −0.150272
\(802\) 0 0
\(803\) −6707.88 −0.294789
\(804\) 0 0
\(805\) −197.574 −0.00865041
\(806\) 0 0
\(807\) −37399.6 −1.63138
\(808\) 0 0
\(809\) −16977.8 −0.737835 −0.368917 0.929462i \(-0.620272\pi\)
−0.368917 + 0.929462i \(0.620272\pi\)
\(810\) 0 0
\(811\) −11287.0 −0.488704 −0.244352 0.969687i \(-0.578575\pi\)
−0.244352 + 0.969687i \(0.578575\pi\)
\(812\) 0 0
\(813\) −14169.4 −0.611245
\(814\) 0 0
\(815\) 4559.18 0.195952
\(816\) 0 0
\(817\) 18707.9 0.801110
\(818\) 0 0
\(819\) 1395.48 0.0595386
\(820\) 0 0
\(821\) 32434.3 1.37876 0.689382 0.724398i \(-0.257882\pi\)
0.689382 + 0.724398i \(0.257882\pi\)
\(822\) 0 0
\(823\) 35961.4 1.52313 0.761564 0.648090i \(-0.224432\pi\)
0.761564 + 0.648090i \(0.224432\pi\)
\(824\) 0 0
\(825\) −23122.7 −0.975794
\(826\) 0 0
\(827\) 18671.7 0.785102 0.392551 0.919730i \(-0.371593\pi\)
0.392551 + 0.919730i \(0.371593\pi\)
\(828\) 0 0
\(829\) −35148.2 −1.47256 −0.736278 0.676679i \(-0.763418\pi\)
−0.736278 + 0.676679i \(0.763418\pi\)
\(830\) 0 0
\(831\) −11477.7 −0.479131
\(832\) 0 0
\(833\) 4037.82 0.167950
\(834\) 0 0
\(835\) −2128.68 −0.0882229
\(836\) 0 0
\(837\) 30320.9 1.25214
\(838\) 0 0
\(839\) −5885.12 −0.242166 −0.121083 0.992642i \(-0.538637\pi\)
−0.121083 + 0.992642i \(0.538637\pi\)
\(840\) 0 0
\(841\) −15863.3 −0.650427
\(842\) 0 0
\(843\) 18835.8 0.769560
\(844\) 0 0
\(845\) 5283.08 0.215081
\(846\) 0 0
\(847\) −916.213 −0.0371682
\(848\) 0 0
\(849\) −28164.9 −1.13854
\(850\) 0 0
\(851\) −10074.0 −0.405797
\(852\) 0 0
\(853\) −320.329 −0.0128580 −0.00642899 0.999979i \(-0.502046\pi\)
−0.00642899 + 0.999979i \(0.502046\pi\)
\(854\) 0 0
\(855\) −198.799 −0.00795179
\(856\) 0 0
\(857\) 23460.1 0.935101 0.467550 0.883966i \(-0.345137\pi\)
0.467550 + 0.883966i \(0.345137\pi\)
\(858\) 0 0
\(859\) −2429.53 −0.0965012 −0.0482506 0.998835i \(-0.515365\pi\)
−0.0482506 + 0.998835i \(0.515365\pi\)
\(860\) 0 0
\(861\) −2971.46 −0.117616
\(862\) 0 0
\(863\) 20239.2 0.798322 0.399161 0.916881i \(-0.369302\pi\)
0.399161 + 0.916881i \(0.369302\pi\)
\(864\) 0 0
\(865\) 3356.97 0.131954
\(866\) 0 0
\(867\) 25991.9 1.01814
\(868\) 0 0
\(869\) −11579.7 −0.452032
\(870\) 0 0
\(871\) −41631.3 −1.61954
\(872\) 0 0
\(873\) −1854.75 −0.0719058
\(874\) 0 0
\(875\) −2129.67 −0.0822813
\(876\) 0 0
\(877\) 23209.8 0.893659 0.446830 0.894619i \(-0.352553\pi\)
0.446830 + 0.894619i \(0.352553\pi\)
\(878\) 0 0
\(879\) 2774.22 0.106453
\(880\) 0 0
\(881\) −16867.3 −0.645033 −0.322517 0.946564i \(-0.604529\pi\)
−0.322517 + 0.946564i \(0.604529\pi\)
\(882\) 0 0
\(883\) 16054.7 0.611874 0.305937 0.952052i \(-0.401030\pi\)
0.305937 + 0.952052i \(0.401030\pi\)
\(884\) 0 0
\(885\) −2790.53 −0.105992
\(886\) 0 0
\(887\) −40587.7 −1.53642 −0.768208 0.640200i \(-0.778851\pi\)
−0.768208 + 0.640200i \(0.778851\pi\)
\(888\) 0 0
\(889\) −7828.72 −0.295351
\(890\) 0 0
\(891\) 27526.0 1.03497
\(892\) 0 0
\(893\) 21472.3 0.804638
\(894\) 0 0
\(895\) 4999.02 0.186702
\(896\) 0 0
\(897\) 9653.02 0.359314
\(898\) 0 0
\(899\) 21330.6 0.791341
\(900\) 0 0
\(901\) 3444.77 0.127372
\(902\) 0 0
\(903\) 13567.8 0.500010
\(904\) 0 0
\(905\) −3375.36 −0.123979
\(906\) 0 0
\(907\) 1158.51 0.0424118 0.0212059 0.999775i \(-0.493249\pi\)
0.0212059 + 0.999775i \(0.493249\pi\)
\(908\) 0 0
\(909\) 4734.20 0.172743
\(910\) 0 0
\(911\) 16531.5 0.601221 0.300611 0.953747i \(-0.402810\pi\)
0.300611 + 0.953747i \(0.402810\pi\)
\(912\) 0 0
\(913\) 43566.1 1.57922
\(914\) 0 0
\(915\) −5417.96 −0.195751
\(916\) 0 0
\(917\) 2803.12 0.100946
\(918\) 0 0
\(919\) 42868.2 1.53873 0.769365 0.638809i \(-0.220573\pi\)
0.769365 + 0.638809i \(0.220573\pi\)
\(920\) 0 0
\(921\) −21456.4 −0.767657
\(922\) 0 0
\(923\) −64320.2 −2.29374
\(924\) 0 0
\(925\) −53838.8 −1.91374
\(926\) 0 0
\(927\) −151.284 −0.00536009
\(928\) 0 0
\(929\) 41605.9 1.46937 0.734685 0.678409i \(-0.237330\pi\)
0.734685 + 0.678409i \(0.237330\pi\)
\(930\) 0 0
\(931\) 13845.6 0.487402
\(932\) 0 0
\(933\) 13027.3 0.457121
\(934\) 0 0
\(935\) 649.789 0.0227277
\(936\) 0 0
\(937\) −6344.27 −0.221193 −0.110597 0.993865i \(-0.535276\pi\)
−0.110597 + 0.993865i \(0.535276\pi\)
\(938\) 0 0
\(939\) −10673.8 −0.370955
\(940\) 0 0
\(941\) 33596.3 1.16388 0.581938 0.813233i \(-0.302295\pi\)
0.581938 + 0.813233i \(0.302295\pi\)
\(942\) 0 0
\(943\) −2093.13 −0.0722817
\(944\) 0 0
\(945\) 1127.48 0.0388115
\(946\) 0 0
\(947\) −11090.3 −0.380557 −0.190278 0.981730i \(-0.560939\pi\)
−0.190278 + 0.981730i \(0.560939\pi\)
\(948\) 0 0
\(949\) 14965.8 0.511920
\(950\) 0 0
\(951\) −6618.09 −0.225664
\(952\) 0 0
\(953\) −15187.0 −0.516216 −0.258108 0.966116i \(-0.583099\pi\)
−0.258108 + 0.966116i \(0.583099\pi\)
\(954\) 0 0
\(955\) −1038.50 −0.0351884
\(956\) 0 0
\(957\) 17369.4 0.586702
\(958\) 0 0
\(959\) −8095.65 −0.272599
\(960\) 0 0
\(961\) 23576.1 0.791384
\(962\) 0 0
\(963\) −4097.36 −0.137109
\(964\) 0 0
\(965\) −1042.41 −0.0347736
\(966\) 0 0
\(967\) −12052.4 −0.400806 −0.200403 0.979714i \(-0.564225\pi\)
−0.200403 + 0.979714i \(0.564225\pi\)
\(968\) 0 0
\(969\) −3240.96 −0.107445
\(970\) 0 0
\(971\) 2710.79 0.0895915 0.0447958 0.998996i \(-0.485736\pi\)
0.0447958 + 0.998996i \(0.485736\pi\)
\(972\) 0 0
\(973\) −5794.34 −0.190913
\(974\) 0 0
\(975\) 51588.8 1.69453
\(976\) 0 0
\(977\) −25037.0 −0.819860 −0.409930 0.912117i \(-0.634447\pi\)
−0.409930 + 0.912117i \(0.634447\pi\)
\(978\) 0 0
\(979\) 38181.2 1.24645
\(980\) 0 0
\(981\) −4350.15 −0.141580
\(982\) 0 0
\(983\) −17600.5 −0.571078 −0.285539 0.958367i \(-0.592173\pi\)
−0.285539 + 0.958367i \(0.592173\pi\)
\(984\) 0 0
\(985\) −6514.50 −0.210730
\(986\) 0 0
\(987\) 15572.7 0.502212
\(988\) 0 0
\(989\) 9557.30 0.307285
\(990\) 0 0
\(991\) 25965.6 0.832316 0.416158 0.909292i \(-0.363376\pi\)
0.416158 + 0.909292i \(0.363376\pi\)
\(992\) 0 0
\(993\) −23640.9 −0.755511
\(994\) 0 0
\(995\) 3581.60 0.114115
\(996\) 0 0
\(997\) −15101.7 −0.479716 −0.239858 0.970808i \(-0.577101\pi\)
−0.239858 + 0.970808i \(0.577101\pi\)
\(998\) 0 0
\(999\) 57488.5 1.82067
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 736.4.a.h.1.3 9
4.3 odd 2 736.4.a.i.1.7 yes 9
8.3 odd 2 1472.4.a.bk.1.3 9
8.5 even 2 1472.4.a.bj.1.7 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
736.4.a.h.1.3 9 1.1 even 1 trivial
736.4.a.i.1.7 yes 9 4.3 odd 2
1472.4.a.bj.1.7 9 8.5 even 2
1472.4.a.bk.1.3 9 8.3 odd 2