Properties

Label 736.2.r.a.687.17
Level $736$
Weight $2$
Character 736.687
Analytic conductor $5.877$
Analytic rank $0$
Dimension $220$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [736,2,Mod(15,736)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(736, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([11, 11, 17])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("736.15"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 736 = 2^{5} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 736.r (of order \(22\), degree \(10\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.87698958877\)
Analytic rank: \(0\)
Dimension: \(220\)
Relative dimension: \(22\) over \(\Q(\zeta_{22})\)
Twist minimal: no (minimal twist has level 184)
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 687.17
Character \(\chi\) \(=\) 736.687
Dual form 736.2.r.a.15.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.871631 - 1.90861i) q^{3} +(-1.73345 + 2.00050i) q^{5} +(-0.195105 + 0.125386i) q^{7} +(-0.918456 - 1.05995i) q^{9} +(5.40936 + 0.777748i) q^{11} +(0.562994 - 0.876035i) q^{13} +(2.30725 + 5.05217i) q^{15} +(1.07685 - 3.66741i) q^{17} +(0.315114 + 1.07318i) q^{19} +(0.0692537 + 0.481670i) q^{21} +(1.59750 - 4.52195i) q^{23} +(-0.285605 - 1.98643i) q^{25} +(3.21609 - 0.944328i) q^{27} +(-0.188299 + 0.641289i) q^{29} +(7.20592 - 3.29083i) q^{31} +(6.19938 - 9.64643i) q^{33} +(0.0873683 - 0.607660i) q^{35} +(6.74958 + 7.78943i) q^{37} +(-1.18128 - 1.83811i) q^{39} +(-2.98130 + 3.44060i) q^{41} +(-6.46217 - 2.95117i) q^{43} +3.71254 q^{45} -3.52533i q^{47} +(-2.88556 + 6.31850i) q^{49} +(-6.06102 - 5.25190i) q^{51} +(4.45868 - 2.86542i) q^{53} +(-10.9327 + 9.47326i) q^{55} +(2.32294 + 0.333988i) q^{57} +(-6.52016 - 4.19025i) q^{59} +(-3.83630 - 8.40033i) q^{61} +(0.312099 + 0.0916406i) q^{63} +(0.776593 + 2.64483i) q^{65} +(14.5473 - 2.09159i) q^{67} +(-7.23819 - 6.99047i) q^{69} +(-6.17276 + 0.887509i) q^{71} +(-7.57709 + 2.22483i) q^{73} +(-4.04025 - 1.18633i) q^{75} +(-1.15291 + 0.526518i) q^{77} +(2.74726 + 1.76556i) q^{79} +(1.59969 - 11.1261i) q^{81} +(-4.93001 + 4.27188i) q^{83} +(5.47000 + 8.51149i) q^{85} +(1.05984 + 0.918357i) q^{87} +(-1.81651 - 0.829570i) q^{89} +0.241511i q^{91} -16.6217i q^{93} +(-2.69313 - 1.22991i) q^{95} +(11.8432 + 10.2622i) q^{97} +(-4.14388 - 6.44800i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 220 q + 18 q^{3} - 36 q^{9} + 22 q^{11} - 22 q^{17} + 22 q^{19} - 32 q^{25} + 18 q^{27} - 22 q^{33} - 2 q^{35} - 18 q^{41} + 22 q^{43} - 28 q^{49} + 22 q^{51} - 22 q^{57} + 6 q^{59} - 22 q^{65} + 22 q^{67}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/736\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(415\) \(645\)
\(\chi(n)\) \(e\left(\frac{5}{22}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.871631 1.90861i 0.503237 1.10193i −0.472167 0.881509i \(-0.656528\pi\)
0.975404 0.220425i \(-0.0707446\pi\)
\(4\) 0 0
\(5\) −1.73345 + 2.00050i −0.775221 + 0.894653i −0.996755 0.0805000i \(-0.974348\pi\)
0.221534 + 0.975153i \(0.428894\pi\)
\(6\) 0 0
\(7\) −0.195105 + 0.125386i −0.0737428 + 0.0473916i −0.576993 0.816749i \(-0.695774\pi\)
0.503250 + 0.864141i \(0.332138\pi\)
\(8\) 0 0
\(9\) −0.918456 1.05995i −0.306152 0.353318i
\(10\) 0 0
\(11\) 5.40936 + 0.777748i 1.63098 + 0.234500i 0.896151 0.443749i \(-0.146352\pi\)
0.734832 + 0.678249i \(0.237261\pi\)
\(12\) 0 0
\(13\) 0.562994 0.876035i 0.156146 0.242969i −0.754362 0.656458i \(-0.772054\pi\)
0.910509 + 0.413490i \(0.135690\pi\)
\(14\) 0 0
\(15\) 2.30725 + 5.05217i 0.595729 + 1.30446i
\(16\) 0 0
\(17\) 1.07685 3.66741i 0.261174 0.889477i −0.719610 0.694379i \(-0.755679\pi\)
0.980784 0.195098i \(-0.0625025\pi\)
\(18\) 0 0
\(19\) 0.315114 + 1.07318i 0.0722921 + 0.246204i 0.987709 0.156302i \(-0.0499573\pi\)
−0.915417 + 0.402506i \(0.868139\pi\)
\(20\) 0 0
\(21\) 0.0692537 + 0.481670i 0.0151124 + 0.105109i
\(22\) 0 0
\(23\) 1.59750 4.52195i 0.333102 0.942891i
\(24\) 0 0
\(25\) −0.285605 1.98643i −0.0571211 0.397286i
\(26\) 0 0
\(27\) 3.21609 0.944328i 0.618936 0.181736i
\(28\) 0 0
\(29\) −0.188299 + 0.641289i −0.0349663 + 0.119084i −0.975127 0.221647i \(-0.928857\pi\)
0.940161 + 0.340732i \(0.110675\pi\)
\(30\) 0 0
\(31\) 7.20592 3.29083i 1.29422 0.591051i 0.355161 0.934805i \(-0.384426\pi\)
0.939060 + 0.343754i \(0.111699\pi\)
\(32\) 0 0
\(33\) 6.19938 9.64643i 1.07917 1.67923i
\(34\) 0 0
\(35\) 0.0873683 0.607660i 0.0147679 0.102713i
\(36\) 0 0
\(37\) 6.74958 + 7.78943i 1.10962 + 1.28057i 0.956297 + 0.292398i \(0.0944532\pi\)
0.153327 + 0.988176i \(0.451001\pi\)
\(38\) 0 0
\(39\) −1.18128 1.83811i −0.189157 0.294334i
\(40\) 0 0
\(41\) −2.98130 + 3.44060i −0.465601 + 0.537332i −0.939183 0.343418i \(-0.888415\pi\)
0.473582 + 0.880750i \(0.342961\pi\)
\(42\) 0 0
\(43\) −6.46217 2.95117i −0.985471 0.450050i −0.143546 0.989644i \(-0.545850\pi\)
−0.841925 + 0.539594i \(0.818578\pi\)
\(44\) 0 0
\(45\) 3.71254 0.553432
\(46\) 0 0
\(47\) 3.52533i 0.514223i −0.966382 0.257111i \(-0.917229\pi\)
0.966382 0.257111i \(-0.0827707\pi\)
\(48\) 0 0
\(49\) −2.88556 + 6.31850i −0.412223 + 0.902642i
\(50\) 0 0
\(51\) −6.06102 5.25190i −0.848713 0.735414i
\(52\) 0 0
\(53\) 4.45868 2.86542i 0.612447 0.393596i −0.197327 0.980338i \(-0.563226\pi\)
0.809774 + 0.586742i \(0.199590\pi\)
\(54\) 0 0
\(55\) −10.9327 + 9.47326i −1.47417 + 1.27737i
\(56\) 0 0
\(57\) 2.32294 + 0.333988i 0.307681 + 0.0442378i
\(58\) 0 0
\(59\) −6.52016 4.19025i −0.848853 0.545525i 0.0423639 0.999102i \(-0.486511\pi\)
−0.891217 + 0.453578i \(0.850147\pi\)
\(60\) 0 0
\(61\) −3.83630 8.40033i −0.491188 1.07555i −0.979234 0.202734i \(-0.935017\pi\)
0.488046 0.872818i \(-0.337710\pi\)
\(62\) 0 0
\(63\) 0.312099 + 0.0916406i 0.0393208 + 0.0115456i
\(64\) 0 0
\(65\) 0.776593 + 2.64483i 0.0963245 + 0.328051i
\(66\) 0 0
\(67\) 14.5473 2.09159i 1.77724 0.255529i 0.825932 0.563769i \(-0.190649\pi\)
0.951308 + 0.308240i \(0.0997401\pi\)
\(68\) 0 0
\(69\) −7.23819 6.99047i −0.871375 0.841553i
\(70\) 0 0
\(71\) −6.17276 + 0.887509i −0.732572 + 0.105328i −0.498498 0.866891i \(-0.666115\pi\)
−0.234074 + 0.972219i \(0.575206\pi\)
\(72\) 0 0
\(73\) −7.57709 + 2.22483i −0.886832 + 0.260397i −0.693259 0.720689i \(-0.743826\pi\)
−0.193573 + 0.981086i \(0.562008\pi\)
\(74\) 0 0
\(75\) −4.04025 1.18633i −0.466528 0.136985i
\(76\) 0 0
\(77\) −1.15291 + 0.526518i −0.131387 + 0.0600023i
\(78\) 0 0
\(79\) 2.74726 + 1.76556i 0.309091 + 0.198641i 0.685985 0.727616i \(-0.259372\pi\)
−0.376894 + 0.926256i \(0.623008\pi\)
\(80\) 0 0
\(81\) 1.59969 11.1261i 0.177743 1.23623i
\(82\) 0 0
\(83\) −4.93001 + 4.27188i −0.541139 + 0.468900i −0.882023 0.471206i \(-0.843819\pi\)
0.340884 + 0.940105i \(0.389274\pi\)
\(84\) 0 0
\(85\) 5.47000 + 8.51149i 0.593305 + 0.923201i
\(86\) 0 0
\(87\) 1.05984 + 0.918357i 0.113627 + 0.0984583i
\(88\) 0 0
\(89\) −1.81651 0.829570i −0.192549 0.0879343i 0.316807 0.948490i \(-0.397389\pi\)
−0.509356 + 0.860556i \(0.670116\pi\)
\(90\) 0 0
\(91\) 0.241511i 0.0253172i
\(92\) 0 0
\(93\) 16.6217i 1.72358i
\(94\) 0 0
\(95\) −2.69313 1.22991i −0.276310 0.126186i
\(96\) 0 0
\(97\) 11.8432 + 10.2622i 1.20249 + 1.04197i 0.998007 + 0.0630964i \(0.0200976\pi\)
0.204485 + 0.978870i \(0.434448\pi\)
\(98\) 0 0
\(99\) −4.14388 6.44800i −0.416475 0.648048i
\(100\) 0 0
\(101\) −14.2148 + 12.3172i −1.41442 + 1.22561i −0.476312 + 0.879276i \(0.658027\pi\)
−0.938113 + 0.346330i \(0.887428\pi\)
\(102\) 0 0
\(103\) −1.72699 + 12.0115i −0.170165 + 1.18353i 0.708367 + 0.705844i \(0.249432\pi\)
−0.878533 + 0.477682i \(0.841477\pi\)
\(104\) 0 0
\(105\) −1.08363 0.696407i −0.105751 0.0679623i
\(106\) 0 0
\(107\) 1.19686 0.546588i 0.115705 0.0528407i −0.356722 0.934211i \(-0.616106\pi\)
0.472426 + 0.881370i \(0.343378\pi\)
\(108\) 0 0
\(109\) 12.1967 + 3.58129i 1.16824 + 0.343025i 0.807628 0.589692i \(-0.200751\pi\)
0.360608 + 0.932717i \(0.382569\pi\)
\(110\) 0 0
\(111\) 20.7501 6.09278i 1.96951 0.578301i
\(112\) 0 0
\(113\) −0.899099 + 0.129271i −0.0845801 + 0.0121608i −0.184475 0.982837i \(-0.559058\pi\)
0.0998948 + 0.994998i \(0.468149\pi\)
\(114\) 0 0
\(115\) 6.27699 + 11.0344i 0.585333 + 1.02896i
\(116\) 0 0
\(117\) −1.44564 + 0.207852i −0.133650 + 0.0192159i
\(118\) 0 0
\(119\) 0.249745 + 0.850552i 0.0228940 + 0.0779700i
\(120\) 0 0
\(121\) 18.1018 + 5.31518i 1.64562 + 0.483198i
\(122\) 0 0
\(123\) 3.96816 + 8.68907i 0.357797 + 0.783467i
\(124\) 0 0
\(125\) −6.66524 4.28349i −0.596158 0.383127i
\(126\) 0 0
\(127\) −13.5729 1.95148i −1.20440 0.173166i −0.489252 0.872142i \(-0.662730\pi\)
−0.715145 + 0.698976i \(0.753639\pi\)
\(128\) 0 0
\(129\) −11.2653 + 9.76140i −0.991850 + 0.859443i
\(130\) 0 0
\(131\) −11.6133 + 7.46340i −1.01466 + 0.652080i −0.938594 0.345023i \(-0.887871\pi\)
−0.0760626 + 0.997103i \(0.524235\pi\)
\(132\) 0 0
\(133\) −0.196042 0.169872i −0.0169990 0.0147298i
\(134\) 0 0
\(135\) −3.68578 + 8.07074i −0.317222 + 0.694619i
\(136\) 0 0
\(137\) 4.91402i 0.419833i 0.977719 + 0.209916i \(0.0673192\pi\)
−0.977719 + 0.209916i \(0.932681\pi\)
\(138\) 0 0
\(139\) 6.93551 0.588262 0.294131 0.955765i \(-0.404970\pi\)
0.294131 + 0.955765i \(0.404970\pi\)
\(140\) 0 0
\(141\) −6.72848 3.07279i −0.566640 0.258776i
\(142\) 0 0
\(143\) 3.72677 4.30092i 0.311648 0.359661i
\(144\) 0 0
\(145\) −0.956495 1.48833i −0.0794326 0.123599i
\(146\) 0 0
\(147\) 9.54438 + 11.0148i 0.787207 + 0.908485i
\(148\) 0 0
\(149\) 2.12037 14.7475i 0.173707 1.20816i −0.697259 0.716819i \(-0.745597\pi\)
0.870966 0.491343i \(-0.163494\pi\)
\(150\) 0 0
\(151\) −1.26372 + 1.96638i −0.102840 + 0.160022i −0.888860 0.458179i \(-0.848502\pi\)
0.786020 + 0.618201i \(0.212138\pi\)
\(152\) 0 0
\(153\) −4.87632 + 2.22694i −0.394227 + 0.180037i
\(154\) 0 0
\(155\) −5.90775 + 20.1199i −0.474522 + 1.61607i
\(156\) 0 0
\(157\) −4.29660 + 1.26160i −0.342906 + 0.100686i −0.448651 0.893707i \(-0.648095\pi\)
0.105745 + 0.994393i \(0.466277\pi\)
\(158\) 0 0
\(159\) −1.58263 11.0075i −0.125511 0.872948i
\(160\) 0 0
\(161\) 0.255311 + 1.08256i 0.0201213 + 0.0853177i
\(162\) 0 0
\(163\) −2.26816 15.7754i −0.177656 1.23562i −0.862168 0.506622i \(-0.830894\pi\)
0.684513 0.729001i \(-0.260015\pi\)
\(164\) 0 0
\(165\) 8.55142 + 29.1235i 0.665727 + 2.26726i
\(166\) 0 0
\(167\) 5.12618 17.4582i 0.396676 1.35095i −0.483100 0.875565i \(-0.660489\pi\)
0.879776 0.475389i \(-0.157693\pi\)
\(168\) 0 0
\(169\) 4.94992 + 10.8388i 0.380763 + 0.833755i
\(170\) 0 0
\(171\) 0.848103 1.31967i 0.0648560 0.100918i
\(172\) 0 0
\(173\) 11.6415 + 1.67379i 0.885086 + 0.127256i 0.569842 0.821754i \(-0.307005\pi\)
0.315244 + 0.949011i \(0.397914\pi\)
\(174\) 0 0
\(175\) 0.304794 + 0.351752i 0.0230403 + 0.0265899i
\(176\) 0 0
\(177\) −13.6807 + 8.79207i −1.02831 + 0.660852i
\(178\) 0 0
\(179\) −9.49210 + 10.9545i −0.709473 + 0.818775i −0.990000 0.141071i \(-0.954945\pi\)
0.280527 + 0.959846i \(0.409491\pi\)
\(180\) 0 0
\(181\) 2.26043 4.94966i 0.168017 0.367905i −0.806829 0.590785i \(-0.798818\pi\)
0.974846 + 0.222879i \(0.0715456\pi\)
\(182\) 0 0
\(183\) −19.3768 −1.43237
\(184\) 0 0
\(185\) −27.2828 −2.00587
\(186\) 0 0
\(187\) 8.67737 19.0008i 0.634552 1.38948i
\(188\) 0 0
\(189\) −0.509069 + 0.587497i −0.0370293 + 0.0427341i
\(190\) 0 0
\(191\) 3.09897 1.99159i 0.224234 0.144106i −0.423701 0.905802i \(-0.639269\pi\)
0.647935 + 0.761696i \(0.275633\pi\)
\(192\) 0 0
\(193\) −8.97482 10.3575i −0.646022 0.745549i 0.334406 0.942429i \(-0.391464\pi\)
−0.980427 + 0.196881i \(0.936919\pi\)
\(194\) 0 0
\(195\) 5.72485 + 0.823109i 0.409965 + 0.0589440i
\(196\) 0 0
\(197\) −11.0568 + 17.2047i −0.787763 + 1.22578i 0.182375 + 0.983229i \(0.441621\pi\)
−0.970138 + 0.242554i \(0.922015\pi\)
\(198\) 0 0
\(199\) −3.92613 8.59702i −0.278316 0.609426i 0.717919 0.696127i \(-0.245095\pi\)
−0.996234 + 0.0867006i \(0.972368\pi\)
\(200\) 0 0
\(201\) 8.68790 29.5883i 0.612797 2.08699i
\(202\) 0 0
\(203\) −0.0436708 0.148729i −0.00306509 0.0104387i
\(204\) 0 0
\(205\) −1.71502 11.9282i −0.119782 0.833102i
\(206\) 0 0
\(207\) −6.26029 + 2.45993i −0.435120 + 0.170977i
\(208\) 0 0
\(209\) 0.869900 + 6.05029i 0.0601723 + 0.418507i
\(210\) 0 0
\(211\) −16.4899 + 4.84187i −1.13521 + 0.333328i −0.794754 0.606932i \(-0.792400\pi\)
−0.340458 + 0.940260i \(0.610582\pi\)
\(212\) 0 0
\(213\) −3.68646 + 12.5549i −0.252592 + 0.860251i
\(214\) 0 0
\(215\) 17.1057 7.81189i 1.16660 0.532767i
\(216\) 0 0
\(217\) −0.993286 + 1.54558i −0.0674286 + 0.104921i
\(218\) 0 0
\(219\) −2.35810 + 16.4009i −0.159345 + 1.10827i
\(220\) 0 0
\(221\) −2.60652 3.00808i −0.175333 0.202346i
\(222\) 0 0
\(223\) −4.27051 6.64504i −0.285974 0.444985i 0.668311 0.743882i \(-0.267018\pi\)
−0.954285 + 0.298897i \(0.903381\pi\)
\(224\) 0 0
\(225\) −1.84321 + 2.12718i −0.122881 + 0.141812i
\(226\) 0 0
\(227\) 3.21856 + 1.46987i 0.213623 + 0.0975584i 0.519353 0.854560i \(-0.326173\pi\)
−0.305730 + 0.952118i \(0.598900\pi\)
\(228\) 0 0
\(229\) −24.4621 −1.61650 −0.808251 0.588838i \(-0.799586\pi\)
−0.808251 + 0.588838i \(0.799586\pi\)
\(230\) 0 0
\(231\) 2.65939i 0.174975i
\(232\) 0 0
\(233\) 5.84924 12.8081i 0.383197 0.839083i −0.615505 0.788133i \(-0.711048\pi\)
0.998701 0.0509502i \(-0.0162250\pi\)
\(234\) 0 0
\(235\) 7.05245 + 6.11098i 0.460051 + 0.398636i
\(236\) 0 0
\(237\) 5.76435 3.70452i 0.374435 0.240635i
\(238\) 0 0
\(239\) −20.4667 + 17.7345i −1.32388 + 1.14715i −0.345945 + 0.938255i \(0.612442\pi\)
−0.977938 + 0.208896i \(0.933013\pi\)
\(240\) 0 0
\(241\) −3.17391 0.456339i −0.204449 0.0293954i 0.0393292 0.999226i \(-0.487478\pi\)
−0.243779 + 0.969831i \(0.578387\pi\)
\(242\) 0 0
\(243\) −11.3817 7.31457i −0.730135 0.469230i
\(244\) 0 0
\(245\) −7.63821 16.7254i −0.487988 1.06854i
\(246\) 0 0
\(247\) 1.11755 + 0.328142i 0.0711080 + 0.0208792i
\(248\) 0 0
\(249\) 3.85618 + 13.1330i 0.244376 + 0.832267i
\(250\) 0 0
\(251\) −13.0955 + 1.88286i −0.826584 + 0.118845i −0.542607 0.839986i \(-0.682563\pi\)
−0.283976 + 0.958831i \(0.591654\pi\)
\(252\) 0 0
\(253\) 12.1584 23.2184i 0.764391 1.45973i
\(254\) 0 0
\(255\) 21.0129 3.02120i 1.31588 0.189195i
\(256\) 0 0
\(257\) −19.3658 + 5.68632i −1.20801 + 0.354703i −0.822909 0.568173i \(-0.807650\pi\)
−0.385097 + 0.922876i \(0.625832\pi\)
\(258\) 0 0
\(259\) −2.29357 0.673452i −0.142515 0.0418463i
\(260\) 0 0
\(261\) 0.852682 0.389407i 0.0527797 0.0241037i
\(262\) 0 0
\(263\) 5.34016 + 3.43191i 0.329288 + 0.211621i 0.694830 0.719174i \(-0.255480\pi\)
−0.365541 + 0.930795i \(0.619116\pi\)
\(264\) 0 0
\(265\) −1.99660 + 13.8867i −0.122650 + 0.853051i
\(266\) 0 0
\(267\) −3.16665 + 2.74391i −0.193796 + 0.167925i
\(268\) 0 0
\(269\) −15.4290 24.0080i −0.940723 1.46379i −0.885132 0.465340i \(-0.845932\pi\)
−0.0555912 0.998454i \(-0.517704\pi\)
\(270\) 0 0
\(271\) 2.54079 + 2.20161i 0.154342 + 0.133738i 0.728609 0.684930i \(-0.240167\pi\)
−0.574267 + 0.818668i \(0.694713\pi\)
\(272\) 0 0
\(273\) 0.460949 + 0.210508i 0.0278979 + 0.0127406i
\(274\) 0 0
\(275\) 10.9674i 0.661361i
\(276\) 0 0
\(277\) 26.1434i 1.57080i 0.618986 + 0.785402i \(0.287544\pi\)
−0.618986 + 0.785402i \(0.712456\pi\)
\(278\) 0 0
\(279\) −10.1064 4.61546i −0.605057 0.276320i
\(280\) 0 0
\(281\) −14.8385 12.8576i −0.885189 0.767021i 0.0882184 0.996101i \(-0.471883\pi\)
−0.973407 + 0.229080i \(0.926428\pi\)
\(282\) 0 0
\(283\) −5.82943 9.07077i −0.346524 0.539201i 0.623621 0.781726i \(-0.285661\pi\)
−0.970145 + 0.242525i \(0.922024\pi\)
\(284\) 0 0
\(285\) −4.69484 + 4.06810i −0.278098 + 0.240973i
\(286\) 0 0
\(287\) 0.150262 1.04509i 0.00886968 0.0616900i
\(288\) 0 0
\(289\) 2.01104 + 1.29242i 0.118297 + 0.0760247i
\(290\) 0 0
\(291\) 29.9093 13.6591i 1.75332 0.800713i
\(292\) 0 0
\(293\) 10.4435 + 3.06650i 0.610118 + 0.179147i 0.572173 0.820133i \(-0.306101\pi\)
0.0379450 + 0.999280i \(0.487919\pi\)
\(294\) 0 0
\(295\) 19.6850 5.78003i 1.14610 0.336526i
\(296\) 0 0
\(297\) 18.1314 2.60690i 1.05209 0.151268i
\(298\) 0 0
\(299\) −3.06200 3.94529i −0.177080 0.228162i
\(300\) 0 0
\(301\) 1.63084 0.234479i 0.0940000 0.0135152i
\(302\) 0 0
\(303\) 11.1186 + 37.8665i 0.638747 + 2.17537i
\(304\) 0 0
\(305\) 23.4549 + 6.88699i 1.34303 + 0.394348i
\(306\) 0 0
\(307\) 2.54247 + 5.56723i 0.145106 + 0.317739i 0.968204 0.250161i \(-0.0804835\pi\)
−0.823098 + 0.567900i \(0.807756\pi\)
\(308\) 0 0
\(309\) 21.4199 + 13.7657i 1.21853 + 0.783105i
\(310\) 0 0
\(311\) 16.3351 + 2.34863i 0.926279 + 0.133179i 0.588914 0.808195i \(-0.299555\pi\)
0.337364 + 0.941374i \(0.390465\pi\)
\(312\) 0 0
\(313\) 17.6131 15.2618i 0.995552 0.862650i 0.00502732 0.999987i \(-0.498400\pi\)
0.990524 + 0.137337i \(0.0438543\pi\)
\(314\) 0 0
\(315\) −0.724335 + 0.465502i −0.0408117 + 0.0262281i
\(316\) 0 0
\(317\) 1.99082 + 1.72506i 0.111816 + 0.0968888i 0.708974 0.705234i \(-0.249158\pi\)
−0.597159 + 0.802123i \(0.703704\pi\)
\(318\) 0 0
\(319\) −1.51734 + 3.32251i −0.0849548 + 0.186025i
\(320\) 0 0
\(321\) 2.76076i 0.154091i
\(322\) 0 0
\(323\) 4.27511 0.237874
\(324\) 0 0
\(325\) −1.90098 0.868147i −0.105447 0.0481561i
\(326\) 0 0
\(327\) 17.4663 20.1572i 0.965890 1.11470i
\(328\) 0 0
\(329\) 0.442029 + 0.687811i 0.0243699 + 0.0379202i
\(330\) 0 0
\(331\) −0.211824 0.244458i −0.0116429 0.0134366i 0.749898 0.661553i \(-0.230102\pi\)
−0.761541 + 0.648117i \(0.775557\pi\)
\(332\) 0 0
\(333\) 2.05725 14.3085i 0.112737 0.784100i
\(334\) 0 0
\(335\) −21.0328 + 32.7277i −1.14915 + 1.78810i
\(336\) 0 0
\(337\) 4.53017 2.06886i 0.246774 0.112698i −0.288188 0.957574i \(-0.593053\pi\)
0.534963 + 0.844876i \(0.320326\pi\)
\(338\) 0 0
\(339\) −0.536955 + 1.82870i −0.0291634 + 0.0993215i
\(340\) 0 0
\(341\) 41.5388 12.1969i 2.24945 0.660499i
\(342\) 0 0
\(343\) −0.460308 3.20151i −0.0248543 0.172865i
\(344\) 0 0
\(345\) 26.5315 2.36242i 1.42841 0.127188i
\(346\) 0 0
\(347\) −2.97848 20.7158i −0.159893 1.11208i −0.898827 0.438303i \(-0.855580\pi\)
0.738934 0.673778i \(-0.235329\pi\)
\(348\) 0 0
\(349\) 5.81078 + 19.7897i 0.311044 + 1.05932i 0.955577 + 0.294742i \(0.0952337\pi\)
−0.644533 + 0.764577i \(0.722948\pi\)
\(350\) 0 0
\(351\) 0.983372 3.34906i 0.0524885 0.178759i
\(352\) 0 0
\(353\) −3.45440 7.56407i −0.183859 0.402595i 0.795150 0.606413i \(-0.207392\pi\)
−0.979009 + 0.203818i \(0.934665\pi\)
\(354\) 0 0
\(355\) 8.92468 13.8871i 0.473673 0.737050i
\(356\) 0 0
\(357\) 1.84105 + 0.264704i 0.0974389 + 0.0140096i
\(358\) 0 0
\(359\) −7.34108 8.47206i −0.387448 0.447138i 0.528200 0.849120i \(-0.322867\pi\)
−0.915648 + 0.401982i \(0.868322\pi\)
\(360\) 0 0
\(361\) 14.9314 9.59583i 0.785863 0.505044i
\(362\) 0 0
\(363\) 25.9227 29.9164i 1.36059 1.57020i
\(364\) 0 0
\(365\) 8.68369 19.0146i 0.454525 0.995272i
\(366\) 0 0
\(367\) −26.8593 −1.40204 −0.701022 0.713140i \(-0.747273\pi\)
−0.701022 + 0.713140i \(0.747273\pi\)
\(368\) 0 0
\(369\) 6.38507 0.332394
\(370\) 0 0
\(371\) −0.510627 + 1.11812i −0.0265104 + 0.0580497i
\(372\) 0 0
\(373\) −4.17335 + 4.81631i −0.216088 + 0.249379i −0.853436 0.521197i \(-0.825486\pi\)
0.637348 + 0.770576i \(0.280031\pi\)
\(374\) 0 0
\(375\) −13.9851 + 8.98770i −0.722189 + 0.464123i
\(376\) 0 0
\(377\) 0.455781 + 0.525999i 0.0234739 + 0.0270903i
\(378\) 0 0
\(379\) 1.69018 + 0.243012i 0.0868189 + 0.0124827i 0.185587 0.982628i \(-0.440581\pi\)
−0.0987685 + 0.995110i \(0.531490\pi\)
\(380\) 0 0
\(381\) −15.5552 + 24.2043i −0.796914 + 1.24002i
\(382\) 0 0
\(383\) −7.38537 16.1717i −0.377375 0.826335i −0.999072 0.0430776i \(-0.986284\pi\)
0.621697 0.783258i \(-0.286444\pi\)
\(384\) 0 0
\(385\) 0.945212 3.21910i 0.0481725 0.164060i
\(386\) 0 0
\(387\) 2.80710 + 9.56012i 0.142693 + 0.485968i
\(388\) 0 0
\(389\) 1.22741 + 8.53683i 0.0622322 + 0.432834i 0.996989 + 0.0775456i \(0.0247083\pi\)
−0.934757 + 0.355289i \(0.884383\pi\)
\(390\) 0 0
\(391\) −14.8635 10.7281i −0.751682 0.542545i
\(392\) 0 0
\(393\) 4.12220 + 28.6705i 0.207937 + 1.44624i
\(394\) 0 0
\(395\) −8.29423 + 2.43541i −0.417328 + 0.122539i
\(396\) 0 0
\(397\) 4.18304 14.2461i 0.209941 0.714993i −0.785436 0.618943i \(-0.787561\pi\)
0.995377 0.0960494i \(-0.0306207\pi\)
\(398\) 0 0
\(399\) −0.495095 + 0.226102i −0.0247858 + 0.0113193i
\(400\) 0 0
\(401\) −3.31858 + 5.16381i −0.165722 + 0.257868i −0.914175 0.405319i \(-0.867160\pi\)
0.748453 + 0.663187i \(0.230797\pi\)
\(402\) 0 0
\(403\) 1.17400 8.16536i 0.0584811 0.406745i
\(404\) 0 0
\(405\) 19.4848 + 22.4867i 0.968208 + 1.11737i
\(406\) 0 0
\(407\) 30.4527 + 47.3853i 1.50948 + 2.34880i
\(408\) 0 0
\(409\) 0.709016 0.818249i 0.0350586 0.0404598i −0.737949 0.674856i \(-0.764206\pi\)
0.773008 + 0.634396i \(0.218751\pi\)
\(410\) 0 0
\(411\) 9.37893 + 4.28321i 0.462628 + 0.211275i
\(412\) 0 0
\(413\) 1.79752 0.0884501
\(414\) 0 0
\(415\) 17.2676i 0.847633i
\(416\) 0 0
\(417\) 6.04521 13.2372i 0.296035 0.648226i
\(418\) 0 0
\(419\) 4.92875 + 4.27079i 0.240785 + 0.208642i 0.766891 0.641778i \(-0.221803\pi\)
−0.526105 + 0.850419i \(0.676348\pi\)
\(420\) 0 0
\(421\) −25.0910 + 16.1250i −1.22286 + 0.785884i −0.982764 0.184865i \(-0.940815\pi\)
−0.240096 + 0.970749i \(0.577179\pi\)
\(422\) 0 0
\(423\) −3.73669 + 3.23786i −0.181684 + 0.157430i
\(424\) 0 0
\(425\) −7.59260 1.09165i −0.368295 0.0529528i
\(426\) 0 0
\(427\) 1.80177 + 1.15793i 0.0871938 + 0.0560360i
\(428\) 0 0
\(429\) −4.96040 10.8618i −0.239490 0.524411i
\(430\) 0 0
\(431\) −10.5655 3.10231i −0.508923 0.149433i 0.0171830 0.999852i \(-0.494530\pi\)
−0.526106 + 0.850419i \(0.676348\pi\)
\(432\) 0 0
\(433\) −4.77674 16.2681i −0.229555 0.781793i −0.991035 0.133604i \(-0.957345\pi\)
0.761480 0.648189i \(-0.224473\pi\)
\(434\) 0 0
\(435\) −3.67436 + 0.528293i −0.176172 + 0.0253297i
\(436\) 0 0
\(437\) 5.35625 + 0.289475i 0.256224 + 0.0138475i
\(438\) 0 0
\(439\) 25.6145 3.68281i 1.22251 0.175771i 0.499321 0.866417i \(-0.333583\pi\)
0.723193 + 0.690646i \(0.242674\pi\)
\(440\) 0 0
\(441\) 9.34758 2.74470i 0.445123 0.130700i
\(442\) 0 0
\(443\) −5.09227 1.49523i −0.241941 0.0710404i 0.158514 0.987357i \(-0.449330\pi\)
−0.400455 + 0.916316i \(0.631148\pi\)
\(444\) 0 0
\(445\) 4.80837 2.19591i 0.227939 0.104096i
\(446\) 0 0
\(447\) −26.2990 16.9013i −1.24390 0.799406i
\(448\) 0 0
\(449\) 2.91460 20.2715i 0.137549 0.956671i −0.797794 0.602930i \(-0.794000\pi\)
0.935343 0.353742i \(-0.115091\pi\)
\(450\) 0 0
\(451\) −18.8028 + 16.2928i −0.885392 + 0.767196i
\(452\) 0 0
\(453\) 2.65155 + 4.12590i 0.124581 + 0.193852i
\(454\) 0 0
\(455\) −0.483144 0.418646i −0.0226501 0.0196264i
\(456\) 0 0
\(457\) −1.68945 0.771547i −0.0790292 0.0360914i 0.375508 0.926819i \(-0.377468\pi\)
−0.454537 + 0.890728i \(0.650195\pi\)
\(458\) 0 0
\(459\) 12.8116i 0.597994i
\(460\) 0 0
\(461\) 4.59846i 0.214172i −0.994250 0.107086i \(-0.965848\pi\)
0.994250 0.107086i \(-0.0341520\pi\)
\(462\) 0 0
\(463\) 12.2671 + 5.60219i 0.570100 + 0.260356i 0.679541 0.733637i \(-0.262179\pi\)
−0.109441 + 0.993993i \(0.534906\pi\)
\(464\) 0 0
\(465\) 33.2517 + 28.8128i 1.54201 + 1.33616i
\(466\) 0 0
\(467\) −3.87387 6.02785i −0.179261 0.278936i 0.739981 0.672627i \(-0.234834\pi\)
−0.919243 + 0.393691i \(0.871198\pi\)
\(468\) 0 0
\(469\) −2.57600 + 2.23212i −0.118949 + 0.103070i
\(470\) 0 0
\(471\) −1.33716 + 9.30017i −0.0616132 + 0.428529i
\(472\) 0 0
\(473\) −32.6609 20.9899i −1.50175 0.965116i
\(474\) 0 0
\(475\) 2.04180 0.932457i 0.0936840 0.0427841i
\(476\) 0 0
\(477\) −7.13231 2.09424i −0.326566 0.0958885i
\(478\) 0 0
\(479\) 3.57227 1.04891i 0.163221 0.0479260i −0.199101 0.979979i \(-0.563802\pi\)
0.362322 + 0.932053i \(0.381984\pi\)
\(480\) 0 0
\(481\) 10.6238 1.52747i 0.484403 0.0696466i
\(482\) 0 0
\(483\) 2.28872 + 0.456306i 0.104140 + 0.0207626i
\(484\) 0 0
\(485\) −41.0591 + 5.90340i −1.86440 + 0.268060i
\(486\) 0 0
\(487\) 10.0603 + 34.2621i 0.455874 + 1.55256i 0.791863 + 0.610699i \(0.209111\pi\)
−0.335989 + 0.941866i \(0.609070\pi\)
\(488\) 0 0
\(489\) −32.0860 9.42129i −1.45098 0.426046i
\(490\) 0 0
\(491\) −8.30345 18.1820i −0.374729 0.820543i −0.999219 0.0395097i \(-0.987420\pi\)
0.624490 0.781033i \(-0.285307\pi\)
\(492\) 0 0
\(493\) 2.14910 + 1.38114i 0.0967905 + 0.0622035i
\(494\) 0 0
\(495\) 20.0824 + 2.88742i 0.902639 + 0.129780i
\(496\) 0 0
\(497\) 1.09306 0.947138i 0.0490302 0.0424849i
\(498\) 0 0
\(499\) 19.4119 12.4753i 0.868998 0.558471i −0.0284483 0.999595i \(-0.509057\pi\)
0.897446 + 0.441124i \(0.145420\pi\)
\(500\) 0 0
\(501\) −28.8526 25.0010i −1.28904 1.11696i
\(502\) 0 0
\(503\) 13.6583 29.9074i 0.608991 1.33351i −0.314270 0.949334i \(-0.601760\pi\)
0.923262 0.384172i \(-0.125513\pi\)
\(504\) 0 0
\(505\) 49.7879i 2.21553i
\(506\) 0 0
\(507\) 25.0015 1.11036
\(508\) 0 0
\(509\) 12.5151 + 5.71544i 0.554720 + 0.253332i 0.672993 0.739649i \(-0.265008\pi\)
−0.118273 + 0.992981i \(0.537736\pi\)
\(510\) 0 0
\(511\) 1.19937 1.38414i 0.0530568 0.0612308i
\(512\) 0 0
\(513\) 2.02687 + 3.15387i 0.0894884 + 0.139247i
\(514\) 0 0
\(515\) −21.0354 24.2761i −0.926929 1.06973i
\(516\) 0 0
\(517\) 2.74182 19.0698i 0.120585 0.838689i
\(518\) 0 0
\(519\) 13.3417 20.7601i 0.585636 0.911267i
\(520\) 0 0
\(521\) −24.9989 + 11.4166i −1.09522 + 0.500171i −0.879314 0.476243i \(-0.841998\pi\)
−0.215908 + 0.976414i \(0.569271\pi\)
\(522\) 0 0
\(523\) −3.07855 + 10.4846i −0.134616 + 0.458459i −0.999016 0.0443449i \(-0.985880\pi\)
0.864401 + 0.502804i \(0.167698\pi\)
\(524\) 0 0
\(525\) 0.937024 0.275135i 0.0408951 0.0120079i
\(526\) 0 0
\(527\) −4.30914 29.9707i −0.187709 1.30555i
\(528\) 0 0
\(529\) −17.8960 14.4476i −0.778087 0.628157i
\(530\) 0 0
\(531\) 1.54700 + 10.7596i 0.0671342 + 0.466928i
\(532\) 0 0
\(533\) 1.33564 + 4.54876i 0.0578529 + 0.197029i
\(534\) 0 0
\(535\) −0.981243 + 3.34181i −0.0424228 + 0.144479i
\(536\) 0 0
\(537\) 12.6342 + 27.6649i 0.545204 + 1.19383i
\(538\) 0 0
\(539\) −20.5232 + 31.9348i −0.883998 + 1.37553i
\(540\) 0 0
\(541\) 22.9179 + 3.29509i 0.985316 + 0.141667i 0.616093 0.787674i \(-0.288715\pi\)
0.369223 + 0.929341i \(0.379624\pi\)
\(542\) 0 0
\(543\) −7.47668 8.62855i −0.320855 0.370287i
\(544\) 0 0
\(545\) −28.3068 + 18.1917i −1.21253 + 0.779245i
\(546\) 0 0
\(547\) 5.88980 6.79719i 0.251830 0.290627i −0.615733 0.787955i \(-0.711140\pi\)
0.867563 + 0.497328i \(0.165685\pi\)
\(548\) 0 0
\(549\) −5.38049 + 11.7816i −0.229634 + 0.502828i
\(550\) 0 0
\(551\) −0.747554 −0.0318469
\(552\) 0 0
\(553\) −0.757382 −0.0322071
\(554\) 0 0
\(555\) −23.7806 + 52.0722i −1.00943 + 2.21034i
\(556\) 0 0
\(557\) 21.3758 24.6690i 0.905722 1.04526i −0.0930477 0.995662i \(-0.529661\pi\)
0.998769 0.0495969i \(-0.0157936\pi\)
\(558\) 0 0
\(559\) −6.22349 + 3.99959i −0.263226 + 0.169165i
\(560\) 0 0
\(561\) −28.7016 33.1234i −1.21178 1.39847i
\(562\) 0 0
\(563\) 33.0414 + 4.75063i 1.39253 + 0.200215i 0.797417 0.603428i \(-0.206199\pi\)
0.595111 + 0.803644i \(0.297108\pi\)
\(564\) 0 0
\(565\) 1.29993 2.02273i 0.0546886 0.0850971i
\(566\) 0 0
\(567\) 1.08295 + 2.37134i 0.0454798 + 0.0995868i
\(568\) 0 0
\(569\) −7.11158 + 24.2198i −0.298133 + 1.01535i 0.665117 + 0.746739i \(0.268382\pi\)
−0.963250 + 0.268608i \(0.913436\pi\)
\(570\) 0 0
\(571\) 7.66226 + 26.0953i 0.320656 + 1.09205i 0.949303 + 0.314362i \(0.101791\pi\)
−0.628647 + 0.777690i \(0.716391\pi\)
\(572\) 0 0
\(573\) −1.10000 7.65065i −0.0459531 0.319611i
\(574\) 0 0
\(575\) −9.43878 1.88183i −0.393624 0.0784776i
\(576\) 0 0
\(577\) 0.684268 + 4.75919i 0.0284864 + 0.198127i 0.999095 0.0425366i \(-0.0135439\pi\)
−0.970608 + 0.240664i \(0.922635\pi\)
\(578\) 0 0
\(579\) −27.5911 + 8.10148i −1.14665 + 0.336686i
\(580\) 0 0
\(581\) 0.426235 1.45162i 0.0176832 0.0602235i
\(582\) 0 0
\(583\) 26.3472 12.0323i 1.09119 0.498329i
\(584\) 0 0
\(585\) 2.09014 3.25231i 0.0864165 0.134467i
\(586\) 0 0
\(587\) −0.477970 + 3.32436i −0.0197279 + 0.137211i −0.997305 0.0733671i \(-0.976626\pi\)
0.977577 + 0.210578i \(0.0675346\pi\)
\(588\) 0 0
\(589\) 5.80234 + 6.69625i 0.239081 + 0.275914i
\(590\) 0 0
\(591\) 23.1995 + 36.0992i 0.954301 + 1.48492i
\(592\) 0 0
\(593\) −8.82091 + 10.1799i −0.362231 + 0.418037i −0.907386 0.420298i \(-0.861925\pi\)
0.545155 + 0.838335i \(0.316471\pi\)
\(594\) 0 0
\(595\) −2.13445 0.974772i −0.0875040 0.0399617i
\(596\) 0 0
\(597\) −19.8305 −0.811607
\(598\) 0 0
\(599\) 0.00414983i 0.000169558i −1.00000 8.47788e-5i \(-0.999973\pi\)
1.00000 8.47788e-5i \(-2.69859e-5\pi\)
\(600\) 0 0
\(601\) −18.8359 + 41.2449i −0.768333 + 1.68241i −0.0380440 + 0.999276i \(0.512113\pi\)
−0.730289 + 0.683138i \(0.760615\pi\)
\(602\) 0 0
\(603\) −15.5781 13.4985i −0.634388 0.549701i
\(604\) 0 0
\(605\) −42.0116 + 26.9992i −1.70802 + 1.09767i
\(606\) 0 0
\(607\) −2.93700 + 2.54492i −0.119209 + 0.103295i −0.712425 0.701748i \(-0.752403\pi\)
0.593216 + 0.805043i \(0.297858\pi\)
\(608\) 0 0
\(609\) −0.321930 0.0462866i −0.0130453 0.00187563i
\(610\) 0 0
\(611\) −3.08832 1.98474i −0.124940 0.0802940i
\(612\) 0 0
\(613\) 13.6865 + 29.9692i 0.552791 + 1.21044i 0.955466 + 0.295101i \(0.0953534\pi\)
−0.402675 + 0.915343i \(0.631919\pi\)
\(614\) 0 0
\(615\) −24.2611 7.12371i −0.978303 0.287256i
\(616\) 0 0
\(617\) 10.9689 + 37.3567i 0.441592 + 1.50392i 0.816766 + 0.576969i \(0.195765\pi\)
−0.375175 + 0.926954i \(0.622417\pi\)
\(618\) 0 0
\(619\) 13.8546 1.99199i 0.556863 0.0800648i 0.141863 0.989886i \(-0.454691\pi\)
0.415000 + 0.909822i \(0.363782\pi\)
\(620\) 0 0
\(621\) 0.867495 16.0515i 0.0348114 0.644126i
\(622\) 0 0
\(623\) 0.458426 0.0659118i 0.0183665 0.00264070i
\(624\) 0 0
\(625\) 29.7508 8.73563i 1.19003 0.349425i
\(626\) 0 0
\(627\) 12.3059 + 3.61333i 0.491449 + 0.144302i
\(628\) 0 0
\(629\) 35.8353 16.3654i 1.42885 0.652532i
\(630\) 0 0
\(631\) 9.28355 + 5.96617i 0.369572 + 0.237510i 0.712223 0.701953i \(-0.247688\pi\)
−0.342651 + 0.939463i \(0.611325\pi\)
\(632\) 0 0
\(633\) −5.13189 + 35.6931i −0.203974 + 1.41867i
\(634\) 0 0
\(635\) 27.4318 23.7698i 1.08860 0.943275i
\(636\) 0 0
\(637\) 3.91067 + 6.08513i 0.154947 + 0.241102i
\(638\) 0 0
\(639\) 6.61012 + 5.72770i 0.261492 + 0.226584i
\(640\) 0 0
\(641\) 21.7105 + 9.91484i 0.857512 + 0.391612i 0.795129 0.606440i \(-0.207403\pi\)
0.0623823 + 0.998052i \(0.480130\pi\)
\(642\) 0 0
\(643\) 28.5391i 1.12547i 0.826636 + 0.562737i \(0.190252\pi\)
−0.826636 + 0.562737i \(0.809748\pi\)
\(644\) 0 0
\(645\) 39.4571i 1.55362i
\(646\) 0 0
\(647\) −39.7855 18.1694i −1.56413 0.714315i −0.569914 0.821704i \(-0.693023\pi\)
−0.994217 + 0.107390i \(0.965751\pi\)
\(648\) 0 0
\(649\) −32.0109 27.7376i −1.25654 1.08880i
\(650\) 0 0
\(651\) 2.08413 + 3.24297i 0.0816835 + 0.127102i
\(652\) 0 0
\(653\) −25.7258 + 22.2916i −1.00673 + 0.872337i −0.991832 0.127552i \(-0.959288\pi\)
−0.0148983 + 0.999889i \(0.504742\pi\)
\(654\) 0 0
\(655\) 5.20044 36.1698i 0.203198 1.41327i
\(656\) 0 0
\(657\) 9.31745 + 5.98796i 0.363508 + 0.233613i
\(658\) 0 0
\(659\) −29.4596 + 13.4538i −1.14758 + 0.524084i −0.896133 0.443786i \(-0.853635\pi\)
−0.251451 + 0.967870i \(0.580908\pi\)
\(660\) 0 0
\(661\) −0.756713 0.222191i −0.0294327 0.00864223i 0.266983 0.963701i \(-0.413973\pi\)
−0.296416 + 0.955059i \(0.595791\pi\)
\(662\) 0 0
\(663\) −8.01317 + 2.35288i −0.311206 + 0.0913783i
\(664\) 0 0
\(665\) 0.679658 0.0977201i 0.0263560 0.00378942i
\(666\) 0 0
\(667\) 2.59907 + 1.87594i 0.100636 + 0.0726367i
\(668\) 0 0
\(669\) −16.4051 + 2.35869i −0.634257 + 0.0911923i
\(670\) 0 0
\(671\) −14.2186 48.4241i −0.548903 1.86939i
\(672\) 0 0
\(673\) −25.9405 7.61680i −0.999931 0.293606i −0.259503 0.965742i \(-0.583559\pi\)
−0.740428 + 0.672136i \(0.765377\pi\)
\(674\) 0 0
\(675\) −2.79437 6.11882i −0.107555 0.235514i
\(676\) 0 0
\(677\) 3.03667 + 1.95155i 0.116709 + 0.0750041i 0.597693 0.801725i \(-0.296084\pi\)
−0.480984 + 0.876729i \(0.659721\pi\)
\(678\) 0 0
\(679\) −3.59740 0.517229i −0.138056 0.0198494i
\(680\) 0 0
\(681\) 5.61079 4.86178i 0.215006 0.186304i
\(682\) 0 0
\(683\) 24.1407 15.5143i 0.923720 0.593639i 0.00998539 0.999950i \(-0.496821\pi\)
0.913735 + 0.406311i \(0.133185\pi\)
\(684\) 0 0
\(685\) −9.83052 8.51819i −0.375605 0.325463i
\(686\) 0 0
\(687\) −21.3220 + 46.6886i −0.813483 + 1.78128i
\(688\) 0 0
\(689\) 5.51917i 0.210264i
\(690\) 0 0
\(691\) −21.0241 −0.799793 −0.399897 0.916560i \(-0.630954\pi\)
−0.399897 + 0.916560i \(0.630954\pi\)
\(692\) 0 0
\(693\) 1.61698 + 0.738452i 0.0614241 + 0.0280515i
\(694\) 0 0
\(695\) −12.0223 + 13.8745i −0.456033 + 0.526290i
\(696\) 0 0
\(697\) 9.40769 + 14.6386i 0.356342 + 0.554478i
\(698\) 0 0
\(699\) −19.3472 22.3278i −0.731777 0.844515i
\(700\) 0 0
\(701\) 2.56176 17.8174i 0.0967562 0.672954i −0.882498 0.470317i \(-0.844140\pi\)
0.979254 0.202637i \(-0.0649512\pi\)
\(702\) 0 0
\(703\) −6.23256 + 9.69806i −0.235066 + 0.365769i
\(704\) 0 0
\(705\) 17.8106 8.13382i 0.670786 0.306338i
\(706\) 0 0
\(707\) 1.22897 4.18549i 0.0462202 0.157412i
\(708\) 0 0
\(709\) −9.10838 + 2.67446i −0.342072 + 0.100441i −0.448256 0.893905i \(-0.647955\pi\)
0.106184 + 0.994346i \(0.466137\pi\)
\(710\) 0 0
\(711\) −0.651827 4.53356i −0.0244454 0.170022i
\(712\) 0 0
\(713\) −3.36952 37.8419i −0.126189 1.41719i
\(714\) 0 0
\(715\) 2.14386 + 14.9108i 0.0801756 + 0.557634i
\(716\) 0 0
\(717\) 16.0088 + 54.5209i 0.597859 + 2.03612i
\(718\) 0 0
\(719\) 3.55001 12.0902i 0.132393 0.450889i −0.866435 0.499290i \(-0.833594\pi\)
0.998828 + 0.0484006i \(0.0154124\pi\)
\(720\) 0 0
\(721\) −1.16913 2.56004i −0.0435408 0.0953410i
\(722\) 0 0
\(723\) −3.63745 + 5.65998i −0.135278 + 0.210497i
\(724\) 0 0
\(725\) 1.32765 + 0.190888i 0.0493079 + 0.00708940i
\(726\) 0 0
\(727\) 32.9604 + 38.0384i 1.22243 + 1.41076i 0.882498 + 0.470317i \(0.155860\pi\)
0.339937 + 0.940448i \(0.389594\pi\)
\(728\) 0 0
\(729\) 4.48706 2.88366i 0.166188 0.106802i
\(730\) 0 0
\(731\) −17.7819 + 20.5214i −0.657688 + 0.759012i
\(732\) 0 0
\(733\) −2.21203 + 4.84367i −0.0817033 + 0.178905i −0.946075 0.323949i \(-0.894989\pi\)
0.864371 + 0.502854i \(0.167717\pi\)
\(734\) 0 0
\(735\) −38.5798 −1.42304
\(736\) 0 0
\(737\) 80.3185 2.95857
\(738\) 0 0
\(739\) 8.12862 17.7992i 0.299016 0.654754i −0.699170 0.714955i \(-0.746447\pi\)
0.998186 + 0.0602012i \(0.0191742\pi\)
\(740\) 0 0
\(741\) 1.60039 1.84694i 0.0587917 0.0678492i
\(742\) 0 0
\(743\) 5.75417 3.69798i 0.211100 0.135666i −0.430819 0.902439i \(-0.641775\pi\)
0.641919 + 0.766773i \(0.278139\pi\)
\(744\) 0 0
\(745\) 25.8269 + 29.8058i 0.946224 + 1.09200i
\(746\) 0 0
\(747\) 9.05599 + 1.30206i 0.331341 + 0.0476397i
\(748\) 0 0
\(749\) −0.164979 + 0.256712i −0.00602820 + 0.00938006i
\(750\) 0 0
\(751\) 22.5353 + 49.3454i 0.822325 + 1.80064i 0.540984 + 0.841033i \(0.318052\pi\)
0.281341 + 0.959608i \(0.409221\pi\)
\(752\) 0 0
\(753\) −7.82086 + 26.6354i −0.285008 + 0.970648i
\(754\) 0 0
\(755\) −1.74317 5.93669i −0.0634404 0.216058i
\(756\) 0 0
\(757\) −1.90048 13.2181i −0.0690741 0.480421i −0.994769 0.102150i \(-0.967428\pi\)
0.925695 0.378271i \(-0.123481\pi\)
\(758\) 0 0
\(759\) −33.7171 43.4434i −1.22385 1.57690i
\(760\) 0 0
\(761\) −2.42660 16.8774i −0.0879643 0.611805i −0.985348 0.170554i \(-0.945444\pi\)
0.897384 0.441251i \(-0.145465\pi\)
\(762\) 0 0
\(763\) −2.82869 + 0.830579i −0.102406 + 0.0300690i
\(764\) 0 0
\(765\) 3.99784 13.6154i 0.144542 0.492265i
\(766\) 0 0
\(767\) −7.34162 + 3.35281i −0.265091 + 0.121063i
\(768\) 0 0
\(769\) −21.8575 + 34.0110i −0.788203 + 1.22647i 0.181791 + 0.983337i \(0.441811\pi\)
−0.969994 + 0.243130i \(0.921826\pi\)
\(770\) 0 0
\(771\) −6.02691 + 41.9181i −0.217054 + 1.50964i
\(772\) 0 0
\(773\) −14.2175 16.4079i −0.511368 0.590150i 0.440081 0.897958i \(-0.354950\pi\)
−0.951448 + 0.307809i \(0.900404\pi\)
\(774\) 0 0
\(775\) −8.59505 13.3742i −0.308743 0.480414i
\(776\) 0 0
\(777\) −3.28450 + 3.79051i −0.117831 + 0.135984i
\(778\) 0 0
\(779\) −4.63183 2.11529i −0.165953 0.0757880i
\(780\) 0 0
\(781\) −34.0809 −1.21951
\(782\) 0 0
\(783\) 2.24026i 0.0800603i
\(784\) 0 0
\(785\) 4.92411 10.7823i 0.175749 0.384836i
\(786\) 0 0
\(787\) 14.8925 + 12.9045i 0.530861 + 0.459994i 0.878573 0.477607i \(-0.158496\pi\)
−0.347712 + 0.937601i \(0.613041\pi\)
\(788\) 0 0
\(789\) 11.2048 7.20090i 0.398902 0.256359i
\(790\) 0 0
\(791\) 0.159210 0.137956i 0.00566086 0.00490516i
\(792\) 0 0
\(793\) −9.51880 1.36860i −0.338023 0.0486003i
\(794\) 0 0
\(795\) 24.7639 + 15.9148i 0.878284 + 0.564439i
\(796\) 0 0
\(797\) 19.5341 + 42.7737i 0.691932 + 1.51512i 0.849486 + 0.527610i \(0.176912\pi\)
−0.157554 + 0.987510i \(0.550361\pi\)
\(798\) 0 0
\(799\) −12.9288 3.79625i −0.457389 0.134302i
\(800\) 0 0
\(801\) 0.789073 + 2.68734i 0.0278805 + 0.0949523i
\(802\) 0 0
\(803\) −42.7176 + 6.14186i −1.50747 + 0.216742i
\(804\) 0 0
\(805\) −2.60823 1.36581i −0.0919281 0.0481385i
\(806\) 0 0
\(807\) −59.2702 + 8.52177i −2.08641 + 0.299981i
\(808\) 0 0
\(809\) −28.0523 + 8.23691i −0.986268 + 0.289594i −0.734809 0.678274i \(-0.762728\pi\)
−0.251458 + 0.967868i \(0.580910\pi\)
\(810\) 0 0
\(811\) −36.6315 10.7560i −1.28631 0.377694i −0.434084 0.900872i \(-0.642928\pi\)
−0.852223 + 0.523179i \(0.824746\pi\)
\(812\) 0 0
\(813\) 6.41664 2.93038i 0.225041 0.102773i
\(814\) 0 0
\(815\) 35.4904 + 22.8083i 1.24318 + 0.798940i
\(816\) 0 0
\(817\) 1.13082 7.86502i 0.0395623 0.275162i
\(818\) 0 0
\(819\) 0.255990 0.221817i 0.00894503 0.00775091i
\(820\) 0 0
\(821\) 9.06040 + 14.0983i 0.316210 + 0.492033i 0.962582 0.270990i \(-0.0873510\pi\)
−0.646372 + 0.763022i \(0.723715\pi\)
\(822\) 0 0
\(823\) −7.75200 6.71715i −0.270218 0.234145i 0.509202 0.860647i \(-0.329941\pi\)
−0.779420 + 0.626502i \(0.784486\pi\)
\(824\) 0 0
\(825\) −20.9325 9.55956i −0.728777 0.332821i
\(826\) 0 0
\(827\) 8.50642i 0.295797i −0.989003 0.147899i \(-0.952749\pi\)
0.989003 0.147899i \(-0.0472509\pi\)
\(828\) 0 0
\(829\) 37.9306i 1.31738i −0.752413 0.658692i \(-0.771110\pi\)
0.752413 0.658692i \(-0.228890\pi\)
\(830\) 0 0
\(831\) 49.8974 + 22.7874i 1.73092 + 0.790486i
\(832\) 0 0
\(833\) 20.0652 + 17.3866i 0.695217 + 0.602409i
\(834\) 0 0
\(835\) 26.0392 + 40.5178i 0.901123 + 1.40218i
\(836\) 0 0
\(837\) 20.0672 17.3884i 0.693625 0.601029i
\(838\) 0 0
\(839\) 2.51864 17.5176i 0.0869532 0.604773i −0.899025 0.437898i \(-0.855723\pi\)
0.985978 0.166875i \(-0.0533677\pi\)
\(840\) 0 0
\(841\) 24.0206 + 15.4371i 0.828295 + 0.532313i
\(842\) 0 0
\(843\) −37.4738 + 17.1137i −1.29067 + 0.589427i
\(844\) 0 0
\(845\) −30.2635 8.88617i −1.04110 0.305693i
\(846\) 0 0
\(847\) −4.19822 + 1.23271i −0.144252 + 0.0423563i
\(848\) 0 0
\(849\) −22.3936 + 3.21972i −0.768548 + 0.110501i
\(850\) 0 0
\(851\) 46.0058 18.0776i 1.57706 0.619693i
\(852\) 0 0
\(853\) −26.9922 + 3.88090i −0.924196 + 0.132879i −0.587952 0.808896i \(-0.700066\pi\)
−0.336244 + 0.941775i \(0.609157\pi\)
\(854\) 0 0
\(855\) 1.16987 + 3.98422i 0.0400088 + 0.136257i
\(856\) 0 0
\(857\) 37.4158 + 10.9863i 1.27810 + 0.375284i 0.849201 0.528069i \(-0.177084\pi\)
0.428898 + 0.903353i \(0.358902\pi\)
\(858\) 0 0
\(859\) −2.14536 4.69768i −0.0731987 0.160283i 0.869495 0.493941i \(-0.164444\pi\)
−0.942694 + 0.333658i \(0.891717\pi\)
\(860\) 0 0
\(861\) −1.86370 1.19773i −0.0635148 0.0408185i
\(862\) 0 0
\(863\) 12.3957 + 1.78224i 0.421955 + 0.0606680i 0.350022 0.936741i \(-0.386174\pi\)
0.0719333 + 0.997409i \(0.477083\pi\)
\(864\) 0 0
\(865\) −23.5283 + 20.3874i −0.799987 + 0.693193i
\(866\) 0 0
\(867\) 4.21961 2.71178i 0.143305 0.0920968i
\(868\) 0 0
\(869\) 13.4878 + 11.6872i 0.457541 + 0.396461i
\(870\) 0 0
\(871\) 6.35776 13.9215i 0.215424 0.471713i
\(872\) 0 0
\(873\) 21.9786i 0.743862i
\(874\) 0 0
\(875\) 1.83752 0.0621194
\(876\) 0 0
\(877\) 23.4424 + 10.7058i 0.791595 + 0.361509i 0.769826 0.638254i \(-0.220343\pi\)
0.0217690 + 0.999763i \(0.493070\pi\)
\(878\) 0 0
\(879\) 14.9557 17.2597i 0.504442 0.582157i
\(880\) 0 0
\(881\) −9.02958 14.0503i −0.304214 0.473367i 0.655165 0.755486i \(-0.272599\pi\)
−0.959379 + 0.282119i \(0.908963\pi\)
\(882\) 0 0
\(883\) −37.8512 43.6826i −1.27379 1.47004i −0.812695 0.582689i \(-0.802001\pi\)
−0.461099 0.887349i \(-0.652545\pi\)
\(884\) 0 0
\(885\) 6.12624 42.6089i 0.205931 1.43228i
\(886\) 0 0
\(887\) −15.7811 + 24.5558i −0.529876 + 0.824503i −0.998257 0.0590237i \(-0.981201\pi\)
0.468381 + 0.883527i \(0.344838\pi\)
\(888\) 0 0
\(889\) 2.89283 1.32111i 0.0970223 0.0443086i
\(890\) 0 0
\(891\) 17.3066 58.9408i 0.579793 1.97459i
\(892\) 0 0
\(893\) 3.78331 1.11088i 0.126604 0.0371742i
\(894\) 0 0
\(895\) −5.46041 37.9780i −0.182521 1.26946i
\(896\) 0 0
\(897\) −10.1990 + 2.40532i −0.340533 + 0.0803112i
\(898\) 0 0
\(899\) 0.753504 + 5.24074i 0.0251308 + 0.174788i
\(900\) 0 0
\(901\) −5.70734 19.4374i −0.190139 0.647554i
\(902\) 0 0
\(903\) 0.973962 3.31701i 0.0324114 0.110383i
\(904\) 0 0
\(905\) 5.98347 + 13.1020i 0.198897 + 0.435524i
\(906\) 0 0
\(907\) −13.1980 + 20.5364i −0.438231 + 0.681901i −0.988180 0.153297i \(-0.951011\pi\)
0.549949 + 0.835198i \(0.314647\pi\)
\(908\) 0 0
\(909\) 26.1113 + 3.75424i 0.866058 + 0.124520i
\(910\) 0 0
\(911\) 9.95697 + 11.4910i 0.329889 + 0.380712i 0.896328 0.443391i \(-0.146225\pi\)
−0.566439 + 0.824104i \(0.691679\pi\)
\(912\) 0 0
\(913\) −29.9907 + 19.2738i −0.992546 + 0.637870i
\(914\) 0 0
\(915\) 33.5886 38.7633i 1.11041 1.28148i
\(916\) 0 0
\(917\) 1.33000 2.91230i 0.0439205 0.0961725i
\(918\) 0 0
\(919\) 4.82897 0.159293 0.0796464 0.996823i \(-0.474621\pi\)
0.0796464 + 0.996823i \(0.474621\pi\)
\(920\) 0 0
\(921\) 12.8418 0.423150
\(922\) 0 0
\(923\) −2.69774 + 5.90722i −0.0887970 + 0.194438i
\(924\) 0 0
\(925\) 13.5454 15.6323i 0.445371 0.513985i
\(926\) 0 0
\(927\) 14.3178 9.20148i 0.470258 0.302216i
\(928\) 0 0
\(929\) −19.1496 22.0998i −0.628277 0.725070i 0.348980 0.937130i \(-0.386528\pi\)
−0.977257 + 0.212060i \(0.931983\pi\)
\(930\) 0 0
\(931\) −7.69016 1.10568i −0.252035 0.0362371i
\(932\) 0 0
\(933\) 18.7208 29.1301i 0.612892 0.953678i
\(934\) 0 0
\(935\) 22.9694 + 50.2960i 0.751180 + 1.64486i
\(936\) 0 0
\(937\) −1.35165 + 4.60330i −0.0441565 + 0.150383i −0.978620 0.205675i \(-0.934061\pi\)
0.934464 + 0.356058i \(0.115879\pi\)
\(938\) 0 0
\(939\) −13.7767 46.9192i −0.449586 1.53115i
\(940\) 0 0
\(941\) −0.189521 1.31815i −0.00617821 0.0429704i 0.986499 0.163766i \(-0.0523644\pi\)
−0.992677 + 0.120796i \(0.961455\pi\)
\(942\) 0 0
\(943\) 10.7956 + 18.9776i 0.351553 + 0.617997i
\(944\) 0 0
\(945\) −0.292846 2.03679i −0.00952629 0.0662568i
\(946\) 0 0
\(947\) 5.77719 1.69634i 0.187733 0.0551235i −0.186514 0.982452i \(-0.559719\pi\)
0.374248 + 0.927329i \(0.377901\pi\)
\(948\) 0 0
\(949\) −2.31682 + 7.89037i −0.0752072 + 0.256132i
\(950\) 0 0
\(951\) 5.02772 2.29608i 0.163035 0.0744555i
\(952\) 0 0
\(953\) −14.6914 + 22.8603i −0.475901 + 0.740517i −0.993342 0.115202i \(-0.963248\pi\)
0.517441 + 0.855719i \(0.326885\pi\)
\(954\) 0 0
\(955\) −1.38772 + 9.65182i −0.0449057 + 0.312326i
\(956\) 0 0
\(957\) 5.01881 + 5.79201i 0.162235 + 0.187229i
\(958\) 0 0
\(959\) −0.616152 0.958750i −0.0198966 0.0309597i
\(960\) 0 0
\(961\) 20.7950 23.9987i 0.670806 0.774151i
\(962\) 0 0
\(963\) −1.67862 0.766601i −0.0540928 0.0247034i
\(964\) 0 0
\(965\) 36.2776 1.16782
\(966\) 0 0
\(967\) 5.45269i 0.175347i −0.996149 0.0876734i \(-0.972057\pi\)
0.996149 0.0876734i \(-0.0279432\pi\)
\(968\) 0 0
\(969\) 3.72632 8.15951i 0.119707 0.262121i
\(970\) 0 0
\(971\) 13.4254 + 11.6331i 0.430840 + 0.373325i 0.843114 0.537735i \(-0.180720\pi\)
−0.412274 + 0.911060i \(0.635265\pi\)
\(972\) 0 0
\(973\) −1.35315 + 0.869619i −0.0433801 + 0.0278787i
\(974\) 0 0
\(975\) −3.31390 + 2.87151i −0.106130 + 0.0919620i
\(976\) 0 0
\(977\) 5.45952 + 0.784960i 0.174665 + 0.0251131i 0.229093 0.973405i \(-0.426424\pi\)
−0.0544271 + 0.998518i \(0.517333\pi\)
\(978\) 0 0
\(979\) −9.18093 5.90023i −0.293424 0.188572i
\(980\) 0 0
\(981\) −7.40617 16.2172i −0.236461 0.517777i
\(982\) 0 0
\(983\) −32.7632 9.62014i −1.04498 0.306835i −0.286195 0.958171i \(-0.592390\pi\)
−0.758789 + 0.651337i \(0.774209\pi\)
\(984\) 0 0
\(985\) −15.2517 51.9425i −0.485960 1.65503i
\(986\) 0 0
\(987\) 1.69805 0.244142i 0.0540494 0.00777114i
\(988\) 0 0
\(989\) −23.6683 + 24.5071i −0.752610 + 0.779279i
\(990\) 0 0
\(991\) 11.1650 1.60529i 0.354669 0.0509937i 0.0373222 0.999303i \(-0.488117\pi\)
0.317347 + 0.948310i \(0.397208\pi\)
\(992\) 0 0
\(993\) −0.651206 + 0.191211i −0.0206654 + 0.00606791i
\(994\) 0 0
\(995\) 24.0041 + 7.04824i 0.760981 + 0.223444i
\(996\) 0 0
\(997\) −48.2883 + 22.0525i −1.52930 + 0.698410i −0.989653 0.143479i \(-0.954171\pi\)
−0.539651 + 0.841889i \(0.681444\pi\)
\(998\) 0 0
\(999\) 29.0630 + 18.6777i 0.919513 + 0.590935i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 736.2.r.a.687.17 220
4.3 odd 2 184.2.j.a.43.4 220
8.3 odd 2 inner 736.2.r.a.687.18 220
8.5 even 2 184.2.j.a.43.20 yes 220
23.15 odd 22 inner 736.2.r.a.15.18 220
92.15 even 22 184.2.j.a.107.20 yes 220
184.61 odd 22 184.2.j.a.107.4 yes 220
184.107 even 22 inner 736.2.r.a.15.17 220
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
184.2.j.a.43.4 220 4.3 odd 2
184.2.j.a.43.20 yes 220 8.5 even 2
184.2.j.a.107.4 yes 220 184.61 odd 22
184.2.j.a.107.20 yes 220 92.15 even 22
736.2.r.a.15.17 220 184.107 even 22 inner
736.2.r.a.15.18 220 23.15 odd 22 inner
736.2.r.a.687.17 220 1.1 even 1 trivial
736.2.r.a.687.18 220 8.3 odd 2 inner