Properties

Label 735.6.a.e
Level $735$
Weight $6$
Character orbit 735.a
Self dual yes
Analytic conductor $117.882$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,6,Mod(1,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 735.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-4,18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(117.882107563\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 4\sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 2) q^{2} + 9 q^{3} + ( - 4 \beta + 4) q^{4} - 25 q^{5} + (9 \beta - 18) q^{6} + ( - 20 \beta - 72) q^{8} + 81 q^{9} + ( - 25 \beta + 50) q^{10} + (100 \beta - 88) q^{11} + ( - 36 \beta + 36) q^{12}+ \cdots + (8100 \beta - 7128) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 18 q^{3} + 8 q^{4} - 50 q^{5} - 36 q^{6} - 144 q^{8} + 162 q^{9} + 100 q^{10} - 176 q^{11} + 72 q^{12} - 692 q^{13} - 450 q^{15} - 1248 q^{16} + 428 q^{17} - 324 q^{18} + 1824 q^{19} - 200 q^{20}+ \cdots - 14256 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−7.65685 9.00000 26.6274 −25.0000 −68.9117 0 41.1371 81.0000 191.421
1.2 3.65685 9.00000 −18.6274 −25.0000 32.9117 0 −185.137 81.0000 −91.4214
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 735.6.a.e 2
7.b odd 2 1 105.6.a.c 2
21.c even 2 1 315.6.a.f 2
35.c odd 2 1 525.6.a.h 2
35.f even 4 2 525.6.d.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.6.a.c 2 7.b odd 2 1
315.6.a.f 2 21.c even 2 1
525.6.a.h 2 35.c odd 2 1
525.6.d.h 4 35.f even 4 2
735.6.a.e 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(735))\):

\( T_{2}^{2} + 4T_{2} - 28 \) Copy content Toggle raw display
\( T_{13}^{2} + 692T_{13} + 114308 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4T - 28 \) Copy content Toggle raw display
$3$ \( (T - 9)^{2} \) Copy content Toggle raw display
$5$ \( (T + 25)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 176T - 312256 \) Copy content Toggle raw display
$13$ \( T^{2} + 692T + 114308 \) Copy content Toggle raw display
$17$ \( T^{2} - 428 T - 1603132 \) Copy content Toggle raw display
$19$ \( T^{2} - 1824 T + 724096 \) Copy content Toggle raw display
$23$ \( T^{2} - 8032 T + 15079904 \) Copy content Toggle raw display
$29$ \( T^{2} + 2948 T - 8333852 \) Copy content Toggle raw display
$31$ \( T^{2} + 14760 T + 51973488 \) Copy content Toggle raw display
$37$ \( T^{2} - 156 T - 176563548 \) Copy content Toggle raw display
$41$ \( T^{2} - 5980 T - 85728700 \) Copy content Toggle raw display
$43$ \( T^{2} - 25672 T + 124406768 \) Copy content Toggle raw display
$47$ \( T^{2} + 21904 T + 112481056 \) Copy content Toggle raw display
$53$ \( T^{2} + 53948 T + 726392324 \) Copy content Toggle raw display
$59$ \( T^{2} + 26296 T - 882188144 \) Copy content Toggle raw display
$61$ \( T^{2} - 16788 T - 251308476 \) Copy content Toggle raw display
$67$ \( T^{2} - 16264 T - 4247824 \) Copy content Toggle raw display
$71$ \( T^{2} - 22264 T + 123338224 \) Copy content Toggle raw display
$73$ \( T^{2} + 28684 T - 157081084 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 2543446976 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 1894968176 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 8699912828 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 14224705732 \) Copy content Toggle raw display
show more
show less