Properties

Label 735.2.y.g.263.3
Level $735$
Weight $2$
Character 735.263
Analytic conductor $5.869$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(128,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.128"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.y (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 263.3
Character \(\chi\) \(=\) 735.263
Dual form 735.2.y.g.422.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.455388 + 1.69953i) q^{2} +(1.24391 - 1.20528i) q^{3} +(-0.948973 - 0.547890i) q^{4} +(-0.445053 + 2.19133i) q^{5} +(1.48194 + 2.66293i) q^{6} +(-1.12498 + 1.12498i) q^{8} +(0.0946229 - 2.99851i) q^{9} +(-3.52156 - 1.75429i) q^{10} +(1.34425 + 0.776103i) q^{11} +(-1.84080 + 0.462248i) q^{12} +(4.50889 + 4.50889i) q^{13} +(2.08755 + 3.26223i) q^{15} +(-2.49541 - 4.32218i) q^{16} +(-2.91469 + 0.780989i) q^{17} +(5.05296 + 1.52630i) q^{18} +(-3.64590 + 2.10496i) q^{19} +(1.62295 - 1.83567i) q^{20} +(-1.93117 + 1.93117i) q^{22} +(5.13695 + 1.37644i) q^{23} +(-0.0434629 + 2.75528i) q^{24} +(-4.60386 - 1.95052i) q^{25} +(-9.71628 + 5.60970i) q^{26} +(-3.49632 - 3.84392i) q^{27} +2.97115 q^{29} +(-6.49490 + 2.06228i) q^{30} +(-2.89885 + 5.02095i) q^{31} +(5.40856 - 1.44922i) q^{32} +(2.60754 - 0.654789i) q^{33} -5.30926i q^{34} +(-1.73265 + 2.79366i) q^{36} +(1.68190 + 0.450663i) q^{37} +(-1.91715 - 7.15489i) q^{38} +(11.0431 + 0.174198i) q^{39} +(-1.96452 - 2.96587i) q^{40} +2.68458i q^{41} +(-2.09578 - 2.09578i) q^{43} +(-0.850438 - 1.47300i) q^{44} +(6.52861 + 1.54184i) q^{45} +(-4.67860 + 8.10358i) q^{46} +(0.0131194 - 0.0489622i) q^{47} +(-8.31349 - 2.36874i) q^{48} +(5.41150 - 6.93615i) q^{50} +(-2.68431 + 4.48449i) q^{51} +(-1.80844 - 6.74919i) q^{52} +(1.57696 + 5.88528i) q^{53} +(8.12504 - 4.19163i) q^{54} +(-2.29896 + 2.60029i) q^{55} +(-1.99811 + 7.01270i) q^{57} +(-1.35302 + 5.04955i) q^{58} +(-2.46880 + 4.27609i) q^{59} +(-0.193688 - 4.23952i) q^{60} +(1.65843 + 2.87249i) q^{61} +(-7.21316 - 7.21316i) q^{62} -0.129684i q^{64} +(-11.8872 + 7.87377i) q^{65} +(-0.0746095 + 4.72978i) q^{66} +(0.625932 + 2.33601i) q^{67} +(3.19386 + 0.855793i) q^{68} +(8.04889 - 4.47927i) q^{69} -5.73577i q^{71} +(3.26681 + 3.47970i) q^{72} +(9.92795 - 2.66019i) q^{73} +(-1.53183 + 2.65321i) q^{74} +(-8.07769 + 3.12265i) q^{75} +4.61315 q^{76} +(-5.32495 + 18.6887i) q^{78} +(3.11231 - 1.79689i) q^{79} +(10.5819 - 3.54467i) q^{80} +(-8.98209 - 0.567455i) q^{81} +(-4.56252 - 1.22252i) q^{82} +(12.2139 - 12.2139i) q^{83} +(-0.414214 - 6.73463i) q^{85} +(4.51623 - 2.60745i) q^{86} +(3.69584 - 3.58105i) q^{87} +(-2.38535 + 0.639153i) q^{88} +(-0.678216 - 1.17470i) q^{89} +(-5.59346 + 10.3934i) q^{90} +(-4.12069 - 4.12069i) q^{92} +(2.44573 + 9.73953i) q^{93} +(0.0772383 + 0.0445936i) q^{94} +(-2.99005 - 8.92620i) q^{95} +(4.98105 - 8.32150i) q^{96} +(-10.9812 + 10.9812i) q^{97} +(2.45435 - 3.95731i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{3} - 16 q^{10} + 16 q^{12} + 16 q^{13} - 32 q^{15} + 16 q^{16} + 20 q^{18} + 16 q^{22} + 16 q^{25} + 32 q^{27} - 20 q^{30} + 28 q^{33} + 32 q^{36} + 16 q^{37} + 64 q^{40} - 80 q^{43} + 20 q^{45}+ \cdots - 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.455388 + 1.69953i −0.322008 + 1.20175i 0.595278 + 0.803520i \(0.297042\pi\)
−0.917286 + 0.398229i \(0.869625\pi\)
\(3\) 1.24391 1.20528i 0.718172 0.695866i
\(4\) −0.948973 0.547890i −0.474487 0.273945i
\(5\) −0.445053 + 2.19133i −0.199034 + 0.979993i
\(6\) 1.48194 + 2.66293i 0.605000 + 1.08714i
\(7\) 0 0
\(8\) −1.12498 + 1.12498i −0.397740 + 0.397740i
\(9\) 0.0946229 2.99851i 0.0315410 0.999502i
\(10\) −3.52156 1.75429i −1.11361 0.554754i
\(11\) 1.34425 + 0.776103i 0.405307 + 0.234004i 0.688771 0.724979i \(-0.258150\pi\)
−0.283465 + 0.958983i \(0.591484\pi\)
\(12\) −1.84080 + 0.462248i −0.531392 + 0.133440i
\(13\) 4.50889 + 4.50889i 1.25054 + 1.25054i 0.955478 + 0.295062i \(0.0953402\pi\)
0.295062 + 0.955478i \(0.404660\pi\)
\(14\) 0 0
\(15\) 2.08755 + 3.26223i 0.539003 + 0.842304i
\(16\) −2.49541 4.32218i −0.623853 1.08055i
\(17\) −2.91469 + 0.780989i −0.706917 + 0.189418i −0.594327 0.804224i \(-0.702581\pi\)
−0.112590 + 0.993642i \(0.535915\pi\)
\(18\) 5.05296 + 1.52630i 1.19099 + 0.359752i
\(19\) −3.64590 + 2.10496i −0.836427 + 0.482912i −0.856048 0.516896i \(-0.827087\pi\)
0.0196209 + 0.999807i \(0.493754\pi\)
\(20\) 1.62295 1.83567i 0.362903 0.410469i
\(21\) 0 0
\(22\) −1.93117 + 1.93117i −0.411726 + 0.411726i
\(23\) 5.13695 + 1.37644i 1.07113 + 0.287008i 0.750956 0.660352i \(-0.229593\pi\)
0.320171 + 0.947360i \(0.396260\pi\)
\(24\) −0.0434629 + 2.75528i −0.00887183 + 0.562419i
\(25\) −4.60386 1.95052i −0.920771 0.390103i
\(26\) −9.71628 + 5.60970i −1.90552 + 1.10015i
\(27\) −3.49632 3.84392i −0.672868 0.739763i
\(28\) 0 0
\(29\) 2.97115 0.551728 0.275864 0.961197i \(-0.411036\pi\)
0.275864 + 0.961197i \(0.411036\pi\)
\(30\) −6.49490 + 2.06228i −1.18580 + 0.376518i
\(31\) −2.89885 + 5.02095i −0.520649 + 0.901790i 0.479063 + 0.877781i \(0.340977\pi\)
−0.999712 + 0.0240096i \(0.992357\pi\)
\(32\) 5.40856 1.44922i 0.956108 0.256188i
\(33\) 2.60754 0.654789i 0.453915 0.113984i
\(34\) 5.30926i 0.910531i
\(35\) 0 0
\(36\) −1.73265 + 2.79366i −0.288775 + 0.465610i
\(37\) 1.68190 + 0.450663i 0.276502 + 0.0740885i 0.394405 0.918937i \(-0.370951\pi\)
−0.117903 + 0.993025i \(0.537617\pi\)
\(38\) −1.91715 7.15489i −0.311003 1.16068i
\(39\) 11.0431 + 0.174198i 1.76831 + 0.0278940i
\(40\) −1.96452 2.96587i −0.310619 0.468946i
\(41\) 2.68458i 0.419261i 0.977781 + 0.209631i \(0.0672261\pi\)
−0.977781 + 0.209631i \(0.932774\pi\)
\(42\) 0 0
\(43\) −2.09578 2.09578i −0.319603 0.319603i 0.529011 0.848615i \(-0.322563\pi\)
−0.848615 + 0.529011i \(0.822563\pi\)
\(44\) −0.850438 1.47300i −0.128208 0.222063i
\(45\) 6.52861 + 1.54184i 0.973227 + 0.229845i
\(46\) −4.67860 + 8.10358i −0.689822 + 1.19481i
\(47\) 0.0131194 0.0489622i 0.00191366 0.00714187i −0.964962 0.262388i \(-0.915490\pi\)
0.966876 + 0.255246i \(0.0821566\pi\)
\(48\) −8.31349 2.36874i −1.19995 0.341899i
\(49\) 0 0
\(50\) 5.41150 6.93615i 0.765302 0.980920i
\(51\) −2.68431 + 4.48449i −0.375878 + 0.627954i
\(52\) −1.80844 6.74919i −0.250785 0.935944i
\(53\) 1.57696 + 5.88528i 0.216612 + 0.808406i 0.985593 + 0.169134i \(0.0540972\pi\)
−0.768981 + 0.639271i \(0.779236\pi\)
\(54\) 8.12504 4.19163i 1.10568 0.570409i
\(55\) −2.29896 + 2.60029i −0.309992 + 0.350623i
\(56\) 0 0
\(57\) −1.99811 + 7.01270i −0.264657 + 0.928855i
\(58\) −1.35302 + 5.04955i −0.177661 + 0.663038i
\(59\) −2.46880 + 4.27609i −0.321410 + 0.556699i −0.980779 0.195120i \(-0.937490\pi\)
0.659369 + 0.751820i \(0.270824\pi\)
\(60\) −0.193688 4.23952i −0.0250050 0.547319i
\(61\) 1.65843 + 2.87249i 0.212341 + 0.367785i 0.952447 0.304705i \(-0.0985580\pi\)
−0.740106 + 0.672490i \(0.765225\pi\)
\(62\) −7.21316 7.21316i −0.916073 0.916073i
\(63\) 0 0
\(64\) 0.129684i 0.0162105i
\(65\) −11.8872 + 7.87377i −1.47442 + 0.976620i
\(66\) −0.0746095 + 4.72978i −0.00918379 + 0.582196i
\(67\) 0.625932 + 2.33601i 0.0764698 + 0.285389i 0.993563 0.113285i \(-0.0361372\pi\)
−0.917093 + 0.398674i \(0.869471\pi\)
\(68\) 3.19386 + 0.855793i 0.387313 + 0.103780i
\(69\) 8.04889 4.47927i 0.968972 0.539240i
\(70\) 0 0
\(71\) 5.73577i 0.680711i −0.940297 0.340356i \(-0.889453\pi\)
0.940297 0.340356i \(-0.110547\pi\)
\(72\) 3.26681 + 3.47970i 0.384997 + 0.410087i
\(73\) 9.92795 2.66019i 1.16198 0.311351i 0.374223 0.927339i \(-0.377910\pi\)
0.787756 + 0.615988i \(0.211243\pi\)
\(74\) −1.53183 + 2.65321i −0.178072 + 0.308429i
\(75\) −8.07769 + 3.12265i −0.932731 + 0.360572i
\(76\) 4.61315 0.529165
\(77\) 0 0
\(78\) −5.32495 + 18.6887i −0.602931 + 2.11608i
\(79\) 3.11231 1.79689i 0.350163 0.202166i −0.314594 0.949226i \(-0.601868\pi\)
0.664757 + 0.747060i \(0.268535\pi\)
\(80\) 10.5819 3.54467i 1.18309 0.396307i
\(81\) −8.98209 0.567455i −0.998010 0.0630505i
\(82\) −4.56252 1.22252i −0.503847 0.135005i
\(83\) 12.2139 12.2139i 1.34065 1.34065i 0.445228 0.895417i \(-0.353123\pi\)
0.895417 0.445228i \(-0.146877\pi\)
\(84\) 0 0
\(85\) −0.414214 6.73463i −0.0449278 0.730474i
\(86\) 4.51623 2.60745i 0.486998 0.281168i
\(87\) 3.69584 3.58105i 0.396235 0.383929i
\(88\) −2.38535 + 0.639153i −0.254279 + 0.0681339i
\(89\) −0.678216 1.17470i −0.0718908 0.124518i 0.827839 0.560965i \(-0.189570\pi\)
−0.899730 + 0.436447i \(0.856237\pi\)
\(90\) −5.59346 + 10.3934i −0.589602 + 1.09556i
\(91\) 0 0
\(92\) −4.12069 4.12069i −0.429611 0.429611i
\(93\) 2.44573 + 9.73953i 0.253610 + 1.00994i
\(94\) 0.0772383 + 0.0445936i 0.00796652 + 0.00459948i
\(95\) −2.99005 8.92620i −0.306773 0.915808i
\(96\) 4.98105 8.32150i 0.508377 0.849310i
\(97\) −10.9812 + 10.9812i −1.11497 + 1.11497i −0.122503 + 0.992468i \(0.539092\pi\)
−0.992468 + 0.122503i \(0.960908\pi\)
\(98\) 0 0
\(99\) 2.45435 3.95731i 0.246671 0.397724i
\(100\) 3.30027 + 4.37339i 0.330027 + 0.437339i
\(101\) −11.0014 6.35165i −1.09468 0.632012i −0.159860 0.987140i \(-0.551104\pi\)
−0.934818 + 0.355127i \(0.884437\pi\)
\(102\) −6.39912 6.60424i −0.633607 0.653917i
\(103\) 0.537318 2.00530i 0.0529435 0.197588i −0.934388 0.356256i \(-0.884053\pi\)
0.987332 + 0.158668i \(0.0507199\pi\)
\(104\) −10.1448 −0.994779
\(105\) 0 0
\(106\) −10.7203 −1.04125
\(107\) 4.96049 18.5128i 0.479548 1.78970i −0.123898 0.992295i \(-0.539540\pi\)
0.603446 0.797404i \(-0.293794\pi\)
\(108\) 1.21187 + 5.56338i 0.116613 + 0.535336i
\(109\) 4.19293 + 2.42079i 0.401610 + 0.231869i 0.687178 0.726489i \(-0.258849\pi\)
−0.285569 + 0.958358i \(0.592182\pi\)
\(110\) −3.37235 5.09129i −0.321541 0.485436i
\(111\) 2.63530 1.46656i 0.250132 0.139200i
\(112\) 0 0
\(113\) 10.6222 10.6222i 0.999254 0.999254i −0.000746132 1.00000i \(-0.500238\pi\)
1.00000 0.000746132i \(0.000237501\pi\)
\(114\) −11.0084 6.58935i −1.03103 0.617149i
\(115\) −5.30245 + 10.6442i −0.494456 + 0.992573i
\(116\) −2.81954 1.62786i −0.261788 0.151143i
\(117\) 13.9466 13.0933i 1.28936 1.21047i
\(118\) −6.14308 6.14308i −0.565516 0.565516i
\(119\) 0 0
\(120\) −6.01838 1.32149i −0.549401 0.120635i
\(121\) −4.29533 7.43973i −0.390484 0.676339i
\(122\) −5.63711 + 1.51046i −0.510360 + 0.136751i
\(123\) 3.23566 + 3.33938i 0.291749 + 0.301101i
\(124\) 5.50186 3.17650i 0.494082 0.285258i
\(125\) 6.32318 9.22049i 0.565563 0.824705i
\(126\) 0 0
\(127\) 10.1595 10.1595i 0.901511 0.901511i −0.0940560 0.995567i \(-0.529983\pi\)
0.995567 + 0.0940560i \(0.0299833\pi\)
\(128\) 11.0375 + 2.95750i 0.975588 + 0.261408i
\(129\) −5.13295 0.0809693i −0.451931 0.00712895i
\(130\) −7.96844 23.7882i −0.698878 2.08636i
\(131\) −0.441131 + 0.254687i −0.0385418 + 0.0222521i −0.519147 0.854685i \(-0.673750\pi\)
0.480605 + 0.876937i \(0.340417\pi\)
\(132\) −2.83324 0.807270i −0.246602 0.0702638i
\(133\) 0 0
\(134\) −4.25516 −0.367590
\(135\) 9.97935 5.95085i 0.858885 0.512168i
\(136\) 2.40037 4.15756i 0.205830 0.356508i
\(137\) −3.57827 + 0.958794i −0.305712 + 0.0819153i −0.408414 0.912797i \(-0.633918\pi\)
0.102702 + 0.994712i \(0.467251\pi\)
\(138\) 3.94728 + 15.7191i 0.336015 + 1.33810i
\(139\) 6.35379i 0.538921i −0.963011 0.269461i \(-0.913155\pi\)
0.963011 0.269461i \(-0.0868454\pi\)
\(140\) 0 0
\(141\) −0.0426936 0.0767170i −0.00359545 0.00646074i
\(142\) 9.74812 + 2.61200i 0.818044 + 0.219194i
\(143\) 2.56171 + 9.56043i 0.214221 + 0.799483i
\(144\) −13.1962 + 7.07354i −1.09968 + 0.589461i
\(145\) −1.32232 + 6.51076i −0.109812 + 0.540689i
\(146\) 18.0843i 1.49666i
\(147\) 0 0
\(148\) −1.34916 1.34916i −0.110900 0.110900i
\(149\) −2.13982 3.70628i −0.175301 0.303631i 0.764964 0.644073i \(-0.222757\pi\)
−0.940265 + 0.340442i \(0.889423\pi\)
\(150\) −1.62855 15.1503i −0.132971 1.23702i
\(151\) 2.60616 4.51400i 0.212086 0.367344i −0.740281 0.672297i \(-0.765308\pi\)
0.952367 + 0.304954i \(0.0986409\pi\)
\(152\) 1.73352 6.46960i 0.140607 0.524754i
\(153\) 2.06601 + 8.81363i 0.167027 + 0.712539i
\(154\) 0 0
\(155\) −9.71243 8.58693i −0.780121 0.689719i
\(156\) −10.3842 6.21571i −0.831398 0.497655i
\(157\) 1.59587 + 5.95585i 0.127364 + 0.475329i 0.999913 0.0131979i \(-0.00420114\pi\)
−0.872549 + 0.488527i \(0.837534\pi\)
\(158\) 1.63657 + 6.10775i 0.130198 + 0.485907i
\(159\) 9.05498 + 5.42009i 0.718106 + 0.429841i
\(160\) 0.768623 + 12.4969i 0.0607650 + 0.987968i
\(161\) 0 0
\(162\) 5.05474 15.0069i 0.397138 1.17906i
\(163\) 1.95582 7.29921i 0.153191 0.571718i −0.846062 0.533084i \(-0.821033\pi\)
0.999253 0.0386337i \(-0.0123005\pi\)
\(164\) 1.47085 2.54760i 0.114854 0.198934i
\(165\) 0.274364 + 6.00540i 0.0213592 + 0.467520i
\(166\) 15.1958 + 26.3199i 1.17942 + 2.04282i
\(167\) 13.8232 + 13.8232i 1.06967 + 1.06967i 0.997384 + 0.0722908i \(0.0230310\pi\)
0.0722908 + 0.997384i \(0.476969\pi\)
\(168\) 0 0
\(169\) 27.6601i 2.12770i
\(170\) 11.6343 + 2.36290i 0.892313 + 0.181226i
\(171\) 5.96676 + 11.1314i 0.456290 + 0.851243i
\(172\) 0.840583 + 3.13710i 0.0640938 + 0.239201i
\(173\) 2.82269 + 0.756337i 0.214605 + 0.0575032i 0.364520 0.931196i \(-0.381233\pi\)
−0.149915 + 0.988699i \(0.547900\pi\)
\(174\) 4.40306 + 7.91195i 0.333795 + 0.599803i
\(175\) 0 0
\(176\) 7.74679i 0.583936i
\(177\) 2.08290 + 8.29465i 0.156560 + 0.623464i
\(178\) 2.30530 0.617702i 0.172789 0.0462988i
\(179\) −5.95932 + 10.3218i −0.445420 + 0.771491i −0.998081 0.0619153i \(-0.980279\pi\)
0.552661 + 0.833406i \(0.313612\pi\)
\(180\) −5.35071 5.04013i −0.398819 0.375669i
\(181\) 17.5945 1.30779 0.653893 0.756587i \(-0.273135\pi\)
0.653893 + 0.756587i \(0.273135\pi\)
\(182\) 0 0
\(183\) 5.52508 + 1.57425i 0.408426 + 0.116372i
\(184\) −7.32742 + 4.23049i −0.540184 + 0.311876i
\(185\) −1.73608 + 3.48502i −0.127639 + 0.256224i
\(186\) −17.6664 0.278677i −1.29536 0.0204336i
\(187\) −4.52420 1.21226i −0.330842 0.0886490i
\(188\) −0.0392758 + 0.0392758i −0.00286449 + 0.00286449i
\(189\) 0 0
\(190\) 16.5320 1.01680i 1.19936 0.0737663i
\(191\) 4.79798 2.77011i 0.347169 0.200438i −0.316268 0.948670i \(-0.602430\pi\)
0.663438 + 0.748231i \(0.269097\pi\)
\(192\) −0.156305 0.161315i −0.0112803 0.0116419i
\(193\) 18.9915 5.08875i 1.36704 0.366296i 0.500641 0.865655i \(-0.333098\pi\)
0.866395 + 0.499359i \(0.166431\pi\)
\(194\) −13.6622 23.6636i −0.980886 1.69895i
\(195\) −5.29649 + 24.1215i −0.379289 + 1.72738i
\(196\) 0 0
\(197\) 12.7155 + 12.7155i 0.905939 + 0.905939i 0.995942 0.0900024i \(-0.0286875\pi\)
−0.0900024 + 0.995942i \(0.528687\pi\)
\(198\) 5.60788 + 5.97335i 0.398535 + 0.424507i
\(199\) −5.29564 3.05744i −0.375398 0.216736i 0.300416 0.953808i \(-0.402874\pi\)
−0.675814 + 0.737072i \(0.736208\pi\)
\(200\) 7.37352 2.98495i 0.521387 0.211068i
\(201\) 3.59414 + 2.15137i 0.253511 + 0.151746i
\(202\) 15.8047 15.8047i 1.11201 1.11201i
\(203\) 0 0
\(204\) 5.00434 2.78495i 0.350374 0.194986i
\(205\) −5.88280 1.19478i −0.410873 0.0834471i
\(206\) 3.16338 + 1.82638i 0.220403 + 0.127250i
\(207\) 4.61334 15.2729i 0.320649 1.06154i
\(208\) 8.23669 30.7398i 0.571112 2.13142i
\(209\) −6.53467 −0.452013
\(210\) 0 0
\(211\) 12.4900 0.859849 0.429924 0.902865i \(-0.358540\pi\)
0.429924 + 0.902865i \(0.358540\pi\)
\(212\) 1.72800 6.44897i 0.118679 0.442917i
\(213\) −6.91319 7.13479i −0.473684 0.488867i
\(214\) 29.2041 + 16.8610i 1.99635 + 1.15259i
\(215\) 5.52528 3.65981i 0.376821 0.249597i
\(216\) 8.25761 + 0.391036i 0.561859 + 0.0266067i
\(217\) 0 0
\(218\) −6.02361 + 6.02361i −0.407970 + 0.407970i
\(219\) 9.14321 15.2749i 0.617841 1.03218i
\(220\) 3.60632 1.20803i 0.243138 0.0814452i
\(221\) −16.6634 9.62062i −1.12090 0.647153i
\(222\) 1.29239 + 5.14663i 0.0867393 + 0.345419i
\(223\) −8.80424 8.80424i −0.589576 0.589576i 0.347941 0.937516i \(-0.386881\pi\)
−0.937516 + 0.347941i \(0.886881\pi\)
\(224\) 0 0
\(225\) −6.28427 + 13.6201i −0.418951 + 0.908009i
\(226\) 13.2155 + 22.8900i 0.879085 + 1.52262i
\(227\) 21.5045 5.76211i 1.42730 0.382445i 0.539234 0.842156i \(-0.318714\pi\)
0.888068 + 0.459711i \(0.152047\pi\)
\(228\) 5.73835 5.56012i 0.380031 0.368228i
\(229\) 7.16589 4.13723i 0.473535 0.273396i −0.244183 0.969729i \(-0.578520\pi\)
0.717718 + 0.696333i \(0.245186\pi\)
\(230\) −15.6754 13.8589i −1.03360 0.913828i
\(231\) 0 0
\(232\) −3.34247 + 3.34247i −0.219444 + 0.219444i
\(233\) −17.2700 4.62748i −1.13140 0.303156i −0.355909 0.934521i \(-0.615829\pi\)
−0.775486 + 0.631364i \(0.782495\pi\)
\(234\) 15.9013 + 29.6651i 1.03950 + 1.93927i
\(235\) 0.101454 + 0.0505397i 0.00661810 + 0.00329684i
\(236\) 4.68565 2.70526i 0.305010 0.176098i
\(237\) 1.70568 5.98637i 0.110796 0.388856i
\(238\) 0 0
\(239\) −25.8260 −1.67054 −0.835271 0.549838i \(-0.814689\pi\)
−0.835271 + 0.549838i \(0.814689\pi\)
\(240\) 8.89064 17.1634i 0.573889 1.10789i
\(241\) −5.25983 + 9.11029i −0.338815 + 0.586846i −0.984210 0.177004i \(-0.943360\pi\)
0.645395 + 0.763849i \(0.276693\pi\)
\(242\) 14.6001 3.91208i 0.938529 0.251478i
\(243\) −11.8569 + 10.1200i −0.760617 + 0.649200i
\(244\) 3.63456i 0.232679i
\(245\) 0 0
\(246\) −7.14885 + 3.97839i −0.455794 + 0.253653i
\(247\) −25.9300 6.94792i −1.64989 0.442086i
\(248\) −2.38732 8.90961i −0.151595 0.565761i
\(249\) 0.471876 29.9140i 0.0299039 1.89572i
\(250\) 12.7910 + 14.9453i 0.808973 + 0.945226i
\(251\) 6.94563i 0.438405i −0.975679 0.219202i \(-0.929655\pi\)
0.975679 0.219202i \(-0.0703455\pi\)
\(252\) 0 0
\(253\) 5.83708 + 5.83708i 0.366974 + 0.366974i
\(254\) 12.6399 + 21.8929i 0.793096 + 1.37368i
\(255\) −8.63233 7.87804i −0.540578 0.493342i
\(256\) −9.92302 + 17.1872i −0.620189 + 1.07420i
\(257\) −2.99064 + 11.1612i −0.186551 + 0.696217i 0.807742 + 0.589536i \(0.200689\pi\)
−0.994293 + 0.106681i \(0.965977\pi\)
\(258\) 2.47509 8.68674i 0.154093 0.540813i
\(259\) 0 0
\(260\) 15.5945 0.959142i 0.967133 0.0594835i
\(261\) 0.281138 8.90900i 0.0174020 0.551453i
\(262\) −0.231963 0.865696i −0.0143307 0.0534829i
\(263\) 0.0435058 + 0.162366i 0.00268268 + 0.0100119i 0.967254 0.253810i \(-0.0816837\pi\)
−0.964572 + 0.263822i \(0.915017\pi\)
\(264\) −2.19681 + 3.67005i −0.135204 + 0.225876i
\(265\) −13.5984 + 0.836371i −0.835345 + 0.0513779i
\(266\) 0 0
\(267\) −2.25948 0.643790i −0.138278 0.0393993i
\(268\) 0.685884 2.55975i 0.0418970 0.156362i
\(269\) 3.30165 5.71862i 0.201305 0.348671i −0.747644 0.664100i \(-0.768815\pi\)
0.948949 + 0.315429i \(0.102148\pi\)
\(270\) 5.56918 + 19.6701i 0.338930 + 1.19709i
\(271\) −11.9146 20.6367i −0.723759 1.25359i −0.959483 0.281768i \(-0.909079\pi\)
0.235723 0.971820i \(-0.424254\pi\)
\(272\) 10.6489 + 10.6489i 0.645687 + 0.645687i
\(273\) 0 0
\(274\) 6.51800i 0.393767i
\(275\) −4.67493 6.19505i −0.281909 0.373575i
\(276\) −10.0923 0.159200i −0.607487 0.00958274i
\(277\) −5.26787 19.6600i −0.316516 1.18125i −0.922570 0.385829i \(-0.873915\pi\)
0.606055 0.795423i \(-0.292751\pi\)
\(278\) 10.7984 + 2.89344i 0.647648 + 0.173537i
\(279\) 14.7811 + 9.16732i 0.884920 + 0.548833i
\(280\) 0 0
\(281\) 1.50698i 0.0898991i −0.998989 0.0449495i \(-0.985687\pi\)
0.998989 0.0449495i \(-0.0143127\pi\)
\(282\) 0.149825 0.0376231i 0.00892195 0.00224042i
\(283\) 11.5991 3.10797i 0.689496 0.184750i 0.102975 0.994684i \(-0.467164\pi\)
0.586521 + 0.809934i \(0.300497\pi\)
\(284\) −3.14257 + 5.44310i −0.186477 + 0.322988i
\(285\) −14.4779 7.49955i −0.857595 0.444235i
\(286\) −17.4148 −1.02976
\(287\) 0 0
\(288\) −3.83372 16.3547i −0.225904 0.963712i
\(289\) −6.83695 + 3.94731i −0.402173 + 0.232195i
\(290\) −10.4631 5.21224i −0.614412 0.306073i
\(291\) −0.424252 + 26.8950i −0.0248701 + 1.57661i
\(292\) −10.8788 2.91498i −0.636636 0.170586i
\(293\) 2.35851 2.35851i 0.137786 0.137786i −0.634850 0.772635i \(-0.718938\pi\)
0.772635 + 0.634850i \(0.218938\pi\)
\(294\) 0 0
\(295\) −8.27157 7.31304i −0.481590 0.425782i
\(296\) −2.39908 + 1.38511i −0.139444 + 0.0805079i
\(297\) −1.71666 7.88070i −0.0996105 0.457284i
\(298\) 7.27339 1.94890i 0.421336 0.112897i
\(299\) 16.9557 + 29.3681i 0.980573 + 1.69840i
\(300\) 9.37638 + 1.46238i 0.541346 + 0.0844303i
\(301\) 0 0
\(302\) 6.48486 + 6.48486i 0.373162 + 0.373162i
\(303\) −21.3402 + 5.35881i −1.22596 + 0.307856i
\(304\) 18.1961 + 10.5055i 1.04362 + 0.602532i
\(305\) −7.03267 + 2.35576i −0.402689 + 0.134891i
\(306\) −15.9199 0.502378i −0.910077 0.0287190i
\(307\) 0.793602 0.793602i 0.0452933 0.0452933i −0.684097 0.729391i \(-0.739804\pi\)
0.729391 + 0.684097i \(0.239804\pi\)
\(308\) 0 0
\(309\) −1.74856 3.14203i −0.0994722 0.178744i
\(310\) 19.0167 12.5962i 1.08007 0.715415i
\(311\) −8.58683 4.95761i −0.486914 0.281120i 0.236379 0.971661i \(-0.424039\pi\)
−0.723293 + 0.690541i \(0.757373\pi\)
\(312\) −12.6192 + 12.2273i −0.714422 + 0.692233i
\(313\) 3.64245 13.5938i 0.205884 0.768368i −0.783295 0.621650i \(-0.786462\pi\)
0.989178 0.146718i \(-0.0468709\pi\)
\(314\) −10.8489 −0.612238
\(315\) 0 0
\(316\) −3.93800 −0.221530
\(317\) −5.48264 + 20.4615i −0.307936 + 1.14923i 0.622453 + 0.782657i \(0.286136\pi\)
−0.930389 + 0.366574i \(0.880531\pi\)
\(318\) −13.3351 + 12.9210i −0.747797 + 0.724571i
\(319\) 3.99396 + 2.30592i 0.223619 + 0.129106i
\(320\) 0.284180 + 0.0577161i 0.0158861 + 0.00322643i
\(321\) −16.1426 29.0070i −0.900992 1.61901i
\(322\) 0 0
\(323\) 8.98273 8.98273i 0.499812 0.499812i
\(324\) 8.21286 + 5.45970i 0.456270 + 0.303317i
\(325\) −11.9636 29.5529i −0.663622 1.63930i
\(326\) 11.5146 + 6.64794i 0.637733 + 0.368195i
\(327\) 8.13334 2.04239i 0.449775 0.112944i
\(328\) −3.02009 3.02009i −0.166757 0.166757i
\(329\) 0 0
\(330\) −10.3313 2.26850i −0.568720 0.124877i
\(331\) 1.55123 + 2.68682i 0.0852635 + 0.147681i 0.905503 0.424339i \(-0.139493\pi\)
−0.820240 + 0.572020i \(0.806160\pi\)
\(332\) −18.2825 + 4.89878i −1.00338 + 0.268855i
\(333\) 1.51046 5.00054i 0.0827728 0.274028i
\(334\) −29.7879 + 17.1981i −1.62992 + 0.941037i
\(335\) −5.39754 + 0.331976i −0.294899 + 0.0181378i
\(336\) 0 0
\(337\) −23.2030 + 23.2030i −1.26395 + 1.26395i −0.314784 + 0.949163i \(0.601932\pi\)
−0.949163 + 0.314784i \(0.898068\pi\)
\(338\) −47.0092 12.5961i −2.55696 0.685136i
\(339\) 0.410383 26.0158i 0.0222890 1.41298i
\(340\) −3.29676 + 6.61793i −0.178792 + 0.358908i
\(341\) −7.79356 + 4.49961i −0.422045 + 0.243668i
\(342\) −21.6354 + 5.07157i −1.16991 + 0.274239i
\(343\) 0 0
\(344\) 4.71541 0.254238
\(345\) 6.23337 + 19.6313i 0.335593 + 1.05691i
\(346\) −2.57083 + 4.45282i −0.138209 + 0.239385i
\(347\) 19.3753 5.19161i 1.04012 0.278700i 0.301959 0.953321i \(-0.402360\pi\)
0.738164 + 0.674621i \(0.235693\pi\)
\(348\) −5.46927 + 1.37341i −0.293184 + 0.0736224i
\(349\) 9.27152i 0.496293i −0.968723 0.248146i \(-0.920179\pi\)
0.968723 0.248146i \(-0.0798214\pi\)
\(350\) 0 0
\(351\) 1.56726 33.0963i 0.0836544 1.76655i
\(352\) 8.39520 + 2.24949i 0.447466 + 0.119898i
\(353\) 7.40914 + 27.6513i 0.394349 + 1.47173i 0.822887 + 0.568205i \(0.192362\pi\)
−0.428538 + 0.903524i \(0.640971\pi\)
\(354\) −15.0455 0.237334i −0.799661 0.0126142i
\(355\) 12.5690 + 2.55272i 0.667092 + 0.135484i
\(356\) 1.48635i 0.0787765i
\(357\) 0 0
\(358\) −14.8285 14.8285i −0.783710 0.783710i
\(359\) 9.41445 + 16.3063i 0.496876 + 0.860614i 0.999994 0.00360404i \(-0.00114720\pi\)
−0.503118 + 0.864218i \(0.667814\pi\)
\(360\) −9.07908 + 5.61000i −0.478510 + 0.295673i
\(361\) −0.638264 + 1.10551i −0.0335928 + 0.0581845i
\(362\) −8.01230 + 29.9023i −0.421117 + 1.57163i
\(363\) −14.3099 4.07730i −0.751076 0.214003i
\(364\) 0 0
\(365\) 1.41088 + 22.9393i 0.0738490 + 1.20070i
\(366\) −5.19154 + 8.67315i −0.271366 + 0.453353i
\(367\) −0.344800 1.28681i −0.0179984 0.0671711i 0.956343 0.292248i \(-0.0944033\pi\)
−0.974341 + 0.225077i \(0.927737\pi\)
\(368\) −6.86957 25.6376i −0.358101 1.33645i
\(369\) 8.04973 + 0.254023i 0.419052 + 0.0132239i
\(370\) −5.13231 4.53756i −0.266816 0.235897i
\(371\) 0 0
\(372\) 3.01526 10.5825i 0.156334 0.548679i
\(373\) 2.70837 10.1078i 0.140234 0.523361i −0.859687 0.510821i \(-0.829342\pi\)
0.999921 0.0125400i \(-0.00399170\pi\)
\(374\) 4.12053 7.13697i 0.213068 0.369044i
\(375\) −3.24776 19.0906i −0.167713 0.985836i
\(376\) 0.0403224 + 0.0698404i 0.00207947 + 0.00360174i
\(377\) 13.3966 + 13.3966i 0.689958 + 0.689958i
\(378\) 0 0
\(379\) 21.9486i 1.12743i −0.825971 0.563713i \(-0.809373\pi\)
0.825971 0.563713i \(-0.190627\pi\)
\(380\) −2.05310 + 10.1089i −0.105322 + 0.518578i
\(381\) 0.392507 24.8825i 0.0201087 1.27477i
\(382\) 2.52295 + 9.41578i 0.129085 + 0.481753i
\(383\) −26.4066 7.07564i −1.34932 0.361548i −0.489434 0.872040i \(-0.662797\pi\)
−0.859882 + 0.510492i \(0.829463\pi\)
\(384\) 17.2943 9.62440i 0.882545 0.491143i
\(385\) 0 0
\(386\) 34.5939i 1.76079i
\(387\) −6.48252 + 6.08590i −0.329525 + 0.309364i
\(388\) 16.4373 4.40437i 0.834480 0.223598i
\(389\) −15.3981 + 26.6702i −0.780712 + 1.35223i 0.150815 + 0.988562i \(0.451810\pi\)
−0.931527 + 0.363671i \(0.881523\pi\)
\(390\) −38.5833 19.9862i −1.95374 1.01204i
\(391\) −16.0476 −0.811562
\(392\) 0 0
\(393\) −0.241759 + 0.848491i −0.0121951 + 0.0428007i
\(394\) −27.4008 + 15.8198i −1.38043 + 0.796992i
\(395\) 2.55245 + 7.61982i 0.128427 + 0.383395i
\(396\) −4.49728 + 2.41067i −0.225997 + 0.121141i
\(397\) −28.4481 7.62264i −1.42777 0.382569i −0.539536 0.841963i \(-0.681400\pi\)
−0.888233 + 0.459393i \(0.848067\pi\)
\(398\) 7.60777 7.60777i 0.381343 0.381343i
\(399\) 0 0
\(400\) 3.05804 + 24.7660i 0.152902 + 1.23830i
\(401\) 18.1072 10.4542i 0.904231 0.522058i 0.0256602 0.999671i \(-0.491831\pi\)
0.878570 + 0.477613i \(0.158498\pi\)
\(402\) −5.29304 + 5.12864i −0.263993 + 0.255793i
\(403\) −35.7095 + 9.56833i −1.77882 + 0.476632i
\(404\) 6.96001 + 12.0551i 0.346273 + 0.599763i
\(405\) 5.24099 19.4302i 0.260427 0.965494i
\(406\) 0 0
\(407\) 1.91113 + 1.91113i 0.0947311 + 0.0947311i
\(408\) −2.02516 8.06474i −0.100261 0.399264i
\(409\) −10.0262 5.78865i −0.495765 0.286230i 0.231198 0.972907i \(-0.425736\pi\)
−0.726963 + 0.686677i \(0.759069\pi\)
\(410\) 4.70952 9.45391i 0.232587 0.466895i
\(411\) −3.29543 + 5.50545i −0.162552 + 0.271564i
\(412\) −1.60858 + 1.60858i −0.0792493 + 0.0792493i
\(413\) 0 0
\(414\) 23.8559 + 14.7956i 1.17246 + 0.727165i
\(415\) 21.3288 + 32.2004i 1.04699 + 1.58066i
\(416\) 30.9210 + 17.8522i 1.51602 + 0.875277i
\(417\) −7.65806 7.90354i −0.375017 0.387038i
\(418\) 2.97581 11.1059i 0.145552 0.543206i
\(419\) 0.525515 0.0256731 0.0128365 0.999918i \(-0.495914\pi\)
0.0128365 + 0.999918i \(0.495914\pi\)
\(420\) 0 0
\(421\) −15.5297 −0.756871 −0.378435 0.925628i \(-0.623538\pi\)
−0.378435 + 0.925628i \(0.623538\pi\)
\(422\) −5.68780 + 21.2272i −0.276878 + 1.03332i
\(423\) −0.145572 0.0439715i −0.00707796 0.00213797i
\(424\) −8.39486 4.84677i −0.407690 0.235380i
\(425\) 14.9422 + 2.08959i 0.724801 + 0.101360i
\(426\) 15.2740 8.50008i 0.740026 0.411830i
\(427\) 0 0
\(428\) −14.8503 + 14.8503i −0.717818 + 0.717818i
\(429\) 14.7095 + 8.80475i 0.710181 + 0.425097i
\(430\) 3.70382 + 11.0570i 0.178614 + 0.533216i
\(431\) 19.9310 + 11.5072i 0.960044 + 0.554282i 0.896187 0.443677i \(-0.146326\pi\)
0.0638575 + 0.997959i \(0.479660\pi\)
\(432\) −7.88935 + 24.7039i −0.379576 + 1.18857i
\(433\) 15.4001 + 15.4001i 0.740081 + 0.740081i 0.972593 0.232513i \(-0.0746947\pi\)
−0.232513 + 0.972593i \(0.574695\pi\)
\(434\) 0 0
\(435\) 6.20242 + 9.69255i 0.297383 + 0.464722i
\(436\) −2.65265 4.59453i −0.127039 0.220038i
\(437\) −21.6262 + 5.79471i −1.03452 + 0.277199i
\(438\) 21.7965 + 22.4952i 1.04148 + 1.07486i
\(439\) −5.23329 + 3.02144i −0.249771 + 0.144205i −0.619659 0.784871i \(-0.712729\pi\)
0.369888 + 0.929076i \(0.379396\pi\)
\(440\) −0.338988 5.51155i −0.0161606 0.262753i
\(441\) 0 0
\(442\) 23.9388 23.9388i 1.13865 1.13865i
\(443\) 11.8124 + 3.16511i 0.561222 + 0.150379i 0.528268 0.849078i \(-0.322842\pi\)
0.0329544 + 0.999457i \(0.489508\pi\)
\(444\) −3.30435 0.0521241i −0.156817 0.00247370i
\(445\) 2.87601 0.963390i 0.136336 0.0456690i
\(446\) 18.9724 10.9537i 0.898370 0.518674i
\(447\) −7.12884 2.03121i −0.337183 0.0960727i
\(448\) 0 0
\(449\) −20.7599 −0.979723 −0.489861 0.871800i \(-0.662953\pi\)
−0.489861 + 0.871800i \(0.662953\pi\)
\(450\) −20.2860 16.8827i −0.956293 0.795860i
\(451\) −2.08351 + 3.60875i −0.0981087 + 0.169929i
\(452\) −15.9000 + 4.26039i −0.747873 + 0.200392i
\(453\) −2.19878 8.75614i −0.103308 0.411399i
\(454\) 39.1715i 1.83841i
\(455\) 0 0
\(456\) −5.64130 10.1370i −0.264178 0.474707i
\(457\) −23.6425 6.33500i −1.10595 0.296339i −0.340765 0.940148i \(-0.610686\pi\)
−0.765186 + 0.643810i \(0.777353\pi\)
\(458\) 3.76809 + 14.0627i 0.176071 + 0.657106i
\(459\) 13.1928 + 8.47325i 0.615786 + 0.395497i
\(460\) 10.8637 7.19586i 0.506523 0.335509i
\(461\) 4.36421i 0.203262i 0.994822 + 0.101631i \(0.0324061\pi\)
−0.994822 + 0.101631i \(0.967594\pi\)
\(462\) 0 0
\(463\) 2.04147 + 2.04147i 0.0948752 + 0.0948752i 0.752951 0.658076i \(-0.228630\pi\)
−0.658076 + 0.752951i \(0.728630\pi\)
\(464\) −7.41424 12.8418i −0.344197 0.596167i
\(465\) −22.4310 + 1.02479i −1.04021 + 0.0475234i
\(466\) 15.7291 27.2436i 0.728636 1.26203i
\(467\) 5.11079 19.0737i 0.236499 0.882628i −0.740968 0.671540i \(-0.765633\pi\)
0.977467 0.211087i \(-0.0677004\pi\)
\(468\) −20.4086 + 4.78399i −0.943388 + 0.221140i
\(469\) 0 0
\(470\) −0.132094 + 0.149408i −0.00609306 + 0.00689169i
\(471\) 9.16356 + 5.48509i 0.422234 + 0.252739i
\(472\) −2.03316 7.58785i −0.0935837 0.349259i
\(473\) −1.19071 4.44379i −0.0547489 0.204326i
\(474\) 9.39727 + 5.62498i 0.431631 + 0.258364i
\(475\) 20.8910 2.57956i 0.958544 0.118358i
\(476\) 0 0
\(477\) 17.7963 4.17163i 0.814836 0.191006i
\(478\) 11.7608 43.8920i 0.537928 2.00757i
\(479\) 8.00337 13.8622i 0.365683 0.633382i −0.623202 0.782061i \(-0.714169\pi\)
0.988886 + 0.148679i \(0.0475020\pi\)
\(480\) 16.0183 + 14.6186i 0.731133 + 0.667247i
\(481\) 5.55149 + 9.61547i 0.253126 + 0.438428i
\(482\) −13.0880 13.0880i −0.596140 0.596140i
\(483\) 0 0
\(484\) 9.41347i 0.427885i
\(485\) −19.1762 28.9506i −0.870747 1.31458i
\(486\) −11.7998 24.7596i −0.535251 1.12312i
\(487\) 7.54362 + 28.1532i 0.341834 + 1.27574i 0.896267 + 0.443514i \(0.146268\pi\)
−0.554433 + 0.832228i \(0.687065\pi\)
\(488\) −5.09719 1.36579i −0.230739 0.0618263i
\(489\) −6.36470 11.4369i −0.287822 0.517192i
\(490\) 0 0
\(491\) 29.8846i 1.34867i 0.738423 + 0.674337i \(0.235571\pi\)
−0.738423 + 0.674337i \(0.764429\pi\)
\(492\) −1.24094 4.94176i −0.0559460 0.222792i
\(493\) −8.65997 + 2.32043i −0.390026 + 0.104507i
\(494\) 23.6164 40.9048i 1.06255 1.84039i
\(495\) 7.57945 + 7.13950i 0.340671 + 0.320897i
\(496\) 28.9353 1.29923
\(497\) 0 0
\(498\) 50.6249 + 14.4244i 2.26855 + 0.646374i
\(499\) 0.814586 0.470302i 0.0364659 0.0210536i −0.481656 0.876360i \(-0.659965\pi\)
0.518122 + 0.855307i \(0.326631\pi\)
\(500\) −11.0523 + 5.28559i −0.494276 + 0.236379i
\(501\) 33.8557 + 0.534053i 1.51256 + 0.0238597i
\(502\) 11.8043 + 3.16296i 0.526852 + 0.141170i
\(503\) −23.0051 + 23.0051i −1.02575 + 1.02575i −0.0260875 + 0.999660i \(0.508305\pi\)
−0.999660 + 0.0260875i \(0.991695\pi\)
\(504\) 0 0
\(505\) 18.8147 21.2808i 0.837245 0.946984i
\(506\) −12.5784 + 7.26216i −0.559179 + 0.322842i
\(507\) 33.3380 + 34.4067i 1.48059 + 1.52805i
\(508\) −15.2074 + 4.07481i −0.674719 + 0.180791i
\(509\) −12.9064 22.3545i −0.572066 0.990847i −0.996354 0.0853198i \(-0.972809\pi\)
0.424288 0.905527i \(-0.360525\pi\)
\(510\) 17.3200 11.0833i 0.766943 0.490779i
\(511\) 0 0
\(512\) −8.53124 8.53124i −0.377031 0.377031i
\(513\) 20.8386 + 6.65492i 0.920045 + 0.293822i
\(514\) −17.6069 10.1654i −0.776607 0.448374i
\(515\) 4.15514 + 2.06991i 0.183097 + 0.0912110i
\(516\) 4.82667 + 2.88913i 0.212482 + 0.127187i
\(517\) 0.0556354 0.0556354i 0.00244684 0.00244684i
\(518\) 0 0
\(519\) 4.42276 2.46130i 0.194138 0.108039i
\(520\) 4.51497 22.2306i 0.197995 0.974876i
\(521\) −38.2633 22.0913i −1.67635 0.967838i −0.963959 0.266051i \(-0.914281\pi\)
−0.712386 0.701787i \(-0.752386\pi\)
\(522\) 15.0131 + 4.53485i 0.657105 + 0.198485i
\(523\) −4.78341 + 17.8519i −0.209164 + 0.780611i 0.778976 + 0.627054i \(0.215740\pi\)
−0.988140 + 0.153557i \(0.950927\pi\)
\(524\) 0.558162 0.0243834
\(525\) 0 0
\(526\) −0.295757 −0.0128956
\(527\) 4.52794 16.8985i 0.197240 0.736111i
\(528\) −9.33702 9.63631i −0.406341 0.419367i
\(529\) 4.57503 + 2.64140i 0.198915 + 0.114843i
\(530\) 4.77112 23.4918i 0.207244 1.02042i
\(531\) 12.5883 + 7.80733i 0.546285 + 0.338809i
\(532\) 0 0
\(533\) −12.1045 + 12.1045i −0.524303 + 0.524303i
\(534\) 2.12308 3.54688i 0.0918747 0.153489i
\(535\) 38.3599 + 19.1092i 1.65845 + 0.826164i
\(536\) −3.33212 1.92380i −0.143926 0.0830956i
\(537\) 5.02781 + 20.0221i 0.216966 + 0.864016i
\(538\) 8.21544 + 8.21544i 0.354193 + 0.354193i
\(539\) 0 0
\(540\) −12.7305 + 0.179618i −0.547836 + 0.00772954i
\(541\) −10.7795 18.6706i −0.463446 0.802713i 0.535683 0.844419i \(-0.320054\pi\)
−0.999130 + 0.0417061i \(0.986721\pi\)
\(542\) 40.4984 10.8515i 1.73955 0.466112i
\(543\) 21.8859 21.2062i 0.939215 0.910044i
\(544\) −14.6325 + 8.44806i −0.627362 + 0.362207i
\(545\) −7.17082 + 8.11071i −0.307164 + 0.347425i
\(546\) 0 0
\(547\) −29.6665 + 29.6665i −1.26845 + 1.26845i −0.321555 + 0.946891i \(0.604205\pi\)
−0.946891 + 0.321555i \(0.895795\pi\)
\(548\) 3.92099 + 1.05063i 0.167497 + 0.0448806i
\(549\) 8.77011 4.70102i 0.374299 0.200635i
\(550\) 12.6576 5.12404i 0.539721 0.218490i
\(551\) −10.8325 + 6.25415i −0.461480 + 0.266436i
\(552\) −4.01574 + 14.0939i −0.170921 + 0.599876i
\(553\) 0 0
\(554\) 35.8116 1.52149
\(555\) 2.04088 + 6.42751i 0.0866305 + 0.272833i
\(556\) −3.48118 + 6.02957i −0.147635 + 0.255711i
\(557\) −26.2818 + 7.04218i −1.11359 + 0.298387i −0.768289 0.640103i \(-0.778892\pi\)
−0.345306 + 0.938490i \(0.612225\pi\)
\(558\) −22.3113 + 20.9462i −0.944511 + 0.886723i
\(559\) 18.8993i 0.799354i
\(560\) 0 0
\(561\) −7.08880 + 3.94497i −0.299290 + 0.166557i
\(562\) 2.56116 + 0.686262i 0.108036 + 0.0289482i
\(563\) 0.745132 + 2.78087i 0.0314036 + 0.117200i 0.979848 0.199742i \(-0.0640105\pi\)
−0.948445 + 0.316942i \(0.897344\pi\)
\(564\) −0.00151740 + 0.0961938i −6.38941e−5 + 0.00405049i
\(565\) 18.5493 + 28.0042i 0.780376 + 1.17815i
\(566\) 21.1284i 0.888092i
\(567\) 0 0
\(568\) 6.45262 + 6.45262i 0.270746 + 0.270746i
\(569\) 18.3062 + 31.7073i 0.767437 + 1.32924i 0.938948 + 0.344058i \(0.111802\pi\)
−0.171511 + 0.985182i \(0.554865\pi\)
\(570\) 19.3388 21.1904i 0.810011 0.887567i
\(571\) 4.94431 8.56380i 0.206913 0.358384i −0.743827 0.668372i \(-0.766992\pi\)
0.950741 + 0.309988i \(0.100325\pi\)
\(572\) 2.80707 10.4761i 0.117370 0.438029i
\(573\) 2.62950 9.22865i 0.109849 0.385533i
\(574\) 0 0
\(575\) −20.9650 16.3566i −0.874300 0.682118i
\(576\) −0.388858 0.0122711i −0.0162024 0.000511294i
\(577\) −1.26261 4.71214i −0.0525633 0.196169i 0.934651 0.355566i \(-0.115712\pi\)
−0.987215 + 0.159397i \(0.949045\pi\)
\(578\) −3.59512 13.4172i −0.149537 0.558080i
\(579\) 17.4903 29.2199i 0.726874 1.21434i
\(580\) 4.82202 5.45405i 0.200224 0.226467i
\(581\) 0 0
\(582\) −45.5156 12.9687i −1.88668 0.537569i
\(583\) −2.44776 + 9.13517i −0.101376 + 0.378340i
\(584\) −8.17607 + 14.1614i −0.338328 + 0.586002i
\(585\) 22.4847 + 36.3887i 0.929630 + 1.50449i
\(586\) 2.93432 + 5.08239i 0.121216 + 0.209952i
\(587\) 4.70846 + 4.70846i 0.194339 + 0.194339i 0.797568 0.603229i \(-0.206120\pi\)
−0.603229 + 0.797568i \(0.706120\pi\)
\(588\) 0 0
\(589\) 24.4079i 1.00571i
\(590\) 16.1955 10.7275i 0.666758 0.441645i
\(591\) 31.1425 + 0.491255i 1.28103 + 0.0202075i
\(592\) −2.24918 8.39405i −0.0924407 0.344993i
\(593\) 20.8865 + 5.59652i 0.857705 + 0.229821i 0.660764 0.750594i \(-0.270232\pi\)
0.196941 + 0.980415i \(0.436899\pi\)
\(594\) 14.1752 + 0.671263i 0.581617 + 0.0275422i
\(595\) 0 0
\(596\) 4.68955i 0.192092i
\(597\) −10.2723 + 2.57952i −0.420419 + 0.105573i
\(598\) −57.6334 + 15.4428i −2.35680 + 0.631504i
\(599\) −4.69422 + 8.13063i −0.191801 + 0.332208i −0.945847 0.324613i \(-0.894766\pi\)
0.754046 + 0.656821i \(0.228099\pi\)
\(600\) 5.57431 12.6001i 0.227570 0.514398i
\(601\) 4.87361 0.198799 0.0993993 0.995048i \(-0.468308\pi\)
0.0993993 + 0.995048i \(0.468308\pi\)
\(602\) 0 0
\(603\) 7.06377 1.65582i 0.287659 0.0674303i
\(604\) −4.94635 + 2.85578i −0.201264 + 0.116200i
\(605\) 18.2145 6.10141i 0.740527 0.248058i
\(606\) 0.610606 38.7086i 0.0248042 1.57243i
\(607\) −3.50094 0.938074i −0.142099 0.0380753i 0.187069 0.982347i \(-0.440101\pi\)
−0.329167 + 0.944272i \(0.606768\pi\)
\(608\) −16.6685 + 16.6685i −0.675998 + 0.675998i
\(609\) 0 0
\(610\) −0.801103 13.0250i −0.0324357 0.527367i
\(611\) 0.279919 0.161611i 0.0113243 0.00653809i
\(612\) 2.86831 9.49584i 0.115945 0.383847i
\(613\) −45.7845 + 12.2679i −1.84922 + 0.495496i −0.999496 0.0317359i \(-0.989896\pi\)
−0.849721 + 0.527232i \(0.823230\pi\)
\(614\) 0.987354 + 1.71015i 0.0398464 + 0.0690159i
\(615\) −8.75771 + 5.60420i −0.353145 + 0.225983i
\(616\) 0 0
\(617\) 2.15297 + 2.15297i 0.0866754 + 0.0866754i 0.749115 0.662440i \(-0.230479\pi\)
−0.662440 + 0.749115i \(0.730479\pi\)
\(618\) 6.13624 1.54089i 0.246836 0.0619838i
\(619\) −8.82839 5.09707i −0.354843 0.204869i 0.311973 0.950091i \(-0.399010\pi\)
−0.666816 + 0.745222i \(0.732343\pi\)
\(620\) 4.51214 + 13.4701i 0.181212 + 0.540973i
\(621\) −12.6695 24.5585i −0.508410 0.985498i
\(622\) 12.3359 12.3359i 0.494626 0.494626i
\(623\) 0 0
\(624\) −26.8042 48.1650i −1.07303 1.92814i
\(625\) 17.3910 + 17.9598i 0.695639 + 0.718391i
\(626\) 21.4444 + 12.3809i 0.857090 + 0.494841i
\(627\) −8.12854 + 7.87608i −0.324623 + 0.314540i
\(628\) 1.74872 6.52631i 0.0697815 0.260428i
\(629\) −5.25417 −0.209498
\(630\) 0 0
\(631\) 44.6402 1.77710 0.888550 0.458781i \(-0.151714\pi\)
0.888550 + 0.458781i \(0.151714\pi\)
\(632\) −1.47982 + 5.52275i −0.0588640 + 0.219683i
\(633\) 15.5365 15.0539i 0.617519 0.598339i
\(634\) −32.2782 18.6358i −1.28193 0.740123i
\(635\) 17.7413 + 26.7844i 0.704043 + 1.06291i
\(636\) −5.62332 10.1047i −0.222979 0.400676i
\(637\) 0 0
\(638\) −5.73777 + 5.73777i −0.227161 + 0.227161i
\(639\) −17.1988 0.542736i −0.680373 0.0214703i
\(640\) −11.3931 + 22.8706i −0.450353 + 0.904041i
\(641\) −13.6251 7.86647i −0.538160 0.310707i 0.206173 0.978516i \(-0.433899\pi\)
−0.744333 + 0.667809i \(0.767232\pi\)
\(642\) 56.6494 14.2254i 2.23577 0.561433i
\(643\) 11.7811 + 11.7811i 0.464600 + 0.464600i 0.900160 0.435560i \(-0.143449\pi\)
−0.435560 + 0.900160i \(0.643449\pi\)
\(644\) 0 0
\(645\) 2.46187 11.2120i 0.0969359 0.441470i
\(646\) 11.1758 + 19.3570i 0.439706 + 0.761593i
\(647\) 14.7533 3.95315i 0.580014 0.155414i 0.0431286 0.999070i \(-0.486267\pi\)
0.536885 + 0.843655i \(0.319601\pi\)
\(648\) 10.7430 9.46628i 0.422026 0.371871i
\(649\) −6.63737 + 3.83209i −0.260540 + 0.150423i
\(650\) 55.6741 6.87448i 2.18372 0.269639i
\(651\) 0 0
\(652\) −5.85518 + 5.85518i −0.229307 + 0.229307i
\(653\) −10.7688 2.88548i −0.421414 0.112918i 0.0418789 0.999123i \(-0.486666\pi\)
−0.463293 + 0.886205i \(0.653332\pi\)
\(654\) −0.232719 + 14.7529i −0.00910002 + 0.576885i
\(655\) −0.361777 1.08001i −0.0141358 0.0421996i
\(656\) 11.6032 6.69914i 0.453031 0.261557i
\(657\) −7.03717 30.0207i −0.274546 1.17122i
\(658\) 0 0
\(659\) 6.73141 0.262219 0.131109 0.991368i \(-0.458146\pi\)
0.131109 + 0.991368i \(0.458146\pi\)
\(660\) 3.02994 5.84929i 0.117940 0.227683i
\(661\) 2.21595 3.83814i 0.0861906 0.149286i −0.819707 0.572783i \(-0.805864\pi\)
0.905898 + 0.423496i \(0.139197\pi\)
\(662\) −5.27274 + 1.41283i −0.204931 + 0.0549110i
\(663\) −32.3233 + 8.11681i −1.25533 + 0.315231i
\(664\) 27.4807i 1.06646i
\(665\) 0 0
\(666\) 7.81072 + 4.84426i 0.302659 + 0.187711i
\(667\) 15.2626 + 4.08960i 0.590971 + 0.158350i
\(668\) −5.54427 20.6915i −0.214514 0.800578i
\(669\) −21.5632 0.340147i −0.833682 0.0131508i
\(670\) 1.89377 9.32447i 0.0731628 0.360236i
\(671\) 5.14846i 0.198754i
\(672\) 0 0
\(673\) −3.35642 3.35642i −0.129381 0.129381i 0.639451 0.768832i \(-0.279162\pi\)
−0.768832 + 0.639451i \(0.779162\pi\)
\(674\) −28.8678 50.0005i −1.11195 1.92595i
\(675\) 8.59895 + 24.5165i 0.330974 + 0.943640i
\(676\) 15.1547 26.2487i 0.582873 1.00957i
\(677\) 2.31012 8.62148i 0.0887850 0.331350i −0.907219 0.420659i \(-0.861799\pi\)
0.996004 + 0.0893084i \(0.0284657\pi\)
\(678\) 44.0277 + 12.5447i 1.69087 + 0.481777i
\(679\) 0 0
\(680\) 8.04230 + 7.11034i 0.308408 + 0.272669i
\(681\) 19.8047 33.0864i 0.758918 1.26787i
\(682\) −4.09814 15.2945i −0.156926 0.585655i
\(683\) 7.85053 + 29.2986i 0.300392 + 1.12108i 0.936840 + 0.349759i \(0.113736\pi\)
−0.636448 + 0.771320i \(0.719597\pi\)
\(684\) 0.436510 13.8326i 0.0166904 0.528902i
\(685\) −0.508516 8.26788i −0.0194294 0.315899i
\(686\) 0 0
\(687\) 3.92722 13.7832i 0.149833 0.525862i
\(688\) −3.82851 + 14.2882i −0.145960 + 0.544732i
\(689\) −19.4257 + 33.6464i −0.740062 + 1.28183i
\(690\) −36.2025 + 1.65396i −1.37821 + 0.0629651i
\(691\) 9.39714 + 16.2763i 0.357484 + 0.619180i 0.987540 0.157369i \(-0.0503013\pi\)
−0.630056 + 0.776550i \(0.716968\pi\)
\(692\) −2.26427 2.26427i −0.0860745 0.0860745i
\(693\) 0 0
\(694\) 35.2932i 1.33971i
\(695\) 13.9232 + 2.82777i 0.528139 + 0.107263i
\(696\) −0.129135 + 8.18634i −0.00489483 + 0.310302i
\(697\) −2.09663 7.82473i −0.0794155 0.296383i
\(698\) 15.7572 + 4.22214i 0.596420 + 0.159810i
\(699\) −27.0597 + 15.0589i −1.02349 + 0.569581i
\(700\) 0 0
\(701\) 10.0310i 0.378867i −0.981894 0.189434i \(-0.939335\pi\)
0.981894 0.189434i \(-0.0606652\pi\)
\(702\) 55.5345 + 17.7353i 2.09601 + 0.669375i
\(703\) −7.08066 + 1.89726i −0.267052 + 0.0715564i
\(704\) 0.100648 0.174327i 0.00379331 0.00657021i
\(705\) 0.187113 0.0594127i 0.00704709 0.00223761i
\(706\) −50.3682 −1.89563
\(707\) 0 0
\(708\) 2.56794 9.01260i 0.0965092 0.338714i
\(709\) 41.9323 24.2096i 1.57480 0.909211i 0.579232 0.815163i \(-0.303352\pi\)
0.995568 0.0940486i \(-0.0299809\pi\)
\(710\) −10.0622 + 20.1989i −0.377627 + 0.758050i
\(711\) −5.09351 9.50232i −0.191021 0.356365i
\(712\) 2.08450 + 0.558539i 0.0781198 + 0.0209321i
\(713\) −21.8023 + 21.8023i −0.816502 + 0.816502i
\(714\) 0 0
\(715\) −22.0902 + 1.35865i −0.826125 + 0.0508108i
\(716\) 11.3105 6.53010i 0.422692 0.244041i
\(717\) −32.1252 + 31.1274i −1.19974 + 1.16247i
\(718\) −32.0003 + 8.57445i −1.19424 + 0.319996i
\(719\) −5.34656 9.26052i −0.199393 0.345359i 0.748939 0.662639i \(-0.230564\pi\)
−0.948332 + 0.317280i \(0.897230\pi\)
\(720\) −9.62744 32.0654i −0.358794 1.19501i
\(721\) 0 0
\(722\) −1.58818 1.58818i −0.0591060 0.0591060i
\(723\) 4.43766 + 17.6719i 0.165038 + 0.657226i
\(724\) −16.6967 9.63983i −0.620527 0.358261i
\(725\) −13.6787 5.79527i −0.508015 0.215231i
\(726\) 13.4460 22.4634i 0.499030 0.833694i
\(727\) −30.9245 + 30.9245i −1.14693 + 1.14693i −0.159773 + 0.987154i \(0.551076\pi\)
−0.987154 + 0.159773i \(0.948924\pi\)
\(728\) 0 0
\(729\) −2.55143 + 26.8792i −0.0944974 + 0.995525i
\(730\) −39.6286 8.04845i −1.46672 0.297887i
\(731\) 7.74534 + 4.47177i 0.286472 + 0.165394i
\(732\) −4.38064 4.52106i −0.161913 0.167103i
\(733\) 8.42207 31.4316i 0.311076 1.16095i −0.616511 0.787346i \(-0.711455\pi\)
0.927587 0.373606i \(-0.121879\pi\)
\(734\) 2.34399 0.0865184
\(735\) 0 0
\(736\) 29.7782 1.09764
\(737\) −0.971576 + 3.62597i −0.0357885 + 0.133564i
\(738\) −4.09747 + 13.5651i −0.150830 + 0.499338i
\(739\) −26.9299 15.5480i −0.990631 0.571941i −0.0851681 0.996367i \(-0.527143\pi\)
−0.905463 + 0.424426i \(0.860476\pi\)
\(740\) 3.55691 2.35601i 0.130754 0.0866086i
\(741\) −40.6287 + 22.6102i −1.49253 + 0.830606i
\(742\) 0 0
\(743\) 4.41646 4.41646i 0.162024 0.162024i −0.621439 0.783463i \(-0.713451\pi\)
0.783463 + 0.621439i \(0.213451\pi\)
\(744\) −13.7081 8.20537i −0.502565 0.300823i
\(745\) 9.07403 3.03957i 0.332447 0.111361i
\(746\) 15.9451 + 9.20591i 0.583792 + 0.337052i
\(747\) −35.4676 37.7791i −1.29769 1.38226i
\(748\) 3.62917 + 3.62917i 0.132695 + 0.132695i
\(749\) 0 0
\(750\) 33.9241 + 3.17398i 1.23873 + 0.115897i
\(751\) 10.3817 + 17.9816i 0.378834 + 0.656160i 0.990893 0.134653i \(-0.0429918\pi\)
−0.612059 + 0.790812i \(0.709658\pi\)
\(752\) −0.244362 + 0.0654766i −0.00891096 + 0.00238768i
\(753\) −8.37140 8.63974i −0.305071 0.314850i
\(754\) −28.8685 + 16.6672i −1.05133 + 0.606984i
\(755\) 8.73178 + 7.71992i 0.317782 + 0.280957i
\(756\) 0 0
\(757\) 27.7515 27.7515i 1.00865 1.00865i 0.00868333 0.999962i \(-0.497236\pi\)
0.999962 0.00868333i \(-0.00276403\pi\)
\(758\) 37.3024 + 9.99514i 1.35488 + 0.363040i
\(759\) 14.2961 + 0.225512i 0.518915 + 0.00818558i
\(760\) 13.4055 + 6.67804i 0.486269 + 0.242238i
\(761\) 44.7004 25.8078i 1.62039 0.935531i 0.633570 0.773685i \(-0.281589\pi\)
0.986816 0.161846i \(-0.0517447\pi\)
\(762\) 42.1099 + 11.9983i 1.52548 + 0.434652i
\(763\) 0 0
\(764\) −6.07087 −0.219636
\(765\) −20.2330 + 0.604772i −0.731527 + 0.0218656i
\(766\) 24.0505 41.6567i 0.868980 1.50512i
\(767\) −30.4119 + 8.14885i −1.09811 + 0.294238i
\(768\) 8.37194 + 33.3393i 0.302096 + 1.20303i
\(769\) 15.3442i 0.553327i −0.960967 0.276663i \(-0.910771\pi\)
0.960967 0.276663i \(-0.0892287\pi\)
\(770\) 0 0
\(771\) 9.73225 + 17.4881i 0.350498 + 0.629818i
\(772\) −20.8105 5.57615i −0.748986 0.200690i
\(773\) −5.90138 22.0243i −0.212258 0.792158i −0.987114 0.160020i \(-0.948844\pi\)
0.774856 0.632138i \(-0.217822\pi\)
\(774\) −7.39112 13.7887i −0.265668 0.495624i
\(775\) 23.1393 17.4615i 0.831189 0.627236i
\(776\) 24.7072i 0.886937i
\(777\) 0 0
\(778\) −38.3147 38.3147i −1.37365 1.37365i
\(779\) −5.65094 9.78772i −0.202466 0.350681i
\(780\) 18.2422 19.9888i 0.653175 0.715714i
\(781\) 4.45155 7.71032i 0.159289 0.275897i
\(782\) 7.30788 27.2734i 0.261329 0.975294i
\(783\) −10.3881 11.4208i −0.371240 0.408148i
\(784\) 0 0
\(785\) −13.7615 + 0.846400i −0.491168 + 0.0302093i
\(786\) −1.33194 0.797269i −0.0475088 0.0284376i
\(787\) 2.26808 + 8.46457i 0.0808482 + 0.301729i 0.994496 0.104778i \(-0.0334132\pi\)
−0.913647 + 0.406507i \(0.866747\pi\)
\(788\) −5.09996 19.0333i −0.181679 0.678034i
\(789\) 0.249813 + 0.149532i 0.00889356 + 0.00532348i
\(790\) −14.1125 + 0.867987i −0.502099 + 0.0308816i
\(791\) 0 0
\(792\) 1.69080 + 7.21297i 0.0600798 + 0.256302i
\(793\) −5.47405 + 20.4294i −0.194389 + 0.725470i
\(794\) 25.9098 44.8771i 0.919505 1.59263i
\(795\) −15.9072 + 17.4302i −0.564169 + 0.618186i
\(796\) 3.35028 + 5.80285i 0.118747 + 0.205677i
\(797\) −24.6954 24.6954i −0.874755 0.874755i 0.118231 0.992986i \(-0.462278\pi\)
−0.992986 + 0.118231i \(0.962278\pi\)
\(798\) 0 0
\(799\) 0.152956i 0.00541119i
\(800\) −27.7270 3.87748i −0.980296 0.137090i
\(801\) −3.58654 + 1.92248i −0.126724 + 0.0679276i
\(802\) 9.52143 + 35.5344i 0.336213 + 1.25477i
\(803\) 15.4102 + 4.12916i 0.543815 + 0.145715i
\(804\) −2.23203 4.01078i −0.0787177 0.141449i
\(805\) 0 0
\(806\) 65.0467i 2.29117i
\(807\) −2.78556 11.0928i −0.0980564 0.390487i
\(808\) 19.5218 5.23084i 0.686773 0.184020i
\(809\) 10.2032 17.6724i 0.358725 0.621329i −0.629023 0.777386i \(-0.716545\pi\)
0.987748 + 0.156057i \(0.0498784\pi\)
\(810\) 30.6355 + 17.7555i 1.07642 + 0.623864i
\(811\) −10.0632 −0.353368 −0.176684 0.984268i \(-0.556537\pi\)
−0.176684 + 0.984268i \(0.556537\pi\)
\(812\) 0 0
\(813\) −39.6935 11.3098i −1.39211 0.396652i
\(814\) −4.11832 + 2.37772i −0.144347 + 0.0833389i
\(815\) 15.1245 + 7.53437i 0.529789 + 0.263918i
\(816\) 26.0812 + 0.411416i 0.913025 + 0.0144024i
\(817\) 12.0525 + 3.22947i 0.421665 + 0.112985i
\(818\) 14.4038 14.4038i 0.503617 0.503617i
\(819\) 0 0
\(820\) 4.92801 + 4.35694i 0.172094 + 0.152151i
\(821\) −48.4153 + 27.9526i −1.68971 + 0.975552i −0.734969 + 0.678100i \(0.762803\pi\)
−0.954737 + 0.297452i \(0.903863\pi\)
\(822\) −7.85598 8.10780i −0.274009 0.282792i
\(823\) 35.2310 9.44013i 1.22808 0.329062i 0.414246 0.910165i \(-0.364045\pi\)
0.813830 + 0.581103i \(0.197378\pi\)
\(824\) 1.65145 + 2.86039i 0.0575309 + 0.0996464i
\(825\) −13.2819 2.07150i −0.462417 0.0721204i
\(826\) 0 0
\(827\) −25.9659 25.9659i −0.902922 0.902922i 0.0927663 0.995688i \(-0.470429\pi\)
−0.995688 + 0.0927663i \(0.970429\pi\)
\(828\) −12.7458 + 11.9660i −0.442948 + 0.415847i
\(829\) 10.9810 + 6.33987i 0.381385 + 0.220193i 0.678421 0.734674i \(-0.262665\pi\)
−0.297036 + 0.954866i \(0.595998\pi\)
\(830\) −64.4384 + 21.5852i −2.23669 + 0.749235i
\(831\) −30.2484 18.1060i −1.04931 0.628089i
\(832\) 0.584729 0.584729i 0.0202718 0.0202718i
\(833\) 0 0
\(834\) 16.9197 9.41593i 0.585881 0.326047i
\(835\) −36.4434 + 24.1392i −1.26117 + 0.835372i
\(836\) 6.20123 + 3.58028i 0.214474 + 0.123827i
\(837\) 29.4355 6.41194i 1.01744 0.221629i
\(838\) −0.239313 + 0.893128i −0.00826693 + 0.0308526i
\(839\) 27.2730 0.941569 0.470785 0.882248i \(-0.343971\pi\)
0.470785 + 0.882248i \(0.343971\pi\)
\(840\) 0 0
\(841\) −20.1723 −0.695596
\(842\) 7.07203 26.3932i 0.243718 0.909569i
\(843\) −1.81633 1.87455i −0.0625577 0.0645630i
\(844\) −11.8527 6.84316i −0.407987 0.235551i
\(845\) −60.6124 12.3102i −2.08513 0.423484i
\(846\) 0.141023 0.227380i 0.00484846 0.00781749i
\(847\) 0 0
\(848\) 21.5021 21.5021i 0.738385 0.738385i
\(849\) 10.6823 17.8462i 0.366615 0.612479i
\(850\) −10.3558 + 24.4431i −0.355201 + 0.838390i
\(851\) 8.01950 + 4.63006i 0.274905 + 0.158716i
\(852\) 2.65135 + 10.5584i 0.0908339 + 0.361724i
\(853\) −8.57549 8.57549i −0.293619 0.293619i 0.544889 0.838508i \(-0.316572\pi\)
−0.838508 + 0.544889i \(0.816572\pi\)
\(854\) 0 0
\(855\) −27.0482 + 8.12106i −0.925029 + 0.277734i
\(856\) 15.2460 + 26.4069i 0.521099 + 0.902570i
\(857\) −28.4758 + 7.63008i −0.972716 + 0.260638i −0.709974 0.704228i \(-0.751293\pi\)
−0.262742 + 0.964866i \(0.584627\pi\)
\(858\) −21.6624 + 20.9896i −0.739544 + 0.716574i
\(859\) 8.25133 4.76391i 0.281532 0.162543i −0.352585 0.935780i \(-0.614697\pi\)
0.634117 + 0.773237i \(0.281364\pi\)
\(860\) −7.24852 + 0.445820i −0.247172 + 0.0152023i
\(861\) 0 0
\(862\) −28.6332 + 28.6332i −0.975249 + 0.975249i
\(863\) 44.2282 + 11.8509i 1.50554 + 0.403409i 0.914953 0.403561i \(-0.132228\pi\)
0.590592 + 0.806971i \(0.298894\pi\)
\(864\) −24.4808 15.7231i −0.832853 0.534912i
\(865\) −2.91363 + 5.84883i −0.0990663 + 0.198866i
\(866\) −33.1859 + 19.1599i −1.12770 + 0.651080i
\(867\) −3.74695 + 13.1505i −0.127253 + 0.446615i
\(868\) 0 0
\(869\) 5.57830 0.189231
\(870\) −19.2973 + 6.12732i −0.654239 + 0.207736i
\(871\) −7.71055 + 13.3551i −0.261262 + 0.452519i
\(872\) −7.44029 + 1.99362i −0.251960 + 0.0675124i
\(873\) 31.8881 + 33.9663i 1.07925 + 1.14958i
\(874\) 39.3931i 1.33249i
\(875\) 0 0
\(876\) −17.0457 + 9.48604i −0.575919 + 0.320503i
\(877\) 30.4658 + 8.16328i 1.02876 + 0.275654i 0.733446 0.679747i \(-0.237911\pi\)
0.295310 + 0.955402i \(0.404577\pi\)
\(878\) −2.75185 10.2701i −0.0928705 0.346598i
\(879\) 0.0911197 5.77642i 0.00307339 0.194834i
\(880\) 16.9758 + 3.44773i 0.572253 + 0.116223i
\(881\) 31.6927i 1.06775i −0.845562 0.533877i \(-0.820734\pi\)
0.845562 0.533877i \(-0.179266\pi\)
\(882\) 0 0
\(883\) −19.2435 19.2435i −0.647595 0.647595i 0.304816 0.952411i \(-0.401405\pi\)
−0.952411 + 0.304816i \(0.901405\pi\)
\(884\) 10.5421 + 18.2594i 0.354569 + 0.614131i
\(885\) −19.1033 + 0.872759i −0.642151 + 0.0293375i
\(886\) −10.7584 + 18.6341i −0.361436 + 0.626025i
\(887\) 2.66050 9.92913i 0.0893309 0.333388i −0.906768 0.421630i \(-0.861458\pi\)
0.996099 + 0.0882421i \(0.0281249\pi\)
\(888\) −1.31480 + 4.61451i −0.0441219 + 0.154853i
\(889\) 0 0
\(890\) 0.327611 + 5.32658i 0.0109815 + 0.178547i
\(891\) −11.6338 7.73383i −0.389746 0.259093i
\(892\) 3.53123 + 13.1787i 0.118234 + 0.441257i
\(893\) 0.0552316 + 0.206127i 0.00184826 + 0.00689778i
\(894\) 6.69848 11.1907i 0.224031 0.374273i
\(895\) −19.9664 17.6526i −0.667402 0.590061i
\(896\) 0 0
\(897\) 56.4880 + 16.0950i 1.88608 + 0.537397i
\(898\) 9.45382 35.2822i 0.315478 1.17738i
\(899\) −8.61290 + 14.9180i −0.287256 + 0.497543i
\(900\) 13.4259 9.48206i 0.447531 0.316069i
\(901\) −9.19269 15.9222i −0.306253 0.530445i
\(902\) −5.18437 5.18437i −0.172621 0.172621i
\(903\) 0 0
\(904\) 23.8995i 0.794886i
\(905\) −7.83046 + 38.5553i −0.260293 + 1.28162i
\(906\) 15.8826 + 0.250539i 0.527665 + 0.00832360i
\(907\) 7.33317 + 27.3678i 0.243494 + 0.908732i 0.974134 + 0.225969i \(0.0725550\pi\)
−0.730640 + 0.682763i \(0.760778\pi\)
\(908\) −23.5642 6.31400i −0.782005 0.209538i
\(909\) −20.0864 + 32.3867i −0.666225 + 1.07420i
\(910\) 0 0
\(911\) 34.2452i 1.13459i 0.823514 + 0.567296i \(0.192011\pi\)
−0.823514 + 0.567296i \(0.807989\pi\)
\(912\) 35.2963 8.86337i 1.16878 0.293496i
\(913\) 25.8977 6.93927i 0.857089 0.229656i
\(914\) 21.5330 37.2963i 0.712250 1.23365i
\(915\) −5.90866 + 11.4067i −0.195334 + 0.377092i
\(916\) −9.06698 −0.299582
\(917\) 0 0
\(918\) −20.4084 + 18.5629i −0.673576 + 0.612667i
\(919\) 38.4001 22.1703i 1.26670 0.731331i 0.292340 0.956315i \(-0.405566\pi\)
0.974363 + 0.224984i \(0.0722329\pi\)
\(920\) −6.00930 17.9396i −0.198121 0.591450i
\(921\) 0.0306604 1.94368i 0.00101029 0.0640464i
\(922\) −7.41711 1.98741i −0.244270 0.0654518i
\(923\) 25.8620 25.8620i 0.851257 0.851257i
\(924\) 0 0
\(925\) −6.86418 5.35535i −0.225693 0.176083i
\(926\) −4.39920 + 2.53988i −0.144567 + 0.0834656i
\(927\) −5.96206 1.80090i −0.195820 0.0591493i
\(928\) 16.0696 4.30584i 0.527511 0.141346i
\(929\) 4.94121 + 8.55843i 0.162116 + 0.280793i 0.935627 0.352989i \(-0.114835\pi\)
−0.773511 + 0.633782i \(0.781501\pi\)
\(930\) 8.47314 38.5888i 0.277845 1.26538i
\(931\) 0 0
\(932\) 13.8534 + 13.8534i 0.453784 + 0.453784i
\(933\) −16.6565 + 4.18267i −0.545310 + 0.136935i
\(934\) 30.0890 + 17.3719i 0.984542 + 0.568426i
\(935\) 4.66996 9.37450i 0.152724 0.306579i
\(936\) −0.959930 + 30.4192i −0.0313763 + 0.994284i
\(937\) 22.4981 22.4981i 0.734980 0.734980i −0.236622 0.971602i \(-0.576040\pi\)
0.971602 + 0.236622i \(0.0760403\pi\)
\(938\) 0 0
\(939\) −11.8534 21.2996i −0.386821 0.695088i
\(940\) −0.0685865 0.103546i −0.00223705 0.00337730i
\(941\) 48.8567 + 28.2074i 1.59268 + 0.919536i 0.992844 + 0.119415i \(0.0381020\pi\)
0.599839 + 0.800121i \(0.295231\pi\)
\(942\) −13.4950 + 13.0759i −0.439692 + 0.426036i
\(943\) −3.69516 + 13.7905i −0.120331 + 0.449082i
\(944\) 24.6427 0.802052
\(945\) 0 0
\(946\) 8.09460 0.263178
\(947\) 3.02006 11.2710i 0.0981386 0.366258i −0.899338 0.437254i \(-0.855951\pi\)
0.997477 + 0.0709958i \(0.0226177\pi\)
\(948\) −4.89852 + 4.74638i −0.159097 + 0.154155i
\(949\) 56.7584 + 32.7695i 1.84246 + 1.06374i
\(950\) −5.12946 + 36.6795i −0.166422 + 1.19004i
\(951\) 17.8418 + 32.0603i 0.578560 + 1.03963i
\(952\) 0 0
\(953\) 18.3169 18.3169i 0.593344 0.593344i −0.345189 0.938533i \(-0.612185\pi\)
0.938533 + 0.345189i \(0.112185\pi\)
\(954\) −1.01439 + 32.1450i −0.0328421 + 1.04073i
\(955\) 3.93488 + 11.7468i 0.127330 + 0.380117i
\(956\) 24.5081 + 14.1498i 0.792650 + 0.457637i
\(957\) 7.74739 1.94547i 0.250438 0.0628882i
\(958\) 19.9147 + 19.9147i 0.643414 + 0.643414i
\(959\) 0 0
\(960\) 0.423058 0.270721i 0.0136541 0.00873749i
\(961\) −1.30666 2.26320i −0.0421503 0.0730064i
\(962\) −18.8699 + 5.05616i −0.608389 + 0.163017i
\(963\) −55.0414 16.6258i −1.77368 0.535759i
\(964\) 9.98288 5.76362i 0.321527 0.185634i
\(965\) 2.69892 + 43.8814i 0.0868814 + 1.41259i
\(966\) 0 0
\(967\) −6.55794 + 6.55794i −0.210889 + 0.210889i −0.804645 0.593756i \(-0.797644\pi\)
0.593756 + 0.804645i \(0.297644\pi\)
\(968\) 13.2017 + 3.53738i 0.424318 + 0.113696i
\(969\) 0.347043 22.0004i 0.0111486 0.706754i
\(970\) 57.9351 19.4068i 1.86018 0.623114i
\(971\) −12.0561 + 6.96061i −0.386899 + 0.223377i −0.680816 0.732455i \(-0.738375\pi\)
0.293916 + 0.955831i \(0.405041\pi\)
\(972\) 16.7965 3.10739i 0.538748 0.0996696i
\(973\) 0 0
\(974\) −51.2825 −1.64320
\(975\) −50.5010 22.3417i −1.61733 0.715507i
\(976\) 8.27695 14.3361i 0.264939 0.458887i
\(977\) 37.1577 9.95638i 1.18878 0.318533i 0.390377 0.920655i \(-0.372345\pi\)
0.798404 + 0.602122i \(0.205678\pi\)
\(978\) 22.3357 5.60879i 0.714216 0.179349i
\(979\) 2.10546i 0.0672909i
\(980\) 0 0
\(981\) 7.65550 12.3435i 0.244421 0.394096i
\(982\) −50.7898 13.6091i −1.62077 0.434284i
\(983\) −13.4886 50.3403i −0.430221 1.60561i −0.752251 0.658877i \(-0.771032\pi\)
0.322030 0.946730i \(-0.395635\pi\)
\(984\) −7.39677 0.116680i −0.235800 0.00371961i
\(985\) −33.5228 + 22.2047i −1.06813 + 0.707501i
\(986\) 15.7746i 0.502365i
\(987\) 0 0
\(988\) 20.8002 + 20.8002i 0.661742 + 0.661742i
\(989\) −7.88119 13.6506i −0.250607 0.434065i
\(990\) −15.5854 + 9.63026i −0.495336 + 0.306070i
\(991\) 20.9326 36.2563i 0.664945 1.15172i −0.314356 0.949305i \(-0.601788\pi\)
0.979300 0.202413i \(-0.0648782\pi\)
\(992\) −8.40214 + 31.3572i −0.266768 + 0.995592i
\(993\) 5.16795 + 1.47249i 0.164000 + 0.0467281i
\(994\) 0 0
\(995\) 9.05669 10.2438i 0.287116 0.324749i
\(996\) −16.8374 + 28.1291i −0.533513 + 0.891303i
\(997\) −4.18963 15.6359i −0.132687 0.495194i 0.867310 0.497769i \(-0.165847\pi\)
−0.999997 + 0.00257448i \(0.999181\pi\)
\(998\) 0.428339 + 1.59858i 0.0135588 + 0.0506023i
\(999\) −4.14814 8.04074i −0.131241 0.254398i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.y.g.263.3 48
3.2 odd 2 inner 735.2.y.g.263.10 48
5.2 odd 4 inner 735.2.y.g.557.3 48
7.2 even 3 inner 735.2.y.g.128.10 48
7.3 odd 6 105.2.j.a.8.3 24
7.4 even 3 735.2.j.h.638.3 24
7.5 odd 6 735.2.y.j.128.10 48
7.6 odd 2 735.2.y.j.263.3 48
15.2 even 4 inner 735.2.y.g.557.10 48
21.2 odd 6 inner 735.2.y.g.128.3 48
21.5 even 6 735.2.y.j.128.3 48
21.11 odd 6 735.2.j.h.638.10 24
21.17 even 6 105.2.j.a.8.10 yes 24
21.20 even 2 735.2.y.j.263.10 48
35.2 odd 12 inner 735.2.y.g.422.10 48
35.3 even 12 525.2.j.b.407.3 24
35.12 even 12 735.2.y.j.422.10 48
35.17 even 12 105.2.j.a.92.10 yes 24
35.24 odd 6 525.2.j.b.218.10 24
35.27 even 4 735.2.y.j.557.3 48
35.32 odd 12 735.2.j.h.197.10 24
105.2 even 12 inner 735.2.y.g.422.3 48
105.17 odd 12 105.2.j.a.92.3 yes 24
105.32 even 12 735.2.j.h.197.3 24
105.38 odd 12 525.2.j.b.407.10 24
105.47 odd 12 735.2.y.j.422.3 48
105.59 even 6 525.2.j.b.218.3 24
105.62 odd 4 735.2.y.j.557.10 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.j.a.8.3 24 7.3 odd 6
105.2.j.a.8.10 yes 24 21.17 even 6
105.2.j.a.92.3 yes 24 105.17 odd 12
105.2.j.a.92.10 yes 24 35.17 even 12
525.2.j.b.218.3 24 105.59 even 6
525.2.j.b.218.10 24 35.24 odd 6
525.2.j.b.407.3 24 35.3 even 12
525.2.j.b.407.10 24 105.38 odd 12
735.2.j.h.197.3 24 105.32 even 12
735.2.j.h.197.10 24 35.32 odd 12
735.2.j.h.638.3 24 7.4 even 3
735.2.j.h.638.10 24 21.11 odd 6
735.2.y.g.128.3 48 21.2 odd 6 inner
735.2.y.g.128.10 48 7.2 even 3 inner
735.2.y.g.263.3 48 1.1 even 1 trivial
735.2.y.g.263.10 48 3.2 odd 2 inner
735.2.y.g.422.3 48 105.2 even 12 inner
735.2.y.g.422.10 48 35.2 odd 12 inner
735.2.y.g.557.3 48 5.2 odd 4 inner
735.2.y.g.557.10 48 15.2 even 4 inner
735.2.y.j.128.3 48 21.5 even 6
735.2.y.j.128.10 48 7.5 odd 6
735.2.y.j.263.3 48 7.6 odd 2
735.2.y.j.263.10 48 21.20 even 2
735.2.y.j.422.3 48 105.47 odd 12
735.2.y.j.422.10 48 35.12 even 12
735.2.y.j.557.3 48 35.27 even 4
735.2.y.j.557.10 48 105.62 odd 4