Properties

Label 736.2.r.a.687.22
Level $736$
Weight $2$
Character 736.687
Analytic conductor $5.877$
Analytic rank $0$
Dimension $220$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [736,2,Mod(15,736)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("736.15"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(736, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([11, 11, 17])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 736 = 2^{5} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 736.r (of order \(22\), degree \(10\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.87698958877\)
Analytic rank: \(0\)
Dimension: \(220\)
Relative dimension: \(22\) over \(\Q(\zeta_{22})\)
Twist minimal: no (minimal twist has level 184)
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 687.22
Character \(\chi\) \(=\) 736.687
Dual form 736.2.r.a.15.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.18656 - 2.59820i) q^{3} +(1.01624 - 1.17280i) q^{5} +(4.25438 - 2.73413i) q^{7} +(-3.37812 - 3.89856i) q^{9} +(-1.77318 - 0.254945i) q^{11} +(0.511843 - 0.796443i) q^{13} +(-1.84135 - 4.03199i) q^{15} +(-1.67446 + 5.70268i) q^{17} +(0.812847 + 2.76830i) q^{19} +(-2.05573 - 14.2979i) q^{21} +(3.08571 + 3.67130i) q^{23} +(0.368850 + 2.56541i) q^{25} +(-5.91571 + 1.73701i) q^{27} +(-1.87742 + 6.39390i) q^{29} +(2.15218 - 0.982870i) q^{31} +(-2.76637 + 4.30456i) q^{33} +(1.11688 - 7.76808i) q^{35} +(3.98474 + 4.59863i) q^{37} +(-1.46198 - 2.27489i) q^{39} +(-3.66827 + 4.23341i) q^{41} +(-5.98202 - 2.73190i) q^{43} -8.00523 q^{45} -4.26175i q^{47} +(7.71643 - 16.8966i) q^{49} +(12.8298 + 11.1171i) q^{51} +(-3.03402 + 1.94985i) q^{53} +(-2.10098 + 1.82051i) q^{55} +(8.15708 + 1.17281i) q^{57} +(-2.53954 - 1.63207i) q^{59} +(-2.27952 - 4.99144i) q^{61} +(-25.0310 - 7.34976i) q^{63} +(-0.413916 - 1.40967i) q^{65} +(-10.4452 + 1.50179i) q^{67} +(13.2001 - 3.66107i) q^{69} +(-2.06420 + 0.296788i) q^{71} +(-2.05582 + 0.603644i) q^{73} +(7.10309 + 2.08566i) q^{75} +(-8.24084 + 3.76346i) q^{77} +(-6.55104 - 4.21010i) q^{79} +(-0.303823 + 2.11314i) q^{81} +(-6.06755 + 5.25756i) q^{83} +(4.98647 + 7.75910i) q^{85} +(14.3849 + 12.4646i) q^{87} +(2.48788 + 1.13618i) q^{89} -4.78782i q^{91} -6.75803i q^{93} +(4.07272 + 1.85995i) q^{95} +(0.549986 + 0.476566i) q^{97} +(4.99610 + 7.77408i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 220 q + 18 q^{3} - 36 q^{9} + 22 q^{11} - 22 q^{17} + 22 q^{19} - 32 q^{25} + 18 q^{27} - 22 q^{33} - 2 q^{35} - 18 q^{41} + 22 q^{43} - 28 q^{49} + 22 q^{51} - 22 q^{57} + 6 q^{59} - 22 q^{65} + 22 q^{67}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/736\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(415\) \(645\)
\(\chi(n)\) \(e\left(\frac{5}{22}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.18656 2.59820i 0.685058 1.50007i −0.172135 0.985073i \(-0.555066\pi\)
0.857193 0.514995i \(-0.172206\pi\)
\(4\) 0 0
\(5\) 1.01624 1.17280i 0.454476 0.524494i −0.481552 0.876417i \(-0.659927\pi\)
0.936029 + 0.351924i \(0.114472\pi\)
\(6\) 0 0
\(7\) 4.25438 2.73413i 1.60801 1.03340i 0.644905 0.764263i \(-0.276897\pi\)
0.963101 0.269140i \(-0.0867394\pi\)
\(8\) 0 0
\(9\) −3.37812 3.89856i −1.12604 1.29952i
\(10\) 0 0
\(11\) −1.77318 0.254945i −0.534634 0.0768687i −0.130290 0.991476i \(-0.541591\pi\)
−0.404344 + 0.914607i \(0.632500\pi\)
\(12\) 0 0
\(13\) 0.511843 0.796443i 0.141960 0.220894i −0.762992 0.646408i \(-0.776270\pi\)
0.904952 + 0.425514i \(0.139907\pi\)
\(14\) 0 0
\(15\) −1.84135 4.03199i −0.475434 1.04105i
\(16\) 0 0
\(17\) −1.67446 + 5.70268i −0.406116 + 1.38310i 0.462061 + 0.886848i \(0.347110\pi\)
−0.868177 + 0.496255i \(0.834708\pi\)
\(18\) 0 0
\(19\) 0.812847 + 2.76830i 0.186480 + 0.635093i 0.998663 + 0.0516900i \(0.0164608\pi\)
−0.812183 + 0.583403i \(0.801721\pi\)
\(20\) 0 0
\(21\) −2.05573 14.2979i −0.448597 3.12006i
\(22\) 0 0
\(23\) 3.08571 + 3.67130i 0.643414 + 0.765518i
\(24\) 0 0
\(25\) 0.368850 + 2.56541i 0.0737700 + 0.513082i
\(26\) 0 0
\(27\) −5.91571 + 1.73701i −1.13848 + 0.334287i
\(28\) 0 0
\(29\) −1.87742 + 6.39390i −0.348628 + 1.18732i 0.579474 + 0.814991i \(0.303258\pi\)
−0.928102 + 0.372326i \(0.878560\pi\)
\(30\) 0 0
\(31\) 2.15218 0.982870i 0.386544 0.176529i −0.212658 0.977127i \(-0.568212\pi\)
0.599202 + 0.800598i \(0.295485\pi\)
\(32\) 0 0
\(33\) −2.76637 + 4.30456i −0.481564 + 0.749328i
\(34\) 0 0
\(35\) 1.11688 7.76808i 0.188788 1.31305i
\(36\) 0 0
\(37\) 3.98474 + 4.59863i 0.655087 + 0.756010i 0.981966 0.189056i \(-0.0605426\pi\)
−0.326880 + 0.945066i \(0.605997\pi\)
\(38\) 0 0
\(39\) −1.46198 2.27489i −0.234105 0.364274i
\(40\) 0 0
\(41\) −3.66827 + 4.23341i −0.572888 + 0.661148i −0.966060 0.258317i \(-0.916832\pi\)
0.393172 + 0.919465i \(0.371378\pi\)
\(42\) 0 0
\(43\) −5.98202 2.73190i −0.912250 0.416611i −0.0967109 0.995313i \(-0.530832\pi\)
−0.815539 + 0.578702i \(0.803559\pi\)
\(44\) 0 0
\(45\) −8.00523 −1.19335
\(46\) 0 0
\(47\) 4.26175i 0.621641i −0.950469 0.310820i \(-0.899396\pi\)
0.950469 0.310820i \(-0.100604\pi\)
\(48\) 0 0
\(49\) 7.71643 16.8966i 1.10235 2.41380i
\(50\) 0 0
\(51\) 12.8298 + 11.1171i 1.79654 + 1.55671i
\(52\) 0 0
\(53\) −3.03402 + 1.94985i −0.416755 + 0.267832i −0.732170 0.681122i \(-0.761492\pi\)
0.315416 + 0.948954i \(0.397856\pi\)
\(54\) 0 0
\(55\) −2.10098 + 1.82051i −0.283296 + 0.245477i
\(56\) 0 0
\(57\) 8.15708 + 1.17281i 1.08043 + 0.155343i
\(58\) 0 0
\(59\) −2.53954 1.63207i −0.330620 0.212477i 0.364790 0.931090i \(-0.381141\pi\)
−0.695410 + 0.718613i \(0.744777\pi\)
\(60\) 0 0
\(61\) −2.27952 4.99144i −0.291862 0.639089i 0.705727 0.708484i \(-0.250620\pi\)
−0.997589 + 0.0693948i \(0.977893\pi\)
\(62\) 0 0
\(63\) −25.0310 7.34976i −3.15361 0.925983i
\(64\) 0 0
\(65\) −0.413916 1.40967i −0.0513399 0.174848i
\(66\) 0 0
\(67\) −10.4452 + 1.50179i −1.27608 + 0.183472i −0.746842 0.665002i \(-0.768431\pi\)
−0.529237 + 0.848474i \(0.677522\pi\)
\(68\) 0 0
\(69\) 13.2001 3.66107i 1.58911 0.440741i
\(70\) 0 0
\(71\) −2.06420 + 0.296788i −0.244976 + 0.0352222i −0.263709 0.964602i \(-0.584946\pi\)
0.0187330 + 0.999825i \(0.494037\pi\)
\(72\) 0 0
\(73\) −2.05582 + 0.603644i −0.240616 + 0.0706512i −0.399817 0.916595i \(-0.630926\pi\)
0.159201 + 0.987246i \(0.449108\pi\)
\(74\) 0 0
\(75\) 7.10309 + 2.08566i 0.820194 + 0.240831i
\(76\) 0 0
\(77\) −8.24084 + 3.76346i −0.939131 + 0.428887i
\(78\) 0 0
\(79\) −6.55104 4.21010i −0.737050 0.473673i 0.117480 0.993075i \(-0.462518\pi\)
−0.854530 + 0.519402i \(0.826155\pi\)
\(80\) 0 0
\(81\) −0.303823 + 2.11314i −0.0337582 + 0.234793i
\(82\) 0 0
\(83\) −6.06755 + 5.25756i −0.666000 + 0.577092i −0.920864 0.389885i \(-0.872515\pi\)
0.254864 + 0.966977i \(0.417969\pi\)
\(84\) 0 0
\(85\) 4.98647 + 7.75910i 0.540859 + 0.841593i
\(86\) 0 0
\(87\) 14.3849 + 12.4646i 1.54223 + 1.33635i
\(88\) 0 0
\(89\) 2.48788 + 1.13618i 0.263715 + 0.120435i 0.542885 0.839807i \(-0.317332\pi\)
−0.279170 + 0.960242i \(0.590059\pi\)
\(90\) 0 0
\(91\) 4.78782i 0.501900i
\(92\) 0 0
\(93\) 6.75803i 0.700775i
\(94\) 0 0
\(95\) 4.07272 + 1.85995i 0.417853 + 0.190827i
\(96\) 0 0
\(97\) 0.549986 + 0.476566i 0.0558426 + 0.0483879i 0.682335 0.731040i \(-0.260965\pi\)
−0.626492 + 0.779428i \(0.715510\pi\)
\(98\) 0 0
\(99\) 4.99610 + 7.77408i 0.502127 + 0.781325i
\(100\) 0 0
\(101\) 4.97284 4.30899i 0.494816 0.428760i −0.371368 0.928486i \(-0.621111\pi\)
0.866184 + 0.499725i \(0.166566\pi\)
\(102\) 0 0
\(103\) 0.433456 3.01475i 0.0427097 0.297052i −0.957260 0.289230i \(-0.906601\pi\)
0.999969 0.00782265i \(-0.00249005\pi\)
\(104\) 0 0
\(105\) −18.8578 12.1191i −1.84033 1.18271i
\(106\) 0 0
\(107\) 4.86924 2.22371i 0.470727 0.214974i −0.165905 0.986142i \(-0.553054\pi\)
0.636632 + 0.771168i \(0.280327\pi\)
\(108\) 0 0
\(109\) 11.1429 + 3.27186i 1.06730 + 0.313388i 0.767787 0.640705i \(-0.221358\pi\)
0.299513 + 0.954092i \(0.403176\pi\)
\(110\) 0 0
\(111\) 16.6763 4.89659i 1.58284 0.464764i
\(112\) 0 0
\(113\) 5.70500 0.820255i 0.536681 0.0771631i 0.131355 0.991335i \(-0.458067\pi\)
0.405326 + 0.914172i \(0.367158\pi\)
\(114\) 0 0
\(115\) 7.44153 + 0.111989i 0.693926 + 0.0104430i
\(116\) 0 0
\(117\) −4.83405 + 0.695031i −0.446908 + 0.0642556i
\(118\) 0 0
\(119\) 8.46807 + 28.8396i 0.776266 + 2.64372i
\(120\) 0 0
\(121\) −7.47525 2.19493i −0.679568 0.199539i
\(122\) 0 0
\(123\) 6.64662 + 14.5541i 0.599306 + 1.31230i
\(124\) 0 0
\(125\) 9.91102 + 6.36943i 0.886468 + 0.569699i
\(126\) 0 0
\(127\) −7.31678 1.05199i −0.649259 0.0933494i −0.190186 0.981748i \(-0.560909\pi\)
−0.459073 + 0.888399i \(0.651818\pi\)
\(128\) 0 0
\(129\) −14.1960 + 12.3009i −1.24989 + 1.08304i
\(130\) 0 0
\(131\) 10.2101 6.56165i 0.892062 0.573294i −0.0123639 0.999924i \(-0.503936\pi\)
0.904426 + 0.426630i \(0.140299\pi\)
\(132\) 0 0
\(133\) 11.0271 + 9.55500i 0.956167 + 0.828524i
\(134\) 0 0
\(135\) −3.97461 + 8.70318i −0.342080 + 0.749050i
\(136\) 0 0
\(137\) 7.56507i 0.646328i −0.946343 0.323164i \(-0.895254\pi\)
0.946343 0.323164i \(-0.104746\pi\)
\(138\) 0 0
\(139\) 0.118762 0.0100732 0.00503662 0.999987i \(-0.498397\pi\)
0.00503662 + 0.999987i \(0.498397\pi\)
\(140\) 0 0
\(141\) −11.0729 5.05681i −0.932504 0.425860i
\(142\) 0 0
\(143\) −1.11064 + 1.28174i −0.0928762 + 0.107185i
\(144\) 0 0
\(145\) 5.59088 + 8.69958i 0.464297 + 0.722460i
\(146\) 0 0
\(147\) −34.7448 40.0976i −2.86570 3.30719i
\(148\) 0 0
\(149\) −0.0580693 + 0.403881i −0.00475722 + 0.0330872i −0.992062 0.125751i \(-0.959866\pi\)
0.987305 + 0.158839i \(0.0507749\pi\)
\(150\) 0 0
\(151\) 10.8362 16.8615i 0.881841 1.37217i −0.0459004 0.998946i \(-0.514616\pi\)
0.927741 0.373225i \(-0.121748\pi\)
\(152\) 0 0
\(153\) 27.8888 12.7364i 2.25467 1.02967i
\(154\) 0 0
\(155\) 1.03442 3.52292i 0.0830869 0.282968i
\(156\) 0 0
\(157\) 4.95710 1.45554i 0.395620 0.116164i −0.0778705 0.996963i \(-0.524812\pi\)
0.473490 + 0.880799i \(0.342994\pi\)
\(158\) 0 0
\(159\) 1.46605 + 10.1966i 0.116265 + 0.808641i
\(160\) 0 0
\(161\) 23.1656 + 7.18239i 1.82570 + 0.566051i
\(162\) 0 0
\(163\) 2.18799 + 15.2178i 0.171377 + 1.19195i 0.875979 + 0.482349i \(0.160216\pi\)
−0.704602 + 0.709602i \(0.748875\pi\)
\(164\) 0 0
\(165\) 2.23710 + 7.61888i 0.174158 + 0.593129i
\(166\) 0 0
\(167\) 6.78687 23.1139i 0.525183 1.78861i −0.0850357 0.996378i \(-0.527100\pi\)
0.610219 0.792233i \(-0.291081\pi\)
\(168\) 0 0
\(169\) 5.02806 + 11.0099i 0.386774 + 0.846916i
\(170\) 0 0
\(171\) 8.04650 12.5206i 0.615331 0.957474i
\(172\) 0 0
\(173\) −23.6841 3.40525i −1.80067 0.258897i −0.841200 0.540724i \(-0.818150\pi\)
−0.959465 + 0.281827i \(0.909060\pi\)
\(174\) 0 0
\(175\) 8.58338 + 9.90575i 0.648843 + 0.748804i
\(176\) 0 0
\(177\) −7.25374 + 4.66169i −0.545224 + 0.350394i
\(178\) 0 0
\(179\) 0.730648 0.843213i 0.0546112 0.0630247i −0.727787 0.685804i \(-0.759451\pi\)
0.782398 + 0.622779i \(0.213996\pi\)
\(180\) 0 0
\(181\) 2.00254 4.38495i 0.148847 0.325931i −0.820491 0.571659i \(-0.806300\pi\)
0.969339 + 0.245729i \(0.0790272\pi\)
\(182\) 0 0
\(183\) −15.6735 −1.15862
\(184\) 0 0
\(185\) 9.44274 0.694244
\(186\) 0 0
\(187\) 4.42299 9.68499i 0.323441 0.708236i
\(188\) 0 0
\(189\) −20.4185 + 23.5642i −1.48523 + 1.71404i
\(190\) 0 0
\(191\) −16.9573 + 10.8978i −1.22699 + 0.788538i −0.983420 0.181345i \(-0.941955\pi\)
−0.243570 + 0.969883i \(0.578319\pi\)
\(192\) 0 0
\(193\) −15.5292 17.9216i −1.11781 1.29002i −0.952755 0.303741i \(-0.901764\pi\)
−0.165058 0.986284i \(-0.552781\pi\)
\(194\) 0 0
\(195\) −4.15373 0.597216i −0.297455 0.0427675i
\(196\) 0 0
\(197\) −7.43508 + 11.5692i −0.529727 + 0.824272i −0.998247 0.0591811i \(-0.981151\pi\)
0.468520 + 0.883453i \(0.344787\pi\)
\(198\) 0 0
\(199\) 4.70110 + 10.2940i 0.333252 + 0.729721i 0.999877 0.0156724i \(-0.00498888\pi\)
−0.666625 + 0.745394i \(0.732262\pi\)
\(200\) 0 0
\(201\) −8.49183 + 28.9205i −0.598967 + 2.03990i
\(202\) 0 0
\(203\) 9.49447 + 32.3352i 0.666381 + 2.26949i
\(204\) 0 0
\(205\) 1.23712 + 8.60433i 0.0864039 + 0.600952i
\(206\) 0 0
\(207\) 3.88887 24.4319i 0.270295 1.69813i
\(208\) 0 0
\(209\) −0.735560 5.11593i −0.0508797 0.353876i
\(210\) 0 0
\(211\) −19.8313 + 5.82299i −1.36524 + 0.400871i −0.880608 0.473846i \(-0.842866\pi\)
−0.484634 + 0.874717i \(0.661047\pi\)
\(212\) 0 0
\(213\) −1.67818 + 5.71536i −0.114987 + 0.391610i
\(214\) 0 0
\(215\) −9.28315 + 4.23947i −0.633106 + 0.289130i
\(216\) 0 0
\(217\) 6.46893 10.0659i 0.439140 0.683315i
\(218\) 0 0
\(219\) −0.870964 + 6.05769i −0.0588543 + 0.409340i
\(220\) 0 0
\(221\) 3.68480 + 4.25249i 0.247867 + 0.286053i
\(222\) 0 0
\(223\) 9.09188 + 14.1472i 0.608838 + 0.947370i 0.999638 + 0.0268945i \(0.00856182\pi\)
−0.390801 + 0.920475i \(0.627802\pi\)
\(224\) 0 0
\(225\) 8.75538 10.1042i 0.583692 0.673616i
\(226\) 0 0
\(227\) 8.26371 + 3.77391i 0.548482 + 0.250483i 0.670327 0.742066i \(-0.266154\pi\)
−0.121845 + 0.992549i \(0.538881\pi\)
\(228\) 0 0
\(229\) 5.97598 0.394904 0.197452 0.980313i \(-0.436733\pi\)
0.197452 + 0.980313i \(0.436733\pi\)
\(230\) 0 0
\(231\) 25.8769i 1.70257i
\(232\) 0 0
\(233\) −5.31970 + 11.6485i −0.348505 + 0.763120i 0.651485 + 0.758662i \(0.274146\pi\)
−0.999990 + 0.00445810i \(0.998581\pi\)
\(234\) 0 0
\(235\) −4.99820 4.33096i −0.326047 0.282521i
\(236\) 0 0
\(237\) −18.7118 + 12.0254i −1.21546 + 0.781131i
\(238\) 0 0
\(239\) −11.2879 + 9.78101i −0.730153 + 0.632681i −0.938462 0.345382i \(-0.887749\pi\)
0.208309 + 0.978063i \(0.433204\pi\)
\(240\) 0 0
\(241\) 5.50463 + 0.791446i 0.354584 + 0.0509815i 0.317306 0.948323i \(-0.397222\pi\)
0.0372789 + 0.999305i \(0.488131\pi\)
\(242\) 0 0
\(243\) −10.4303 6.70313i −0.669103 0.430006i
\(244\) 0 0
\(245\) −11.9747 26.2209i −0.765034 1.67519i
\(246\) 0 0
\(247\) 2.62085 + 0.769550i 0.166760 + 0.0489653i
\(248\) 0 0
\(249\) 6.46069 + 22.0031i 0.409429 + 1.39439i
\(250\) 0 0
\(251\) 29.2090 4.19961i 1.84365 0.265077i 0.869990 0.493069i \(-0.164125\pi\)
0.973663 + 0.227992i \(0.0732159\pi\)
\(252\) 0 0
\(253\) −4.53554 7.29655i −0.285147 0.458730i
\(254\) 0 0
\(255\) 26.0764 3.74922i 1.63297 0.234785i
\(256\) 0 0
\(257\) −17.9623 + 5.27421i −1.12046 + 0.328996i −0.788951 0.614457i \(-0.789375\pi\)
−0.331507 + 0.943453i \(0.607557\pi\)
\(258\) 0 0
\(259\) 29.5258 + 8.66957i 1.83465 + 0.538701i
\(260\) 0 0
\(261\) 31.2691 14.2801i 1.93551 0.883918i
\(262\) 0 0
\(263\) −5.04812 3.24423i −0.311280 0.200048i 0.375667 0.926755i \(-0.377414\pi\)
−0.686948 + 0.726707i \(0.741050\pi\)
\(264\) 0 0
\(265\) −0.796506 + 5.53982i −0.0489290 + 0.340308i
\(266\) 0 0
\(267\) 5.90402 5.11587i 0.361320 0.313086i
\(268\) 0 0
\(269\) 7.79282 + 12.1259i 0.475137 + 0.739327i 0.993251 0.115984i \(-0.0370022\pi\)
−0.518114 + 0.855311i \(0.673366\pi\)
\(270\) 0 0
\(271\) −14.9068 12.9168i −0.905521 0.784638i 0.0715755 0.997435i \(-0.477197\pi\)
−0.977096 + 0.212797i \(0.931743\pi\)
\(272\) 0 0
\(273\) −12.4397 5.68101i −0.752884 0.343831i
\(274\) 0 0
\(275\) 4.64297i 0.279981i
\(276\) 0 0
\(277\) 25.9987i 1.56211i −0.624462 0.781055i \(-0.714682\pi\)
0.624462 0.781055i \(-0.285318\pi\)
\(278\) 0 0
\(279\) −11.1021 5.07017i −0.664666 0.303543i
\(280\) 0 0
\(281\) −7.23906 6.27268i −0.431846 0.374197i 0.411641 0.911346i \(-0.364956\pi\)
−0.843487 + 0.537149i \(0.819501\pi\)
\(282\) 0 0
\(283\) −12.4318 19.3442i −0.738992 1.14989i −0.983616 0.180276i \(-0.942301\pi\)
0.244624 0.969618i \(-0.421336\pi\)
\(284\) 0 0
\(285\) 9.66503 8.37480i 0.572507 0.496080i
\(286\) 0 0
\(287\) −4.03156 + 28.0401i −0.237975 + 1.65515i
\(288\) 0 0
\(289\) −15.4155 9.90692i −0.906792 0.582760i
\(290\) 0 0
\(291\) 1.89080 0.863499i 0.110841 0.0506192i
\(292\) 0 0
\(293\) 4.91323 + 1.44266i 0.287034 + 0.0842808i 0.422080 0.906559i \(-0.361300\pi\)
−0.135046 + 0.990839i \(0.543118\pi\)
\(294\) 0 0
\(295\) −4.49488 + 1.31982i −0.261702 + 0.0768426i
\(296\) 0 0
\(297\) 10.9325 1.57185i 0.634365 0.0912080i
\(298\) 0 0
\(299\) 4.50337 0.578464i 0.260437 0.0334534i
\(300\) 0 0
\(301\) −32.9192 + 4.73306i −1.89743 + 0.272809i
\(302\) 0 0
\(303\) −5.29504 18.0333i −0.304192 1.03598i
\(304\) 0 0
\(305\) −8.17052 2.39908i −0.467843 0.137371i
\(306\) 0 0
\(307\) 5.47087 + 11.9795i 0.312239 + 0.683708i 0.999070 0.0431085i \(-0.0137261\pi\)
−0.686831 + 0.726817i \(0.740999\pi\)
\(308\) 0 0
\(309\) −7.31860 4.70338i −0.416340 0.267566i
\(310\) 0 0
\(311\) −11.6388 1.67340i −0.659974 0.0948900i −0.195814 0.980641i \(-0.562735\pi\)
−0.464160 + 0.885751i \(0.653644\pi\)
\(312\) 0 0
\(313\) −4.12965 + 3.57836i −0.233422 + 0.202261i −0.763716 0.645553i \(-0.776627\pi\)
0.530294 + 0.847814i \(0.322082\pi\)
\(314\) 0 0
\(315\) −34.0573 + 21.8873i −1.91891 + 1.23321i
\(316\) 0 0
\(317\) −0.757874 0.656701i −0.0425664 0.0368840i 0.633318 0.773892i \(-0.281693\pi\)
−0.675884 + 0.737008i \(0.736238\pi\)
\(318\) 0 0
\(319\) 4.95909 10.8589i 0.277656 0.607981i
\(320\) 0 0
\(321\) 15.2898i 0.853393i
\(322\) 0 0
\(323\) −17.1478 −0.954131
\(324\) 0 0
\(325\) 2.23199 + 1.01932i 0.123809 + 0.0565416i
\(326\) 0 0
\(327\) 21.7227 25.0693i 1.20127 1.38633i
\(328\) 0 0
\(329\) −11.6522 18.1311i −0.642405 0.999602i
\(330\) 0 0
\(331\) 0.0677879 + 0.0782314i 0.00372596 + 0.00429998i 0.757609 0.652708i \(-0.226367\pi\)
−0.753884 + 0.657008i \(0.771822\pi\)
\(332\) 0 0
\(333\) 4.46712 31.0695i 0.244796 1.70260i
\(334\) 0 0
\(335\) −8.85349 + 13.7763i −0.483718 + 0.752679i
\(336\) 0 0
\(337\) 3.26885 1.49283i 0.178066 0.0813199i −0.324388 0.945924i \(-0.605158\pi\)
0.502453 + 0.864604i \(0.332431\pi\)
\(338\) 0 0
\(339\) 4.63812 15.7960i 0.251908 0.857920i
\(340\) 0 0
\(341\) −4.06679 + 1.19412i −0.220229 + 0.0646650i
\(342\) 0 0
\(343\) −8.33086 57.9424i −0.449824 3.12859i
\(344\) 0 0
\(345\) 9.12076 19.2017i 0.491045 1.03378i
\(346\) 0 0
\(347\) −1.43435 9.97614i −0.0770000 0.535547i −0.991413 0.130765i \(-0.958257\pi\)
0.914413 0.404782i \(-0.132653\pi\)
\(348\) 0 0
\(349\) 3.47686 + 11.8411i 0.186112 + 0.633839i 0.998699 + 0.0509990i \(0.0162405\pi\)
−0.812587 + 0.582840i \(0.801941\pi\)
\(350\) 0 0
\(351\) −1.64448 + 5.60060i −0.0877761 + 0.298938i
\(352\) 0 0
\(353\) 5.28114 + 11.5641i 0.281087 + 0.615494i 0.996535 0.0831712i \(-0.0265048\pi\)
−0.715448 + 0.698666i \(0.753778\pi\)
\(354\) 0 0
\(355\) −1.74965 + 2.72251i −0.0928619 + 0.144496i
\(356\) 0 0
\(357\) 84.9787 + 12.2181i 4.49755 + 0.646650i
\(358\) 0 0
\(359\) −12.0759 13.9363i −0.637342 0.735532i 0.341561 0.939860i \(-0.389044\pi\)
−0.978902 + 0.204328i \(0.934499\pi\)
\(360\) 0 0
\(361\) 8.98103 5.77176i 0.472686 0.303777i
\(362\) 0 0
\(363\) −14.5727 + 16.8178i −0.764867 + 0.882703i
\(364\) 0 0
\(365\) −1.38125 + 3.02452i −0.0722981 + 0.158311i
\(366\) 0 0
\(367\) 32.2136 1.68154 0.840768 0.541396i \(-0.182104\pi\)
0.840768 + 0.541396i \(0.182104\pi\)
\(368\) 0 0
\(369\) 28.8961 1.50427
\(370\) 0 0
\(371\) −7.57676 + 16.5908i −0.393366 + 0.861351i
\(372\) 0 0
\(373\) 19.2000 22.1580i 0.994137 1.14730i 0.00504651 0.999987i \(-0.498394\pi\)
0.989091 0.147308i \(-0.0470609\pi\)
\(374\) 0 0
\(375\) 28.3090 18.1931i 1.46187 0.939487i
\(376\) 0 0
\(377\) 4.13143 + 4.76793i 0.212780 + 0.245561i
\(378\) 0 0
\(379\) −6.85191 0.985157i −0.351959 0.0506041i −0.0359320 0.999354i \(-0.511440\pi\)
−0.316027 + 0.948750i \(0.602349\pi\)
\(380\) 0 0
\(381\) −11.4151 + 17.7622i −0.584811 + 0.909984i
\(382\) 0 0
\(383\) −2.51646 5.51028i −0.128585 0.281562i 0.834379 0.551191i \(-0.185826\pi\)
−0.962964 + 0.269629i \(0.913099\pi\)
\(384\) 0 0
\(385\) −3.96086 + 13.4895i −0.201864 + 0.687487i
\(386\) 0 0
\(387\) 9.55753 + 32.5500i 0.485837 + 1.65461i
\(388\) 0 0
\(389\) −1.30274 9.06078i −0.0660517 0.459400i −0.995826 0.0912700i \(-0.970907\pi\)
0.929774 0.368130i \(-0.120002\pi\)
\(390\) 0 0
\(391\) −26.1031 + 11.4494i −1.32009 + 0.579020i
\(392\) 0 0
\(393\) −4.93356 34.3136i −0.248865 1.73089i
\(394\) 0 0
\(395\) −11.5950 + 3.40461i −0.583410 + 0.171305i
\(396\) 0 0
\(397\) 5.55659 18.9240i 0.278877 0.949769i −0.694295 0.719691i \(-0.744284\pi\)
0.973172 0.230078i \(-0.0738983\pi\)
\(398\) 0 0
\(399\) 37.9100 17.3129i 1.89787 0.866730i
\(400\) 0 0
\(401\) 0.0268091 0.0417158i 0.00133878 0.00208319i −0.840583 0.541682i \(-0.817788\pi\)
0.841922 + 0.539599i \(0.181424\pi\)
\(402\) 0 0
\(403\) 0.318781 2.21717i 0.0158796 0.110445i
\(404\) 0 0
\(405\) 2.16954 + 2.50378i 0.107805 + 0.124414i
\(406\) 0 0
\(407\) −5.89326 9.17009i −0.292118 0.454544i
\(408\) 0 0
\(409\) 9.98127 11.5190i 0.493542 0.569578i −0.453267 0.891375i \(-0.649741\pi\)
0.946809 + 0.321797i \(0.104287\pi\)
\(410\) 0 0
\(411\) −19.6555 8.97638i −0.969536 0.442772i
\(412\) 0 0
\(413\) −15.2665 −0.751214
\(414\) 0 0
\(415\) 12.4590i 0.611588i
\(416\) 0 0
\(417\) 0.140917 0.308566i 0.00690075 0.0151105i
\(418\) 0 0
\(419\) −21.4069 18.5492i −1.04579 0.906186i −0.0500876 0.998745i \(-0.515950\pi\)
−0.995707 + 0.0925585i \(0.970495\pi\)
\(420\) 0 0
\(421\) 29.3409 18.8562i 1.42999 0.918996i 0.430117 0.902773i \(-0.358472\pi\)
0.999868 0.0162229i \(-0.00516414\pi\)
\(422\) 0 0
\(423\) −16.6147 + 14.3967i −0.807834 + 0.699992i
\(424\) 0 0
\(425\) −15.2473 2.19224i −0.739604 0.106339i
\(426\) 0 0
\(427\) −23.3452 15.0030i −1.12975 0.726048i
\(428\) 0 0
\(429\) 2.01239 + 4.40652i 0.0971590 + 0.212749i
\(430\) 0 0
\(431\) 8.68040 + 2.54879i 0.418120 + 0.122771i 0.484024 0.875055i \(-0.339175\pi\)
−0.0659037 + 0.997826i \(0.520993\pi\)
\(432\) 0 0
\(433\) 8.64141 + 29.4300i 0.415280 + 1.41431i 0.856143 + 0.516739i \(0.172854\pi\)
−0.440863 + 0.897574i \(0.645328\pi\)
\(434\) 0 0
\(435\) 29.2371 4.20366i 1.40181 0.201550i
\(436\) 0 0
\(437\) −7.65505 + 11.5264i −0.366191 + 0.551382i
\(438\) 0 0
\(439\) −15.5033 + 2.22904i −0.739934 + 0.106386i −0.501967 0.864887i \(-0.667390\pi\)
−0.237967 + 0.971273i \(0.576481\pi\)
\(440\) 0 0
\(441\) −91.9395 + 26.9959i −4.37807 + 1.28552i
\(442\) 0 0
\(443\) −1.84283 0.541103i −0.0875553 0.0257086i 0.237662 0.971348i \(-0.423619\pi\)
−0.325217 + 0.945639i \(0.605437\pi\)
\(444\) 0 0
\(445\) 3.86080 1.76317i 0.183019 0.0835822i
\(446\) 0 0
\(447\) 0.980458 + 0.630102i 0.0463741 + 0.0298028i
\(448\) 0 0
\(449\) −0.675575 + 4.69872i −0.0318823 + 0.221747i −0.999533 0.0305459i \(-0.990275\pi\)
0.967651 + 0.252292i \(0.0811845\pi\)
\(450\) 0 0
\(451\) 7.58379 6.57139i 0.357107 0.309435i
\(452\) 0 0
\(453\) −30.9517 48.1618i −1.45424 2.26284i
\(454\) 0 0
\(455\) −5.61517 4.86557i −0.263243 0.228101i
\(456\) 0 0
\(457\) 34.4422 + 15.7292i 1.61114 + 0.735783i 0.998509 0.0545870i \(-0.0173842\pi\)
0.612630 + 0.790370i \(0.290112\pi\)
\(458\) 0 0
\(459\) 36.6439i 1.71039i
\(460\) 0 0
\(461\) 26.0410i 1.21285i 0.795140 + 0.606426i \(0.207397\pi\)
−0.795140 + 0.606426i \(0.792603\pi\)
\(462\) 0 0
\(463\) 18.5165 + 8.45622i 0.860536 + 0.392994i 0.796272 0.604939i \(-0.206803\pi\)
0.0642646 + 0.997933i \(0.479530\pi\)
\(464\) 0 0
\(465\) −7.92584 6.86778i −0.367552 0.318485i
\(466\) 0 0
\(467\) 19.9073 + 30.9763i 0.921199 + 1.43341i 0.901098 + 0.433616i \(0.142763\pi\)
0.0201018 + 0.999798i \(0.493601\pi\)
\(468\) 0 0
\(469\) −40.3316 + 34.9476i −1.86234 + 1.61373i
\(470\) 0 0
\(471\) 2.10011 14.6066i 0.0967680 0.673036i
\(472\) 0 0
\(473\) 9.91072 + 6.36923i 0.455695 + 0.292858i
\(474\) 0 0
\(475\) −6.80201 + 3.10637i −0.312098 + 0.142530i
\(476\) 0 0
\(477\) 17.8509 + 5.24149i 0.817336 + 0.239991i
\(478\) 0 0
\(479\) −8.41142 + 2.46982i −0.384328 + 0.112849i −0.468188 0.883629i \(-0.655093\pi\)
0.0838606 + 0.996477i \(0.473275\pi\)
\(480\) 0 0
\(481\) 5.70211 0.819839i 0.259994 0.0373815i
\(482\) 0 0
\(483\) 46.1485 51.6664i 2.09983 2.35090i
\(484\) 0 0
\(485\) 1.11784 0.160720i 0.0507583 0.00729794i
\(486\) 0 0
\(487\) −4.41486 15.0356i −0.200056 0.681330i −0.997009 0.0772876i \(-0.975374\pi\)
0.796952 0.604042i \(-0.206444\pi\)
\(488\) 0 0
\(489\) 42.1350 + 12.3720i 1.90541 + 0.559480i
\(490\) 0 0
\(491\) 10.6783 + 23.3822i 0.481905 + 1.05522i 0.981935 + 0.189217i \(0.0605948\pi\)
−0.500031 + 0.866008i \(0.666678\pi\)
\(492\) 0 0
\(493\) −33.3187 21.4126i −1.50060 0.964377i
\(494\) 0 0
\(495\) 14.1947 + 2.04089i 0.638004 + 0.0917312i
\(496\) 0 0
\(497\) −7.97046 + 6.90645i −0.357524 + 0.309796i
\(498\) 0 0
\(499\) 5.08585 3.26848i 0.227674 0.146317i −0.421831 0.906674i \(-0.638612\pi\)
0.649505 + 0.760357i \(0.274976\pi\)
\(500\) 0 0
\(501\) −52.0015 45.0596i −2.32326 2.01311i
\(502\) 0 0
\(503\) 2.18735 4.78963i 0.0975291 0.213559i −0.854578 0.519322i \(-0.826184\pi\)
0.952108 + 0.305763i \(0.0989117\pi\)
\(504\) 0 0
\(505\) 10.2111i 0.454389i
\(506\) 0 0
\(507\) 34.5720 1.53539
\(508\) 0 0
\(509\) −16.0937 7.34974i −0.713340 0.325771i 0.0254791 0.999675i \(-0.491889\pi\)
−0.738819 + 0.673904i \(0.764616\pi\)
\(510\) 0 0
\(511\) −7.09582 + 8.18901i −0.313901 + 0.362261i
\(512\) 0 0
\(513\) −9.61714 14.9646i −0.424607 0.660701i
\(514\) 0 0
\(515\) −3.09522 3.57207i −0.136392 0.157404i
\(516\) 0 0
\(517\) −1.08651 + 7.55685i −0.0477847 + 0.332350i
\(518\) 0 0
\(519\) −36.9500 + 57.4953i −1.62192 + 2.52376i
\(520\) 0 0
\(521\) 4.77483 2.18059i 0.209189 0.0955335i −0.308065 0.951365i \(-0.599681\pi\)
0.517254 + 0.855832i \(0.326954\pi\)
\(522\) 0 0
\(523\) −4.60996 + 15.7001i −0.201580 + 0.686517i 0.795201 + 0.606345i \(0.207365\pi\)
−0.996781 + 0.0801719i \(0.974453\pi\)
\(524\) 0 0
\(525\) 35.9217 10.5476i 1.56775 0.460334i
\(526\) 0 0
\(527\) 2.00125 + 13.9190i 0.0871758 + 0.606321i
\(528\) 0 0
\(529\) −3.95682 + 22.6571i −0.172036 + 0.985091i
\(530\) 0 0
\(531\) 2.21618 + 15.4139i 0.0961741 + 0.668905i
\(532\) 0 0
\(533\) 1.49409 + 5.08841i 0.0647163 + 0.220404i
\(534\) 0 0
\(535\) 2.34034 7.97048i 0.101182 0.344594i
\(536\) 0 0
\(537\) −1.32388 2.89889i −0.0571295 0.125096i
\(538\) 0 0
\(539\) −17.9903 + 27.9935i −0.774898 + 1.20576i
\(540\) 0 0
\(541\) −23.8290 3.42610i −1.02449 0.147299i −0.390470 0.920616i \(-0.627687\pi\)
−0.634021 + 0.773316i \(0.718597\pi\)
\(542\) 0 0
\(543\) −9.01683 10.4060i −0.386949 0.446563i
\(544\) 0 0
\(545\) 15.1612 9.74348i 0.649433 0.417365i
\(546\) 0 0
\(547\) −4.35607 + 5.02717i −0.186252 + 0.214946i −0.841195 0.540732i \(-0.818147\pi\)
0.654943 + 0.755678i \(0.272693\pi\)
\(548\) 0 0
\(549\) −11.7590 + 25.7485i −0.501860 + 1.09892i
\(550\) 0 0
\(551\) −19.2263 −0.819068
\(552\) 0 0
\(553\) −39.3816 −1.67468
\(554\) 0 0
\(555\) 11.2043 24.5341i 0.475598 1.04141i
\(556\) 0 0
\(557\) 10.3521 11.9470i 0.438635 0.506211i −0.492789 0.870149i \(-0.664022\pi\)
0.931423 + 0.363938i \(0.118568\pi\)
\(558\) 0 0
\(559\) −5.23766 + 3.36604i −0.221529 + 0.142368i
\(560\) 0 0
\(561\) −19.9154 22.9836i −0.840827 0.970367i
\(562\) 0 0
\(563\) −16.8778 2.42666i −0.711313 0.102271i −0.222846 0.974854i \(-0.571535\pi\)
−0.488467 + 0.872582i \(0.662444\pi\)
\(564\) 0 0
\(565\) 4.83565 7.52442i 0.203437 0.316555i
\(566\) 0 0
\(567\) 4.48501 + 9.82079i 0.188353 + 0.412435i
\(568\) 0 0
\(569\) 6.28352 21.3997i 0.263419 0.897122i −0.716477 0.697611i \(-0.754246\pi\)
0.979896 0.199511i \(-0.0639354\pi\)
\(570\) 0 0
\(571\) −9.12923 31.0913i −0.382046 1.30113i −0.896283 0.443482i \(-0.853743\pi\)
0.514237 0.857648i \(-0.328075\pi\)
\(572\) 0 0
\(573\) 8.19383 + 56.9893i 0.342302 + 2.38076i
\(574\) 0 0
\(575\) −8.28021 + 9.27026i −0.345309 + 0.386596i
\(576\) 0 0
\(577\) −2.92744 20.3608i −0.121871 0.847632i −0.955433 0.295206i \(-0.904612\pi\)
0.833562 0.552425i \(-0.186298\pi\)
\(578\) 0 0
\(579\) −64.9900 + 19.0828i −2.70089 + 0.793054i
\(580\) 0 0
\(581\) −11.4388 + 38.9571i −0.474563 + 1.61621i
\(582\) 0 0
\(583\) 5.87697 2.68392i 0.243399 0.111157i
\(584\) 0 0
\(585\) −4.09742 + 6.37571i −0.169407 + 0.263603i
\(586\) 0 0
\(587\) 0.369212 2.56793i 0.0152390 0.105990i −0.980782 0.195106i \(-0.937495\pi\)
0.996021 + 0.0891159i \(0.0284042\pi\)
\(588\) 0 0
\(589\) 4.47028 + 5.15898i 0.184195 + 0.212572i
\(590\) 0 0
\(591\) 21.2369 + 33.0453i 0.873570 + 1.35930i
\(592\) 0 0
\(593\) −23.6073 + 27.2443i −0.969437 + 1.11879i 0.0234490 + 0.999725i \(0.492535\pi\)
−0.992886 + 0.119065i \(0.962010\pi\)
\(594\) 0 0
\(595\) 42.4287 + 19.3766i 1.73941 + 0.794362i
\(596\) 0 0
\(597\) 32.3239 1.32293
\(598\) 0 0
\(599\) 26.2291i 1.07169i −0.844316 0.535846i \(-0.819993\pi\)
0.844316 0.535846i \(-0.180007\pi\)
\(600\) 0 0
\(601\) −6.19230 + 13.5592i −0.252589 + 0.553093i −0.992870 0.119205i \(-0.961965\pi\)
0.740280 + 0.672298i \(0.234693\pi\)
\(602\) 0 0
\(603\) 41.1398 + 35.6479i 1.67534 + 1.45169i
\(604\) 0 0
\(605\) −10.1709 + 6.53642i −0.413505 + 0.265743i
\(606\) 0 0
\(607\) −10.7092 + 9.27954i −0.434671 + 0.376645i −0.844534 0.535502i \(-0.820122\pi\)
0.409862 + 0.912147i \(0.365577\pi\)
\(608\) 0 0
\(609\) 95.2789 + 13.6990i 3.86089 + 0.555113i
\(610\) 0 0
\(611\) −3.39424 2.18135i −0.137316 0.0882479i
\(612\) 0 0
\(613\) 15.0550 + 32.9658i 0.608065 + 1.33148i 0.923890 + 0.382659i \(0.124992\pi\)
−0.315825 + 0.948818i \(0.602281\pi\)
\(614\) 0 0
\(615\) 23.8236 + 6.99525i 0.960661 + 0.282076i
\(616\) 0 0
\(617\) 2.83232 + 9.64601i 0.114025 + 0.388334i 0.996654 0.0817367i \(-0.0260467\pi\)
−0.882629 + 0.470070i \(0.844228\pi\)
\(618\) 0 0
\(619\) 33.9420 4.88013i 1.36425 0.196149i 0.578997 0.815330i \(-0.303444\pi\)
0.785248 + 0.619181i \(0.212535\pi\)
\(620\) 0 0
\(621\) −24.6312 16.3584i −0.988417 0.656440i
\(622\) 0 0
\(623\) 13.6909 1.96845i 0.548513 0.0788642i
\(624\) 0 0
\(625\) 5.10804 1.49986i 0.204322 0.0599942i
\(626\) 0 0
\(627\) −14.1650 4.15921i −0.565695 0.166103i
\(628\) 0 0
\(629\) −32.8968 + 15.0235i −1.31168 + 0.599025i
\(630\) 0 0
\(631\) 22.0076 + 14.1434i 0.876109 + 0.563041i 0.899616 0.436683i \(-0.143847\pi\)
−0.0235068 + 0.999724i \(0.507483\pi\)
\(632\) 0 0
\(633\) −8.40167 + 58.4349i −0.333936 + 2.32258i
\(634\) 0 0
\(635\) −8.66939 + 7.51207i −0.344034 + 0.298107i
\(636\) 0 0
\(637\) −9.50760 14.7941i −0.376705 0.586164i
\(638\) 0 0
\(639\) 8.13018 + 7.04484i 0.321625 + 0.278690i
\(640\) 0 0
\(641\) −13.6583 6.23754i −0.539471 0.246368i 0.126995 0.991903i \(-0.459467\pi\)
−0.666466 + 0.745535i \(0.732194\pi\)
\(642\) 0 0
\(643\) 35.7644i 1.41041i −0.709003 0.705205i \(-0.750855\pi\)
0.709003 0.705205i \(-0.249145\pi\)
\(644\) 0 0
\(645\) 29.1498i 1.14777i
\(646\) 0 0
\(647\) −1.09000 0.497786i −0.0428523 0.0195700i 0.393874 0.919165i \(-0.371135\pi\)
−0.436726 + 0.899595i \(0.643862\pi\)
\(648\) 0 0
\(649\) 4.08698 + 3.54139i 0.160428 + 0.139012i
\(650\) 0 0
\(651\) −18.4773 28.7512i −0.724182 1.12685i
\(652\) 0 0
\(653\) 10.6665 9.24256i 0.417412 0.361689i −0.420689 0.907205i \(-0.638212\pi\)
0.838101 + 0.545516i \(0.183666\pi\)
\(654\) 0 0
\(655\) 2.68041 18.6427i 0.104732 0.728429i
\(656\) 0 0
\(657\) 9.29816 + 5.97556i 0.362756 + 0.233129i
\(658\) 0 0
\(659\) 11.2336 5.13020i 0.437598 0.199844i −0.184420 0.982848i \(-0.559041\pi\)
0.622017 + 0.783003i \(0.286313\pi\)
\(660\) 0 0
\(661\) 19.0983 + 5.60776i 0.742836 + 0.218116i 0.631186 0.775631i \(-0.282568\pi\)
0.111650 + 0.993748i \(0.464386\pi\)
\(662\) 0 0
\(663\) 15.4210 4.52802i 0.598903 0.175854i
\(664\) 0 0
\(665\) 22.4123 3.22240i 0.869111 0.124959i
\(666\) 0 0
\(667\) −29.2670 + 12.8371i −1.13322 + 0.497056i
\(668\) 0 0
\(669\) 47.5453 6.83599i 1.83821 0.264295i
\(670\) 0 0
\(671\) 2.76945 + 9.43188i 0.106913 + 0.364114i
\(672\) 0 0
\(673\) −12.3190 3.61717i −0.474861 0.139432i 0.0355402 0.999368i \(-0.488685\pi\)
−0.510401 + 0.859937i \(0.670503\pi\)
\(674\) 0 0
\(675\) −6.63814 14.5355i −0.255502 0.559472i
\(676\) 0 0
\(677\) 10.7903 + 6.93450i 0.414704 + 0.266514i 0.731313 0.682042i \(-0.238908\pi\)
−0.316609 + 0.948556i \(0.602544\pi\)
\(678\) 0 0
\(679\) 3.64284 + 0.523762i 0.139799 + 0.0201001i
\(680\) 0 0
\(681\) 19.6107 16.9928i 0.751484 0.651165i
\(682\) 0 0
\(683\) −40.3338 + 25.9210i −1.54333 + 0.991838i −0.556359 + 0.830942i \(0.687802\pi\)
−0.986971 + 0.160897i \(0.948561\pi\)
\(684\) 0 0
\(685\) −8.87234 7.68793i −0.338995 0.293741i
\(686\) 0 0
\(687\) 7.09084 15.5268i 0.270532 0.592383i
\(688\) 0 0
\(689\) 3.41444i 0.130080i
\(690\) 0 0
\(691\) −16.9423 −0.644515 −0.322258 0.946652i \(-0.604442\pi\)
−0.322258 + 0.946652i \(0.604442\pi\)
\(692\) 0 0
\(693\) 42.5106 + 19.4140i 1.61485 + 0.737475i
\(694\) 0 0
\(695\) 0.120690 0.139284i 0.00457804 0.00528335i
\(696\) 0 0
\(697\) −17.9994 28.0077i −0.681777 1.06087i
\(698\) 0 0
\(699\) 23.9530 + 27.6432i 0.905986 + 1.04556i
\(700\) 0 0
\(701\) 6.72785 46.7932i 0.254107 1.76735i −0.318885 0.947793i \(-0.603308\pi\)
0.572992 0.819561i \(-0.305783\pi\)
\(702\) 0 0
\(703\) −9.49143 + 14.7690i −0.357976 + 0.557022i
\(704\) 0 0
\(705\) −17.1833 + 7.84736i −0.647162 + 0.295549i
\(706\) 0 0
\(707\) 9.37504 31.9285i 0.352585 1.20079i
\(708\) 0 0
\(709\) −21.7974 + 6.40031i −0.818620 + 0.240369i −0.664122 0.747625i \(-0.731194\pi\)
−0.154498 + 0.987993i \(0.549376\pi\)
\(710\) 0 0
\(711\) 5.71689 + 39.7618i 0.214400 + 1.49119i
\(712\) 0 0
\(713\) 10.2494 + 4.86846i 0.383844 + 0.182325i
\(714\) 0 0
\(715\) 0.374560 + 2.60512i 0.0140077 + 0.0974260i
\(716\) 0 0
\(717\) 12.0193 + 40.9339i 0.448868 + 1.52870i
\(718\) 0 0
\(719\) 11.8548 40.3738i 0.442110 1.50569i −0.373800 0.927509i \(-0.621945\pi\)
0.815910 0.578179i \(-0.196236\pi\)
\(720\) 0 0
\(721\) −6.39863 14.0110i −0.238297 0.521798i
\(722\) 0 0
\(723\) 8.58788 13.3630i 0.319387 0.496976i
\(724\) 0 0
\(725\) −17.0954 2.45795i −0.634909 0.0912861i
\(726\) 0 0
\(727\) 5.67584 + 6.55027i 0.210505 + 0.242936i 0.851177 0.524879i \(-0.175889\pi\)
−0.640672 + 0.767815i \(0.721344\pi\)
\(728\) 0 0
\(729\) −35.1801 + 22.6089i −1.30297 + 0.837365i
\(730\) 0 0
\(731\) 25.5958 29.5391i 0.946695 1.09254i
\(732\) 0 0
\(733\) −5.47637 + 11.9916i −0.202274 + 0.442919i −0.983399 0.181456i \(-0.941919\pi\)
0.781125 + 0.624375i \(0.214646\pi\)
\(734\) 0 0
\(735\) −82.3356 −3.03699
\(736\) 0 0
\(737\) 18.9040 0.696338
\(738\) 0 0
\(739\) −12.4623 + 27.2886i −0.458432 + 1.00383i 0.529410 + 0.848366i \(0.322413\pi\)
−0.987842 + 0.155461i \(0.950314\pi\)
\(740\) 0 0
\(741\) 5.10922 5.89636i 0.187692 0.216608i
\(742\) 0 0
\(743\) −13.1475 + 8.44939i −0.482335 + 0.309978i −0.759116 0.650955i \(-0.774369\pi\)
0.276781 + 0.960933i \(0.410732\pi\)
\(744\) 0 0
\(745\) 0.414660 + 0.478544i 0.0151920 + 0.0175325i
\(746\) 0 0
\(747\) 40.9938 + 5.89402i 1.49989 + 0.215651i
\(748\) 0 0
\(749\) 14.6357 22.7736i 0.534778 0.832130i
\(750\) 0 0
\(751\) 16.9947 + 37.2132i 0.620145 + 1.35793i 0.915414 + 0.402513i \(0.131863\pi\)
−0.295270 + 0.955414i \(0.595409\pi\)
\(752\) 0 0
\(753\) 23.7467 80.8737i 0.865376 2.94720i
\(754\) 0 0
\(755\) −8.76303 29.8441i −0.318919 1.08614i
\(756\) 0 0
\(757\) −2.54318 17.6882i −0.0924336 0.642890i −0.982390 0.186844i \(-0.940174\pi\)
0.889956 0.456046i \(-0.150735\pi\)
\(758\) 0 0
\(759\) −24.3395 + 3.12644i −0.883469 + 0.113483i
\(760\) 0 0
\(761\) −3.72667 25.9195i −0.135092 0.939583i −0.938776 0.344527i \(-0.888039\pi\)
0.803685 0.595055i \(-0.202870\pi\)
\(762\) 0 0
\(763\) 56.3520 16.5465i 2.04008 0.599022i
\(764\) 0 0
\(765\) 13.4044 45.6513i 0.484638 1.65052i
\(766\) 0 0
\(767\) −2.59969 + 1.18724i −0.0938695 + 0.0428688i
\(768\) 0 0
\(769\) −25.1988 + 39.2101i −0.908692 + 1.41395i 0.00160673 + 0.999999i \(0.499489\pi\)
−0.910298 + 0.413953i \(0.864148\pi\)
\(770\) 0 0
\(771\) −7.60986 + 52.9277i −0.274062 + 1.90615i
\(772\) 0 0
\(773\) −8.58697 9.90989i −0.308852 0.356434i 0.580010 0.814609i \(-0.303049\pi\)
−0.888862 + 0.458175i \(0.848503\pi\)
\(774\) 0 0
\(775\) 3.31530 + 5.15870i 0.119089 + 0.185306i
\(776\) 0 0
\(777\) 57.5593 66.4270i 2.06493 2.38305i
\(778\) 0 0
\(779\) −14.7011 6.71378i −0.526722 0.240546i
\(780\) 0 0
\(781\) 3.73587 0.133680
\(782\) 0 0
\(783\) 41.0855i 1.46828i
\(784\) 0 0
\(785\) 3.33055 7.29288i 0.118872 0.260294i
\(786\) 0 0
\(787\) 14.4910 + 12.5565i 0.516547 + 0.447591i 0.873707 0.486453i \(-0.161709\pi\)
−0.357160 + 0.934043i \(0.616255\pi\)
\(788\) 0 0
\(789\) −14.4190 + 9.26654i −0.513331 + 0.329898i
\(790\) 0 0
\(791\) 22.0286 19.0879i 0.783246 0.678687i
\(792\) 0 0
\(793\) −5.14215 0.739330i −0.182603 0.0262544i
\(794\) 0 0
\(795\) 13.4484 + 8.64279i 0.476967 + 0.306528i
\(796\) 0 0
\(797\) 17.1629 + 37.5815i 0.607941 + 1.33120i 0.923974 + 0.382456i \(0.124922\pi\)
−0.316033 + 0.948748i \(0.602351\pi\)
\(798\) 0 0
\(799\) 24.3034 + 7.13613i 0.859793 + 0.252458i
\(800\) 0 0
\(801\) −3.97491 13.5373i −0.140447 0.478317i
\(802\) 0 0
\(803\) 3.79924 0.546248i 0.134072 0.0192767i
\(804\) 0 0
\(805\) 31.9653 19.8696i 1.12663 0.700313i
\(806\) 0 0
\(807\) 40.7520 5.85925i 1.43454 0.206255i
\(808\) 0 0
\(809\) 33.4662 9.82656i 1.17661 0.345483i 0.365743 0.930716i \(-0.380815\pi\)
0.810866 + 0.585233i \(0.198997\pi\)
\(810\) 0 0
\(811\) −14.0562 4.12727i −0.493579 0.144928i 0.0254643 0.999676i \(-0.491894\pi\)
−0.519044 + 0.854748i \(0.673712\pi\)
\(812\) 0 0
\(813\) −51.2480 + 23.4042i −1.79735 + 0.820821i
\(814\) 0 0
\(815\) 20.0710 + 12.8989i 0.703058 + 0.451828i
\(816\) 0 0
\(817\) 2.70025 18.7807i 0.0944699 0.657053i
\(818\) 0 0
\(819\) −18.6656 + 16.1738i −0.652229 + 0.565159i
\(820\) 0 0
\(821\) 19.8827 + 30.9380i 0.693910 + 1.07975i 0.992126 + 0.125247i \(0.0399722\pi\)
−0.298216 + 0.954499i \(0.596391\pi\)
\(822\) 0 0
\(823\) 20.5637 + 17.8186i 0.716806 + 0.621116i 0.934941 0.354802i \(-0.115452\pi\)
−0.218135 + 0.975919i \(0.569997\pi\)
\(824\) 0 0
\(825\) −12.0633 5.50914i −0.419991 0.191804i
\(826\) 0 0
\(827\) 51.2196i 1.78108i −0.454903 0.890541i \(-0.650326\pi\)
0.454903 0.890541i \(-0.349674\pi\)
\(828\) 0 0
\(829\) 28.0969i 0.975846i −0.872887 0.487923i \(-0.837755\pi\)
0.872887 0.487923i \(-0.162245\pi\)
\(830\) 0 0
\(831\) −67.5497 30.8489i −2.34327 1.07014i
\(832\) 0 0
\(833\) 83.4353 + 72.2971i 2.89086 + 2.50494i
\(834\) 0 0
\(835\) −20.2110 31.4490i −0.699431 1.08834i
\(836\) 0 0
\(837\) −11.0244 + 9.55273i −0.381060 + 0.330191i
\(838\) 0 0
\(839\) −1.77813 + 12.3672i −0.0613878 + 0.426962i 0.935832 + 0.352446i \(0.114650\pi\)
−0.997220 + 0.0745153i \(0.976259\pi\)
\(840\) 0 0
\(841\) −12.9609 8.32945i −0.446927 0.287222i
\(842\) 0 0
\(843\) −24.8872 + 11.3656i −0.857161 + 0.391452i
\(844\) 0 0
\(845\) 18.0222 + 5.29179i 0.619981 + 0.182043i
\(846\) 0 0
\(847\) −37.8038 + 11.1002i −1.29895 + 0.381408i
\(848\) 0 0
\(849\) −65.0110 + 9.34718i −2.23117 + 0.320794i
\(850\) 0 0
\(851\) −4.58720 + 28.8192i −0.157247 + 0.987909i
\(852\) 0 0
\(853\) −44.0942 + 6.33980i −1.50976 + 0.217070i −0.846931 0.531702i \(-0.821553\pi\)
−0.662827 + 0.748773i \(0.730643\pi\)
\(854\) 0 0
\(855\) −6.50703 22.1609i −0.222536 0.757887i
\(856\) 0 0
\(857\) −27.7333 8.14322i −0.947350 0.278167i −0.228667 0.973505i \(-0.573437\pi\)
−0.718683 + 0.695338i \(0.755255\pi\)
\(858\) 0 0
\(859\) 10.7736 + 23.5909i 0.367591 + 0.804911i 0.999553 + 0.0299119i \(0.00952267\pi\)
−0.631962 + 0.775000i \(0.717750\pi\)
\(860\) 0 0
\(861\) 68.0700 + 43.7459i 2.31982 + 1.49086i
\(862\) 0 0
\(863\) 18.7725 + 2.69908i 0.639023 + 0.0918776i 0.454208 0.890896i \(-0.349922\pi\)
0.184815 + 0.982773i \(0.440831\pi\)
\(864\) 0 0
\(865\) −28.0624 + 24.3162i −0.954149 + 0.826775i
\(866\) 0 0
\(867\) −44.0314 + 28.2973i −1.49539 + 0.961026i
\(868\) 0 0
\(869\) 10.5428 + 9.13541i 0.357641 + 0.309898i
\(870\) 0 0
\(871\) −4.15019 + 9.08765i −0.140624 + 0.307923i
\(872\) 0 0
\(873\) 3.75405i 0.127055i
\(874\) 0 0
\(875\) 59.5801 2.01417
\(876\) 0 0
\(877\) 13.4336 + 6.13494i 0.453622 + 0.207162i 0.629105 0.777320i \(-0.283422\pi\)
−0.175483 + 0.984482i \(0.556149\pi\)
\(878\) 0 0
\(879\) 9.57812 11.0537i 0.323062 0.372834i
\(880\) 0 0
\(881\) 5.64865 + 8.78948i 0.190308 + 0.296125i 0.923275 0.384139i \(-0.125502\pi\)
−0.732967 + 0.680264i \(0.761865\pi\)
\(882\) 0 0
\(883\) −19.5356 22.5453i −0.657427 0.758711i 0.324928 0.945739i \(-0.394660\pi\)
−0.982355 + 0.187028i \(0.940115\pi\)
\(884\) 0 0
\(885\) −1.90429 + 13.2446i −0.0640119 + 0.445213i
\(886\) 0 0
\(887\) 2.24655 3.49570i 0.0754317 0.117374i −0.801488 0.598011i \(-0.795958\pi\)
0.876920 + 0.480637i \(0.159594\pi\)
\(888\) 0 0
\(889\) −34.0047 + 15.5294i −1.14048 + 0.520840i
\(890\) 0 0
\(891\) 1.07747 3.66952i 0.0360965 0.122933i
\(892\) 0 0
\(893\) 11.7978 3.46416i 0.394799 0.115924i
\(894\) 0 0
\(895\) −0.246409 1.71381i −0.00823655 0.0572865i
\(896\) 0 0
\(897\) 3.84054 12.3870i 0.128232 0.413591i
\(898\) 0 0
\(899\) 2.24382 + 15.6061i 0.0748356 + 0.520493i
\(900\) 0 0
\(901\) −6.03901 20.5670i −0.201189 0.685186i
\(902\) 0 0
\(903\) −26.7630 + 91.1465i −0.890618 + 3.03317i
\(904\) 0 0
\(905\) −3.10762 6.80474i −0.103301 0.226197i
\(906\) 0 0
\(907\) −18.8527 + 29.3354i −0.625994 + 0.974066i 0.372938 + 0.927856i \(0.378350\pi\)
−0.998932 + 0.0462092i \(0.985286\pi\)
\(908\) 0 0
\(909\) −33.5977 4.83062i −1.11437 0.160222i
\(910\) 0 0
\(911\) −3.03578 3.50347i −0.100580 0.116075i 0.703228 0.710964i \(-0.251741\pi\)
−0.803808 + 0.594889i \(0.797196\pi\)
\(912\) 0 0
\(913\) 12.0992 7.77571i 0.400427 0.257339i
\(914\) 0 0
\(915\) −15.9281 + 18.3820i −0.526565 + 0.607689i
\(916\) 0 0
\(917\) 25.4974 55.8315i 0.841998 1.84372i
\(918\) 0 0
\(919\) 9.64342 0.318107 0.159054 0.987270i \(-0.449156\pi\)
0.159054 + 0.987270i \(0.449156\pi\)
\(920\) 0 0
\(921\) 37.6167 1.23951
\(922\) 0 0
\(923\) −0.820174 + 1.79593i −0.0269963 + 0.0591137i
\(924\) 0 0
\(925\) −10.3276 + 11.9187i −0.339569 + 0.391884i
\(926\) 0 0
\(927\) −13.2175 + 8.49434i −0.434118 + 0.278991i
\(928\) 0 0
\(929\) −20.5715 23.7408i −0.674930 0.778910i 0.310210 0.950668i \(-0.399601\pi\)
−0.985139 + 0.171758i \(0.945055\pi\)
\(930\) 0 0
\(931\) 53.0473 + 7.62705i 1.73855 + 0.249966i
\(932\) 0 0
\(933\) −18.1579 + 28.2542i −0.594462 + 0.925001i
\(934\) 0 0
\(935\) −6.86377 15.0296i −0.224469 0.491519i
\(936\) 0 0
\(937\) −3.56682 + 12.1475i −0.116523 + 0.396840i −0.997014 0.0772224i \(-0.975395\pi\)
0.880491 + 0.474063i \(0.157213\pi\)
\(938\) 0 0
\(939\) 4.39723 + 14.9756i 0.143498 + 0.488709i
\(940\) 0 0
\(941\) 4.53269 + 31.5255i 0.147761 + 1.02770i 0.919873 + 0.392216i \(0.128292\pi\)
−0.772112 + 0.635487i \(0.780799\pi\)
\(942\) 0 0
\(943\) −26.8613 0.404241i −0.874725 0.0131639i
\(944\) 0 0
\(945\) 6.88608 + 47.8937i 0.224004 + 1.55798i
\(946\) 0 0
\(947\) 14.9139 4.37912i 0.484637 0.142302i −0.0302813 0.999541i \(-0.509640\pi\)
0.514919 + 0.857239i \(0.327822\pi\)
\(948\) 0 0
\(949\) −0.571490 + 1.94632i −0.0185513 + 0.0631801i
\(950\) 0 0
\(951\) −2.60550 + 1.18989i −0.0844891 + 0.0385849i
\(952\) 0 0
\(953\) −10.5180 + 16.3663i −0.340712 + 0.530158i −0.968755 0.248021i \(-0.920220\pi\)
0.628043 + 0.778179i \(0.283856\pi\)
\(954\) 0 0
\(955\) −4.45172 + 30.9624i −0.144054 + 1.00192i
\(956\) 0 0
\(957\) −22.3293 25.7694i −0.721803 0.833005i
\(958\) 0 0
\(959\) −20.6839 32.1847i −0.667917 1.03930i
\(960\) 0 0
\(961\) −16.6348 + 19.1976i −0.536607 + 0.619277i
\(962\) 0 0
\(963\) −25.1181 11.4711i −0.809421 0.369650i
\(964\) 0 0
\(965\) −36.7999 −1.18463
\(966\) 0 0
\(967\) 52.0426i 1.67358i −0.547527 0.836788i \(-0.684431\pi\)
0.547527 0.836788i \(-0.315569\pi\)
\(968\) 0 0
\(969\) −20.3469 + 44.5534i −0.653636 + 1.43126i
\(970\) 0 0
\(971\) 14.6900 + 12.7290i 0.471426 + 0.408493i 0.857907 0.513804i \(-0.171764\pi\)
−0.386482 + 0.922297i \(0.626310\pi\)
\(972\) 0 0
\(973\) 0.505258 0.324709i 0.0161978 0.0104097i
\(974\) 0 0
\(975\) 5.29677 4.58968i 0.169632 0.146987i
\(976\) 0 0
\(977\) 14.2751 + 2.05245i 0.456700 + 0.0656636i 0.366826 0.930290i \(-0.380444\pi\)
0.0898742 + 0.995953i \(0.471354\pi\)
\(978\) 0 0
\(979\) −4.12180 2.64892i −0.131733 0.0846599i
\(980\) 0 0
\(981\) −24.8867 54.4942i −0.794570 1.73987i
\(982\) 0 0
\(983\) −13.5418 3.97623i −0.431916 0.126822i 0.0585456 0.998285i \(-0.481354\pi\)
−0.490462 + 0.871463i \(0.663172\pi\)
\(984\) 0 0
\(985\) 6.01258 + 20.4770i 0.191577 + 0.652451i
\(986\) 0 0
\(987\) −60.9342 + 8.76101i −1.93956 + 0.278866i
\(988\) 0 0
\(989\) −8.42917 30.3916i −0.268032 0.966397i
\(990\) 0 0
\(991\) −48.2699 + 6.94017i −1.53334 + 0.220462i −0.856687 0.515836i \(-0.827481\pi\)
−0.676657 + 0.736298i \(0.736572\pi\)
\(992\) 0 0
\(993\) 0.283694 0.0833002i 0.00900277 0.00264345i
\(994\) 0 0
\(995\) 16.8503 + 4.94769i 0.534189 + 0.156852i
\(996\) 0 0
\(997\) 43.6622 19.9399i 1.38280 0.631502i 0.421452 0.906851i \(-0.361521\pi\)
0.961344 + 0.275349i \(0.0887933\pi\)
\(998\) 0 0
\(999\) −31.5604 20.2826i −0.998527 0.641714i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 736.2.r.a.687.22 220
4.3 odd 2 184.2.j.a.43.10 220
8.3 odd 2 inner 736.2.r.a.687.21 220
8.5 even 2 184.2.j.a.43.15 yes 220
23.15 odd 22 inner 736.2.r.a.15.21 220
92.15 even 22 184.2.j.a.107.15 yes 220
184.61 odd 22 184.2.j.a.107.10 yes 220
184.107 even 22 inner 736.2.r.a.15.22 220
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
184.2.j.a.43.10 220 4.3 odd 2
184.2.j.a.43.15 yes 220 8.5 even 2
184.2.j.a.107.10 yes 220 184.61 odd 22
184.2.j.a.107.15 yes 220 92.15 even 22
736.2.r.a.15.21 220 23.15 odd 22 inner
736.2.r.a.15.22 220 184.107 even 22 inner
736.2.r.a.687.21 220 8.3 odd 2 inner
736.2.r.a.687.22 220 1.1 even 1 trivial