Properties

Label 735.2.q.c.79.3
Level $735$
Weight $2$
Character 735.79
Analytic conductor $5.869$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(79,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.79"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 79.3
Root \(0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 735.79
Dual form 735.2.q.c.214.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.448288 + 0.258819i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(-0.866025 - 1.50000i) q^{4} +(-0.792893 - 2.09077i) q^{5} -0.517638 q^{6} -1.93185i q^{8} +(0.500000 - 0.866025i) q^{9} +(0.185687 - 1.14248i) q^{10} +(-1.73205 - 3.00000i) q^{11} +(1.50000 + 0.866025i) q^{12} +4.00000i q^{13} +(1.73205 + 1.41421i) q^{15} +(-1.23205 + 2.13397i) q^{16} +(-3.46410 + 2.00000i) q^{17} +(0.448288 - 0.258819i) q^{18} +(-2.63896 + 4.57081i) q^{19} +(-2.44949 + 3.00000i) q^{20} -1.79315i q^{22} +(3.01790 + 1.74238i) q^{23} +(0.965926 + 1.67303i) q^{24} +(-3.74264 + 3.31552i) q^{25} +(-1.03528 + 1.79315i) q^{26} +1.00000i q^{27} +4.92820 q^{29} +(0.410432 + 1.08226i) q^{30} +(-3.67423 - 6.36396i) q^{31} +(-4.45069 + 2.56961i) q^{32} +(3.00000 + 1.73205i) q^{33} -2.07055 q^{34} -1.73205 q^{36} +(-9.14162 - 5.27792i) q^{37} +(-2.36603 + 1.36603i) q^{38} +(-2.00000 - 3.46410i) q^{39} +(-4.03906 + 1.53175i) q^{40} -8.48528 q^{41} +(-3.00000 + 5.19615i) q^{44} +(-2.20711 - 0.358719i) q^{45} +(0.901924 + 1.56218i) q^{46} +(5.19615 + 3.00000i) q^{47} -2.46410i q^{48} +(-2.53590 + 0.517638i) q^{50} +(2.00000 - 3.46410i) q^{51} +(6.00000 - 3.46410i) q^{52} +(6.36396 - 3.67423i) q^{53} +(-0.258819 + 0.448288i) q^{54} +(-4.89898 + 6.00000i) q^{55} -5.27792i q^{57} +(2.20925 + 1.27551i) q^{58} +(0.378937 + 0.656339i) q^{59} +(0.621320 - 3.82282i) q^{60} +(0.328169 - 0.568406i) q^{61} -3.80385i q^{62} +2.26795 q^{64} +(8.36308 - 3.17157i) q^{65} +(0.896575 + 1.55291i) q^{66} +(-10.9348 + 6.31319i) q^{67} +(6.00000 + 3.46410i) q^{68} -3.48477 q^{69} -6.39230 q^{71} +(-1.67303 - 0.965926i) q^{72} +(-2.53590 + 1.46410i) q^{73} +(-2.73205 - 4.73205i) q^{74} +(1.58346 - 4.74264i) q^{75} +9.14162 q^{76} -2.07055i q^{78} +(-2.26795 + 3.92820i) q^{79} +(5.43854 + 0.883921i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-3.80385 - 2.19615i) q^{82} +6.00000i q^{83} +(6.92820 + 5.65685i) q^{85} +(-4.26795 + 2.46410i) q^{87} +(-5.79555 + 3.34607i) q^{88} +(7.72741 - 13.3843i) q^{89} +(-0.896575 - 0.732051i) q^{90} -6.03579i q^{92} +(6.36396 + 3.67423i) q^{93} +(1.55291 + 2.68973i) q^{94} +(11.6489 + 1.89329i) q^{95} +(2.56961 - 4.45069i) q^{96} -18.9282i q^{97} -3.46410 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{5} + 4 q^{9} + 12 q^{10} + 12 q^{12} + 4 q^{16} + 4 q^{25} - 16 q^{29} + 4 q^{30} + 24 q^{33} - 12 q^{38} - 16 q^{39} - 12 q^{40} - 24 q^{44} - 12 q^{45} + 28 q^{46} - 48 q^{50} + 16 q^{51}+ \cdots + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.448288 + 0.258819i 0.316987 + 0.183013i 0.650049 0.759892i \(-0.274748\pi\)
−0.333062 + 0.942905i \(0.608082\pi\)
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i
\(4\) −0.866025 1.50000i −0.433013 0.750000i
\(5\) −0.792893 2.09077i −0.354593 0.935021i
\(6\) −0.517638 −0.211325
\(7\) 0 0
\(8\) 1.93185i 0.683013i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0.185687 1.14248i 0.0587193 0.361285i
\(11\) −1.73205 3.00000i −0.522233 0.904534i −0.999665 0.0258656i \(-0.991766\pi\)
0.477432 0.878668i \(-0.341568\pi\)
\(12\) 1.50000 + 0.866025i 0.433013 + 0.250000i
\(13\) 4.00000i 1.10940i 0.832050 + 0.554700i \(0.187167\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 0 0
\(15\) 1.73205 + 1.41421i 0.447214 + 0.365148i
\(16\) −1.23205 + 2.13397i −0.308013 + 0.533494i
\(17\) −3.46410 + 2.00000i −0.840168 + 0.485071i −0.857321 0.514782i \(-0.827873\pi\)
0.0171533 + 0.999853i \(0.494540\pi\)
\(18\) 0.448288 0.258819i 0.105662 0.0610042i
\(19\) −2.63896 + 4.57081i −0.605419 + 1.04862i 0.386567 + 0.922261i \(0.373661\pi\)
−0.991985 + 0.126354i \(0.959672\pi\)
\(20\) −2.44949 + 3.00000i −0.547723 + 0.670820i
\(21\) 0 0
\(22\) 1.79315i 0.382301i
\(23\) 3.01790 + 1.74238i 0.629275 + 0.363312i 0.780471 0.625192i \(-0.214979\pi\)
−0.151196 + 0.988504i \(0.548313\pi\)
\(24\) 0.965926 + 1.67303i 0.197169 + 0.341506i
\(25\) −3.74264 + 3.31552i −0.748528 + 0.663103i
\(26\) −1.03528 + 1.79315i −0.203034 + 0.351666i
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 4.92820 0.915144 0.457572 0.889172i \(-0.348719\pi\)
0.457572 + 0.889172i \(0.348719\pi\)
\(30\) 0.410432 + 1.08226i 0.0749342 + 0.197593i
\(31\) −3.67423 6.36396i −0.659912 1.14300i −0.980638 0.195829i \(-0.937260\pi\)
0.320726 0.947172i \(-0.396073\pi\)
\(32\) −4.45069 + 2.56961i −0.786779 + 0.454247i
\(33\) 3.00000 + 1.73205i 0.522233 + 0.301511i
\(34\) −2.07055 −0.355097
\(35\) 0 0
\(36\) −1.73205 −0.288675
\(37\) −9.14162 5.27792i −1.50287 0.867684i −0.999994 0.00332716i \(-0.998941\pi\)
−0.502879 0.864357i \(-0.667726\pi\)
\(38\) −2.36603 + 1.36603i −0.383820 + 0.221599i
\(39\) −2.00000 3.46410i −0.320256 0.554700i
\(40\) −4.03906 + 1.53175i −0.638631 + 0.242191i
\(41\) −8.48528 −1.32518 −0.662589 0.748983i \(-0.730542\pi\)
−0.662589 + 0.748983i \(0.730542\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) −3.00000 + 5.19615i −0.452267 + 0.783349i
\(45\) −2.20711 0.358719i −0.329016 0.0534747i
\(46\) 0.901924 + 1.56218i 0.132981 + 0.230331i
\(47\) 5.19615 + 3.00000i 0.757937 + 0.437595i 0.828554 0.559908i \(-0.189164\pi\)
−0.0706177 + 0.997503i \(0.522497\pi\)
\(48\) 2.46410i 0.355662i
\(49\) 0 0
\(50\) −2.53590 + 0.517638i −0.358630 + 0.0732051i
\(51\) 2.00000 3.46410i 0.280056 0.485071i
\(52\) 6.00000 3.46410i 0.832050 0.480384i
\(53\) 6.36396 3.67423i 0.874157 0.504695i 0.00542976 0.999985i \(-0.498272\pi\)
0.868728 + 0.495290i \(0.164938\pi\)
\(54\) −0.258819 + 0.448288i −0.0352208 + 0.0610042i
\(55\) −4.89898 + 6.00000i −0.660578 + 0.809040i
\(56\) 0 0
\(57\) 5.27792i 0.699077i
\(58\) 2.20925 + 1.27551i 0.290089 + 0.167483i
\(59\) 0.378937 + 0.656339i 0.0493334 + 0.0854480i 0.889638 0.456667i \(-0.150957\pi\)
−0.840304 + 0.542115i \(0.817624\pi\)
\(60\) 0.621320 3.82282i 0.0802121 0.493524i
\(61\) 0.328169 0.568406i 0.0420178 0.0727769i −0.844252 0.535947i \(-0.819955\pi\)
0.886269 + 0.463170i \(0.153288\pi\)
\(62\) 3.80385i 0.483089i
\(63\) 0 0
\(64\) 2.26795 0.283494
\(65\) 8.36308 3.17157i 1.03731 0.393385i
\(66\) 0.896575 + 1.55291i 0.110361 + 0.191151i
\(67\) −10.9348 + 6.31319i −1.33589 + 0.771279i −0.986196 0.165583i \(-0.947049\pi\)
−0.349699 + 0.936862i \(0.613716\pi\)
\(68\) 6.00000 + 3.46410i 0.727607 + 0.420084i
\(69\) −3.48477 −0.419517
\(70\) 0 0
\(71\) −6.39230 −0.758627 −0.379314 0.925268i \(-0.623840\pi\)
−0.379314 + 0.925268i \(0.623840\pi\)
\(72\) −1.67303 0.965926i −0.197169 0.113835i
\(73\) −2.53590 + 1.46410i −0.296804 + 0.171360i −0.641006 0.767535i \(-0.721483\pi\)
0.344202 + 0.938896i \(0.388149\pi\)
\(74\) −2.73205 4.73205i −0.317594 0.550090i
\(75\) 1.58346 4.74264i 0.182843 0.547633i
\(76\) 9.14162 1.04862
\(77\) 0 0
\(78\) 2.07055i 0.234444i
\(79\) −2.26795 + 3.92820i −0.255164 + 0.441957i −0.964940 0.262470i \(-0.915463\pi\)
0.709776 + 0.704428i \(0.248796\pi\)
\(80\) 5.43854 + 0.883921i 0.608047 + 0.0988254i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −3.80385 2.19615i −0.420065 0.242524i
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) 0 0
\(85\) 6.92820 + 5.65685i 0.751469 + 0.613572i
\(86\) 0 0
\(87\) −4.26795 + 2.46410i −0.457572 + 0.264179i
\(88\) −5.79555 + 3.34607i −0.617808 + 0.356692i
\(89\) 7.72741 13.3843i 0.819103 1.41873i −0.0872401 0.996187i \(-0.527805\pi\)
0.906344 0.422542i \(-0.138862\pi\)
\(90\) −0.896575 0.732051i −0.0945074 0.0771649i
\(91\) 0 0
\(92\) 6.03579i 0.629275i
\(93\) 6.36396 + 3.67423i 0.659912 + 0.381000i
\(94\) 1.55291 + 2.68973i 0.160171 + 0.277424i
\(95\) 11.6489 + 1.89329i 1.19515 + 0.194248i
\(96\) 2.56961 4.45069i 0.262260 0.454247i
\(97\) 18.9282i 1.92187i −0.276778 0.960934i \(-0.589267\pi\)
0.276778 0.960934i \(-0.410733\pi\)
\(98\) 0 0
\(99\) −3.46410 −0.348155
\(100\) 8.21449 + 2.74264i 0.821449 + 0.274264i
\(101\) −3.48477 6.03579i −0.346747 0.600584i 0.638922 0.769271i \(-0.279380\pi\)
−0.985670 + 0.168687i \(0.946047\pi\)
\(102\) 1.79315 1.03528i 0.177548 0.102508i
\(103\) −12.0000 6.92820i −1.18240 0.682656i −0.225828 0.974167i \(-0.572509\pi\)
−0.956567 + 0.291511i \(0.905842\pi\)
\(104\) 7.72741 0.757735
\(105\) 0 0
\(106\) 3.80385 0.369462
\(107\) −13.4722 7.77817i −1.30241 0.751945i −0.321590 0.946879i \(-0.604217\pi\)
−0.980816 + 0.194935i \(0.937551\pi\)
\(108\) 1.50000 0.866025i 0.144338 0.0833333i
\(109\) 7.92820 + 13.7321i 0.759384 + 1.31529i 0.943165 + 0.332325i \(0.107833\pi\)
−0.183781 + 0.982967i \(0.558834\pi\)
\(110\) −3.74907 + 1.42178i −0.357459 + 0.135561i
\(111\) 10.5558 1.00192
\(112\) 0 0
\(113\) 5.27792i 0.496505i 0.968695 + 0.248252i \(0.0798562\pi\)
−0.968695 + 0.248252i \(0.920144\pi\)
\(114\) 1.36603 2.36603i 0.127940 0.221599i
\(115\) 1.25005 7.69125i 0.116568 0.717213i
\(116\) −4.26795 7.39230i −0.396269 0.686358i
\(117\) 3.46410 + 2.00000i 0.320256 + 0.184900i
\(118\) 0.392305i 0.0361146i
\(119\) 0 0
\(120\) 2.73205 3.34607i 0.249401 0.305453i
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) 0.294229 0.169873i 0.0266382 0.0153796i
\(123\) 7.34847 4.24264i 0.662589 0.382546i
\(124\) −6.36396 + 11.0227i −0.571501 + 0.989868i
\(125\) 9.89949 + 5.19615i 0.885438 + 0.464758i
\(126\) 0 0
\(127\) 2.82843i 0.250982i 0.992095 + 0.125491i \(0.0400507\pi\)
−0.992095 + 0.125491i \(0.959949\pi\)
\(128\) 9.91808 + 5.72620i 0.876642 + 0.506130i
\(129\) 0 0
\(130\) 4.56993 + 0.742747i 0.400809 + 0.0651433i
\(131\) −2.82843 + 4.89898i −0.247121 + 0.428026i −0.962726 0.270479i \(-0.912818\pi\)
0.715605 + 0.698505i \(0.246151\pi\)
\(132\) 6.00000i 0.522233i
\(133\) 0 0
\(134\) −6.53590 −0.564616
\(135\) 2.09077 0.792893i 0.179945 0.0682414i
\(136\) 3.86370 + 6.69213i 0.331310 + 0.573845i
\(137\) 8.81345 5.08845i 0.752984 0.434735i −0.0737871 0.997274i \(-0.523509\pi\)
0.826771 + 0.562539i \(0.190175\pi\)
\(138\) −1.56218 0.901924i −0.132981 0.0767769i
\(139\) −0.378937 −0.0321410 −0.0160705 0.999871i \(-0.505116\pi\)
−0.0160705 + 0.999871i \(0.505116\pi\)
\(140\) 0 0
\(141\) −6.00000 −0.505291
\(142\) −2.86559 1.65445i −0.240475 0.138838i
\(143\) 12.0000 6.92820i 1.00349 0.579365i
\(144\) 1.23205 + 2.13397i 0.102671 + 0.177831i
\(145\) −3.90754 10.3037i −0.324503 0.855679i
\(146\) −1.51575 −0.125444
\(147\) 0 0
\(148\) 18.2832i 1.50287i
\(149\) 3.53590 6.12436i 0.289672 0.501727i −0.684059 0.729426i \(-0.739787\pi\)
0.973731 + 0.227700i \(0.0731204\pi\)
\(150\) 1.93733 1.71624i 0.158183 0.140130i
\(151\) 9.73205 + 16.8564i 0.791983 + 1.37175i 0.924737 + 0.380606i \(0.124285\pi\)
−0.132754 + 0.991149i \(0.542382\pi\)
\(152\) 8.83013 + 5.09808i 0.716218 + 0.413509i
\(153\) 4.00000i 0.323381i
\(154\) 0 0
\(155\) −10.3923 + 12.7279i −0.834730 + 1.02233i
\(156\) −3.46410 + 6.00000i −0.277350 + 0.480384i
\(157\) −4.39230 + 2.53590i −0.350544 + 0.202387i −0.664925 0.746910i \(-0.731536\pi\)
0.314381 + 0.949297i \(0.398203\pi\)
\(158\) −2.03339 + 1.17398i −0.161768 + 0.0933966i
\(159\) −3.67423 + 6.36396i −0.291386 + 0.504695i
\(160\) 8.90138 + 7.26795i 0.703716 + 0.574582i
\(161\) 0 0
\(162\) 0.517638i 0.0406695i
\(163\) −19.4201 11.2122i −1.52110 0.878205i −0.999690 0.0248963i \(-0.992074\pi\)
−0.521406 0.853309i \(-0.674592\pi\)
\(164\) 7.34847 + 12.7279i 0.573819 + 0.993884i
\(165\) 1.24264 7.64564i 0.0967394 0.595212i
\(166\) −1.55291 + 2.68973i −0.120530 + 0.208763i
\(167\) 18.9282i 1.46471i −0.680924 0.732354i \(-0.738422\pi\)
0.680924 0.732354i \(-0.261578\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) 1.64173 + 4.32905i 0.125915 + 0.332023i
\(171\) 2.63896 + 4.57081i 0.201806 + 0.349539i
\(172\) 0 0
\(173\) −13.8564 8.00000i −1.05348 0.608229i −0.129861 0.991532i \(-0.541453\pi\)
−0.923622 + 0.383304i \(0.874786\pi\)
\(174\) −2.55103 −0.193393
\(175\) 0 0
\(176\) 8.53590 0.643418
\(177\) −0.656339 0.378937i −0.0493334 0.0284827i
\(178\) 6.92820 4.00000i 0.519291 0.299813i
\(179\) 5.19615 + 9.00000i 0.388379 + 0.672692i 0.992232 0.124404i \(-0.0397019\pi\)
−0.603853 + 0.797096i \(0.706369\pi\)
\(180\) 1.37333 + 3.62132i 0.102362 + 0.269917i
\(181\) 6.31319 0.469256 0.234628 0.972085i \(-0.424613\pi\)
0.234628 + 0.972085i \(0.424613\pi\)
\(182\) 0 0
\(183\) 0.656339i 0.0485180i
\(184\) 3.36603 5.83013i 0.248147 0.429803i
\(185\) −3.78658 + 23.2979i −0.278395 + 1.71289i
\(186\) 1.90192 + 3.29423i 0.139456 + 0.241545i
\(187\) 12.0000 + 6.92820i 0.877527 + 0.506640i
\(188\) 10.3923i 0.757937i
\(189\) 0 0
\(190\) 4.73205 + 3.86370i 0.343299 + 0.280302i
\(191\) 3.73205 6.46410i 0.270042 0.467726i −0.698831 0.715287i \(-0.746296\pi\)
0.968872 + 0.247561i \(0.0796292\pi\)
\(192\) −1.96410 + 1.13397i −0.141747 + 0.0818376i
\(193\) 5.55532 3.20736i 0.399881 0.230871i −0.286552 0.958065i \(-0.592509\pi\)
0.686432 + 0.727194i \(0.259176\pi\)
\(194\) 4.89898 8.48528i 0.351726 0.609208i
\(195\) −5.65685 + 6.92820i −0.405096 + 0.496139i
\(196\) 0 0
\(197\) 22.8033i 1.62467i −0.583193 0.812333i \(-0.698197\pi\)
0.583193 0.812333i \(-0.301803\pi\)
\(198\) −1.55291 0.896575i −0.110361 0.0637168i
\(199\) −4.05317 7.02030i −0.287322 0.497656i 0.685848 0.727745i \(-0.259432\pi\)
−0.973170 + 0.230089i \(0.926098\pi\)
\(200\) 6.40508 + 7.23023i 0.452908 + 0.511254i
\(201\) 6.31319 10.9348i 0.445298 0.771279i
\(202\) 3.60770i 0.253837i
\(203\) 0 0
\(204\) −6.92820 −0.485071
\(205\) 6.72792 + 17.7408i 0.469898 + 1.23907i
\(206\) −3.58630 6.21166i −0.249869 0.432787i
\(207\) 3.01790 1.74238i 0.209758 0.121104i
\(208\) −8.53590 4.92820i −0.591858 0.341709i
\(209\) 18.2832 1.26468
\(210\) 0 0
\(211\) −26.9282 −1.85381 −0.926907 0.375291i \(-0.877543\pi\)
−0.926907 + 0.375291i \(0.877543\pi\)
\(212\) −11.0227 6.36396i −0.757042 0.437079i
\(213\) 5.53590 3.19615i 0.379314 0.218997i
\(214\) −4.02628 6.97372i −0.275231 0.476714i
\(215\) 0 0
\(216\) 1.93185 0.131446
\(217\) 0 0
\(218\) 8.20788i 0.555908i
\(219\) 1.46410 2.53590i 0.0989348 0.171360i
\(220\) 13.2426 + 2.15232i 0.892819 + 0.145109i
\(221\) −8.00000 13.8564i −0.538138 0.932083i
\(222\) 4.73205 + 2.73205i 0.317594 + 0.183363i
\(223\) 8.00000i 0.535720i 0.963458 + 0.267860i \(0.0863164\pi\)
−0.963458 + 0.267860i \(0.913684\pi\)
\(224\) 0 0
\(225\) 1.00000 + 4.89898i 0.0666667 + 0.326599i
\(226\) −1.36603 + 2.36603i −0.0908667 + 0.157386i
\(227\) −3.46410 + 2.00000i −0.229920 + 0.132745i −0.610535 0.791989i \(-0.709046\pi\)
0.380615 + 0.924734i \(0.375712\pi\)
\(228\) −7.91688 + 4.57081i −0.524308 + 0.302709i
\(229\) 6.74290 11.6790i 0.445583 0.771773i −0.552509 0.833507i \(-0.686330\pi\)
0.998093 + 0.0617338i \(0.0196630\pi\)
\(230\) 2.55103 3.12436i 0.168210 0.206014i
\(231\) 0 0
\(232\) 9.52056i 0.625055i
\(233\) −4.57081 2.63896i −0.299444 0.172884i 0.342749 0.939427i \(-0.388642\pi\)
−0.642193 + 0.766543i \(0.721975\pi\)
\(234\) 1.03528 + 1.79315i 0.0676781 + 0.117222i
\(235\) 2.15232 13.2426i 0.140402 0.863855i
\(236\) 0.656339 1.13681i 0.0427240 0.0740002i
\(237\) 4.53590i 0.294638i
\(238\) 0 0
\(239\) 8.53590 0.552141 0.276071 0.961137i \(-0.410968\pi\)
0.276071 + 0.961137i \(0.410968\pi\)
\(240\) −5.15187 + 1.95377i −0.332552 + 0.126115i
\(241\) 7.02030 + 12.1595i 0.452217 + 0.783263i 0.998523 0.0543223i \(-0.0172998\pi\)
−0.546306 + 0.837586i \(0.683966\pi\)
\(242\) −0.448288 + 0.258819i −0.0288170 + 0.0166375i
\(243\) 0.866025 + 0.500000i 0.0555556 + 0.0320750i
\(244\) −1.13681 −0.0727769
\(245\) 0 0
\(246\) 4.39230 0.280043
\(247\) −18.2832 10.5558i −1.16333 0.671652i
\(248\) −12.2942 + 7.09808i −0.780684 + 0.450728i
\(249\) −3.00000 5.19615i −0.190117 0.329293i
\(250\) 3.09296 + 4.89155i 0.195616 + 0.309369i
\(251\) −20.3538 −1.28472 −0.642360 0.766403i \(-0.722045\pi\)
−0.642360 + 0.766403i \(0.722045\pi\)
\(252\) 0 0
\(253\) 12.0716i 0.758934i
\(254\) −0.732051 + 1.26795i −0.0459330 + 0.0795582i
\(255\) −8.82843 1.43488i −0.552858 0.0898555i
\(256\) 0.696152 + 1.20577i 0.0435095 + 0.0753607i
\(257\) −3.00000 1.73205i −0.187135 0.108042i 0.403506 0.914977i \(-0.367792\pi\)
−0.590641 + 0.806935i \(0.701125\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −12.0000 9.79796i −0.744208 0.607644i
\(261\) 2.46410 4.26795i 0.152524 0.264179i
\(262\) −2.53590 + 1.46410i −0.156668 + 0.0904525i
\(263\) −6.60420 + 3.81294i −0.407232 + 0.235116i −0.689600 0.724191i \(-0.742214\pi\)
0.282368 + 0.959306i \(0.408880\pi\)
\(264\) 3.34607 5.79555i 0.205936 0.356692i
\(265\) −12.7279 10.3923i −0.781870 0.638394i
\(266\) 0 0
\(267\) 15.4548i 0.945819i
\(268\) 18.9396 + 10.9348i 1.15692 + 0.667947i
\(269\) −15.4548 26.7685i −0.942297 1.63211i −0.761076 0.648663i \(-0.775328\pi\)
−0.181221 0.983442i \(-0.558005\pi\)
\(270\) 1.14248 + 0.185687i 0.0695293 + 0.0113005i
\(271\) −0.845807 + 1.46498i −0.0513791 + 0.0889913i −0.890571 0.454844i \(-0.849695\pi\)
0.839192 + 0.543835i \(0.183028\pi\)
\(272\) 9.85641i 0.597632i
\(273\) 0 0
\(274\) 5.26795 0.318248
\(275\) 16.4290 + 5.48528i 0.990705 + 0.330775i
\(276\) 3.01790 + 5.22715i 0.181656 + 0.314637i
\(277\) −9.79796 + 5.65685i −0.588702 + 0.339887i −0.764584 0.644524i \(-0.777056\pi\)
0.175882 + 0.984411i \(0.443722\pi\)
\(278\) −0.169873 0.0980762i −0.0101883 0.00588222i
\(279\) −7.34847 −0.439941
\(280\) 0 0
\(281\) 27.8564 1.66177 0.830887 0.556441i \(-0.187834\pi\)
0.830887 + 0.556441i \(0.187834\pi\)
\(282\) −2.68973 1.55291i −0.160171 0.0924747i
\(283\) 1.85641 1.07180i 0.110352 0.0637117i −0.443808 0.896122i \(-0.646373\pi\)
0.554160 + 0.832410i \(0.313040\pi\)
\(284\) 5.53590 + 9.58846i 0.328495 + 0.568970i
\(285\) −11.0349 + 4.18482i −0.653652 + 0.247888i
\(286\) 7.17260 0.424125
\(287\) 0 0
\(288\) 5.13922i 0.302831i
\(289\) −0.500000 + 0.866025i −0.0294118 + 0.0509427i
\(290\) 0.915103 5.63039i 0.0537367 0.330628i
\(291\) 9.46410 + 16.3923i 0.554795 + 0.960934i
\(292\) 4.39230 + 2.53590i 0.257040 + 0.148402i
\(293\) 11.4641i 0.669740i 0.942264 + 0.334870i \(0.108692\pi\)
−0.942264 + 0.334870i \(0.891308\pi\)
\(294\) 0 0
\(295\) 1.07180 1.31268i 0.0624024 0.0764270i
\(296\) −10.1962 + 17.6603i −0.592639 + 1.02648i
\(297\) 3.00000 1.73205i 0.174078 0.100504i
\(298\) 3.17020 1.83032i 0.183645 0.106027i
\(299\) −6.96953 + 12.0716i −0.403058 + 0.698118i
\(300\) −8.48528 + 1.73205i −0.489898 + 0.100000i
\(301\) 0 0
\(302\) 10.0754i 0.579772i
\(303\) 6.03579 + 3.48477i 0.346747 + 0.200195i
\(304\) −6.50266 11.2629i −0.372953 0.645974i
\(305\) −1.44861 0.235442i −0.0829472 0.0134813i
\(306\) −1.03528 + 1.79315i −0.0591828 + 0.102508i
\(307\) 4.00000i 0.228292i 0.993464 + 0.114146i \(0.0364132\pi\)
−0.993464 + 0.114146i \(0.963587\pi\)
\(308\) 0 0
\(309\) 13.8564 0.788263
\(310\) −7.95297 + 3.01604i −0.451698 + 0.171300i
\(311\) 2.07055 + 3.58630i 0.117410 + 0.203361i 0.918741 0.394861i \(-0.129207\pi\)
−0.801330 + 0.598222i \(0.795874\pi\)
\(312\) −6.69213 + 3.86370i −0.378867 + 0.218739i
\(313\) 2.53590 + 1.46410i 0.143337 + 0.0827559i 0.569954 0.821677i \(-0.306961\pi\)
−0.426616 + 0.904433i \(0.640294\pi\)
\(314\) −2.62536 −0.148157
\(315\) 0 0
\(316\) 7.85641 0.441957
\(317\) 4.09034 + 2.36156i 0.229736 + 0.132638i 0.610450 0.792055i \(-0.290988\pi\)
−0.380714 + 0.924693i \(0.624322\pi\)
\(318\) −3.29423 + 1.90192i −0.184731 + 0.106655i
\(319\) −8.53590 14.7846i −0.477919 0.827779i
\(320\) −1.79824 4.74176i −0.100525 0.265072i
\(321\) 15.5563 0.868271
\(322\) 0 0
\(323\) 21.1117i 1.17468i
\(324\) −0.866025 + 1.50000i −0.0481125 + 0.0833333i
\(325\) −13.2621 14.9706i −0.735647 0.830417i
\(326\) −5.80385 10.0526i −0.321445 0.556760i
\(327\) −13.7321 7.92820i −0.759384 0.438431i
\(328\) 16.3923i 0.905114i
\(329\) 0 0
\(330\) 2.53590 3.10583i 0.139597 0.170970i
\(331\) 4.39230 7.60770i 0.241423 0.418157i −0.719697 0.694288i \(-0.755719\pi\)
0.961120 + 0.276132i \(0.0890526\pi\)
\(332\) 9.00000 5.19615i 0.493939 0.285176i
\(333\) −9.14162 + 5.27792i −0.500958 + 0.289228i
\(334\) 4.89898 8.48528i 0.268060 0.464294i
\(335\) 21.8695 + 17.8564i 1.19486 + 0.975600i
\(336\) 0 0
\(337\) 17.7284i 0.965730i −0.875695 0.482865i \(-0.839596\pi\)
0.875695 0.482865i \(-0.160404\pi\)
\(338\) −1.34486 0.776457i −0.0731509 0.0422337i
\(339\) −2.63896 4.57081i −0.143329 0.248252i
\(340\) 2.48528 15.2913i 0.134783 0.829286i
\(341\) −12.7279 + 22.0454i −0.689256 + 1.19383i
\(342\) 2.73205i 0.147732i
\(343\) 0 0
\(344\) 0 0
\(345\) 2.76305 + 7.28585i 0.148757 + 0.392257i
\(346\) −4.14110 7.17260i −0.222627 0.385602i
\(347\) −26.8565 + 15.5056i −1.44173 + 0.832383i −0.997965 0.0637601i \(-0.979691\pi\)
−0.443765 + 0.896143i \(0.646357\pi\)
\(348\) 7.39230 + 4.26795i 0.396269 + 0.228786i
\(349\) −17.6269 −0.943546 −0.471773 0.881720i \(-0.656386\pi\)
−0.471773 + 0.881720i \(0.656386\pi\)
\(350\) 0 0
\(351\) −4.00000 −0.213504
\(352\) 15.4176 + 8.90138i 0.821763 + 0.474445i
\(353\) 9.92820 5.73205i 0.528425 0.305086i −0.211950 0.977281i \(-0.567981\pi\)
0.740375 + 0.672194i \(0.234648\pi\)
\(354\) −0.196152 0.339746i −0.0104254 0.0180573i
\(355\) 5.06842 + 13.3648i 0.269004 + 0.709332i
\(356\) −26.7685 −1.41873
\(357\) 0 0
\(358\) 5.37945i 0.284313i
\(359\) 7.73205 13.3923i 0.408082 0.706819i −0.586593 0.809882i \(-0.699531\pi\)
0.994675 + 0.103063i \(0.0328644\pi\)
\(360\) −0.692993 + 4.26380i −0.0365239 + 0.224722i
\(361\) −4.42820 7.66987i −0.233063 0.403678i
\(362\) 2.83013 + 1.63397i 0.148748 + 0.0858798i
\(363\) 1.00000i 0.0524864i
\(364\) 0 0
\(365\) 5.07180 + 4.14110i 0.265470 + 0.216755i
\(366\) −0.169873 + 0.294229i −0.00887940 + 0.0153796i
\(367\) −3.46410 + 2.00000i −0.180825 + 0.104399i −0.587680 0.809093i \(-0.699959\pi\)
0.406855 + 0.913493i \(0.366625\pi\)
\(368\) −7.43640 + 4.29341i −0.387649 + 0.223809i
\(369\) −4.24264 + 7.34847i −0.220863 + 0.382546i
\(370\) −7.72741 + 9.46410i −0.401729 + 0.492015i
\(371\) 0 0
\(372\) 12.7279i 0.659912i
\(373\) 6.21166 + 3.58630i 0.321627 + 0.185692i 0.652118 0.758118i \(-0.273881\pi\)
−0.330490 + 0.943809i \(0.607214\pi\)
\(374\) 3.58630 + 6.21166i 0.185443 + 0.321197i
\(375\) −11.1713 + 0.449747i −0.576883 + 0.0232249i
\(376\) 5.79555 10.0382i 0.298883 0.517680i
\(377\) 19.7128i 1.01526i
\(378\) 0 0
\(379\) −11.4641 −0.588871 −0.294436 0.955671i \(-0.595132\pi\)
−0.294436 + 0.955671i \(0.595132\pi\)
\(380\) −7.24833 19.1130i −0.371831 0.980478i
\(381\) −1.41421 2.44949i −0.0724524 0.125491i
\(382\) 3.34607 1.93185i 0.171200 0.0988421i
\(383\) 20.6603 + 11.9282i 1.05569 + 0.609503i 0.924237 0.381820i \(-0.124702\pi\)
0.131453 + 0.991322i \(0.458036\pi\)
\(384\) −11.4524 −0.584428
\(385\) 0 0
\(386\) 3.32051 0.169009
\(387\) 0 0
\(388\) −28.3923 + 16.3923i −1.44140 + 0.832193i
\(389\) 5.53590 + 9.58846i 0.280681 + 0.486154i 0.971553 0.236823i \(-0.0761063\pi\)
−0.690872 + 0.722978i \(0.742773\pi\)
\(390\) −4.32905 + 1.64173i −0.219210 + 0.0831321i
\(391\) −13.9391 −0.704929
\(392\) 0 0
\(393\) 5.65685i 0.285351i
\(394\) 5.90192 10.2224i 0.297335 0.514999i
\(395\) 10.0112 + 1.62712i 0.503719 + 0.0818690i
\(396\) 3.00000 + 5.19615i 0.150756 + 0.261116i
\(397\) 20.5359 + 11.8564i 1.03067 + 0.595056i 0.917176 0.398483i \(-0.130463\pi\)
0.113491 + 0.993539i \(0.463797\pi\)
\(398\) 4.19615i 0.210334i
\(399\) 0 0
\(400\) −2.46410 12.0716i −0.123205 0.603579i
\(401\) −1.00000 + 1.73205i −0.0499376 + 0.0864945i −0.889914 0.456129i \(-0.849236\pi\)
0.839976 + 0.542623i \(0.182569\pi\)
\(402\) 5.66025 3.26795i 0.282308 0.162990i
\(403\) 25.4558 14.6969i 1.26805 0.732107i
\(404\) −6.03579 + 10.4543i −0.300292 + 0.520121i
\(405\) −1.41421 + 1.73205i −0.0702728 + 0.0860663i
\(406\) 0 0
\(407\) 36.5665i 1.81253i
\(408\) −6.69213 3.86370i −0.331310 0.191282i
\(409\) 5.70762 + 9.88589i 0.282224 + 0.488826i 0.971932 0.235261i \(-0.0755946\pi\)
−0.689708 + 0.724087i \(0.742261\pi\)
\(410\) −1.57561 + 9.69429i −0.0778136 + 0.478767i
\(411\) −5.08845 + 8.81345i −0.250995 + 0.434735i
\(412\) 24.0000i 1.18240i
\(413\) 0 0
\(414\) 1.80385 0.0886543
\(415\) 12.5446 4.75736i 0.615791 0.233530i
\(416\) −10.2784 17.8028i −0.503942 0.872852i
\(417\) 0.328169 0.189469i 0.0160705 0.00927832i
\(418\) 8.19615 + 4.73205i 0.400887 + 0.231452i
\(419\) −21.1117 −1.03137 −0.515686 0.856778i \(-0.672463\pi\)
−0.515686 + 0.856778i \(0.672463\pi\)
\(420\) 0 0
\(421\) 12.7846 0.623084 0.311542 0.950232i \(-0.399155\pi\)
0.311542 + 0.950232i \(0.399155\pi\)
\(422\) −12.0716 6.96953i −0.587635 0.339272i
\(423\) 5.19615 3.00000i 0.252646 0.145865i
\(424\) −7.09808 12.2942i −0.344713 0.597061i
\(425\) 6.33386 18.9706i 0.307237 0.920207i
\(426\) 3.30890 0.160317
\(427\) 0 0
\(428\) 26.9444i 1.30241i
\(429\) −6.92820 + 12.0000i −0.334497 + 0.579365i
\(430\) 0 0
\(431\) −18.6603 32.3205i −0.898833 1.55682i −0.828988 0.559266i \(-0.811083\pi\)
−0.0698447 0.997558i \(-0.522250\pi\)
\(432\) −2.13397 1.23205i −0.102671 0.0592771i
\(433\) 17.8564i 0.858124i −0.903275 0.429062i \(-0.858844\pi\)
0.903275 0.429062i \(-0.141156\pi\)
\(434\) 0 0
\(435\) 8.53590 + 6.96953i 0.409265 + 0.334163i
\(436\) 13.7321 23.7846i 0.657646 1.13908i
\(437\) −15.9282 + 9.19615i −0.761949 + 0.439912i
\(438\) 1.31268 0.757875i 0.0627222 0.0362127i
\(439\) −6.50266 + 11.2629i −0.310355 + 0.537551i −0.978439 0.206535i \(-0.933781\pi\)
0.668084 + 0.744086i \(0.267115\pi\)
\(440\) 11.5911 + 9.46410i 0.552584 + 0.451183i
\(441\) 0 0
\(442\) 8.28221i 0.393945i
\(443\) 10.8468 + 6.26243i 0.515349 + 0.297537i 0.735030 0.678035i \(-0.237168\pi\)
−0.219681 + 0.975572i \(0.570502\pi\)
\(444\) −9.14162 15.8338i −0.433842 0.751437i
\(445\) −34.1104 5.54394i −1.61699 0.262808i
\(446\) −2.07055 + 3.58630i −0.0980435 + 0.169816i
\(447\) 7.07180i 0.334485i
\(448\) 0 0
\(449\) −35.8564 −1.69217 −0.846084 0.533049i \(-0.821046\pi\)
−0.846084 + 0.533049i \(0.821046\pi\)
\(450\) −0.819661 + 2.45497i −0.0386392 + 0.115728i
\(451\) 14.6969 + 25.4558i 0.692052 + 1.19867i
\(452\) 7.91688 4.57081i 0.372378 0.214993i
\(453\) −16.8564 9.73205i −0.791983 0.457252i
\(454\) −2.07055 −0.0971758
\(455\) 0 0
\(456\) −10.1962 −0.477479
\(457\) 18.9396 + 10.9348i 0.885956 + 0.511507i 0.872618 0.488404i \(-0.162421\pi\)
0.0133385 + 0.999911i \(0.495754\pi\)
\(458\) 6.04552 3.49038i 0.282488 0.163095i
\(459\) −2.00000 3.46410i −0.0933520 0.161690i
\(460\) −12.6195 + 4.78574i −0.588385 + 0.223136i
\(461\) −32.4254 −1.51020 −0.755100 0.655609i \(-0.772412\pi\)
−0.755100 + 0.655609i \(0.772412\pi\)
\(462\) 0 0
\(463\) 22.4243i 1.04215i −0.853512 0.521074i \(-0.825532\pi\)
0.853512 0.521074i \(-0.174468\pi\)
\(464\) −6.07180 + 10.5167i −0.281876 + 0.488224i
\(465\) 2.63604 16.2189i 0.122243 0.752131i
\(466\) −1.36603 2.36603i −0.0632799 0.109604i
\(467\) −8.53590 4.92820i −0.394994 0.228050i 0.289328 0.957230i \(-0.406568\pi\)
−0.684322 + 0.729180i \(0.739902\pi\)
\(468\) 6.92820i 0.320256i
\(469\) 0 0
\(470\) 4.39230 5.37945i 0.202602 0.248136i
\(471\) 2.53590 4.39230i 0.116848 0.202387i
\(472\) 1.26795 0.732051i 0.0583621 0.0336954i
\(473\) 0 0
\(474\) 1.17398 2.03339i 0.0539225 0.0933966i
\(475\) −5.27792 25.8564i −0.242167 1.18637i
\(476\) 0 0
\(477\) 7.34847i 0.336463i
\(478\) 3.82654 + 2.20925i 0.175022 + 0.101049i
\(479\) 12.6264 + 21.8695i 0.576914 + 0.999245i 0.995831 + 0.0912201i \(0.0290767\pi\)
−0.418916 + 0.908025i \(0.637590\pi\)
\(480\) −11.3428 1.84354i −0.517726 0.0841456i
\(481\) 21.1117 36.5665i 0.962609 1.66729i
\(482\) 7.26795i 0.331046i
\(483\) 0 0
\(484\) 1.73205 0.0787296
\(485\) −39.5745 + 15.0080i −1.79699 + 0.681480i
\(486\) 0.258819 + 0.448288i 0.0117403 + 0.0203347i
\(487\) 13.3843 7.72741i 0.606499 0.350162i −0.165095 0.986278i \(-0.552793\pi\)
0.771594 + 0.636115i \(0.219460\pi\)
\(488\) −1.09808 0.633975i −0.0497076 0.0286987i
\(489\) 22.4243 1.01406
\(490\) 0 0
\(491\) 41.3205 1.86477 0.932384 0.361469i \(-0.117725\pi\)
0.932384 + 0.361469i \(0.117725\pi\)
\(492\) −12.7279 7.34847i −0.573819 0.331295i
\(493\) −17.0718 + 9.85641i −0.768875 + 0.443910i
\(494\) −5.46410 9.46410i −0.245842 0.425810i
\(495\) 2.74666 + 7.24264i 0.123453 + 0.325532i
\(496\) 18.1074 0.813045
\(497\) 0 0
\(498\) 3.10583i 0.139176i
\(499\) −16.1244 + 27.9282i −0.721825 + 1.25024i 0.238442 + 0.971157i \(0.423363\pi\)
−0.960267 + 0.279081i \(0.909970\pi\)
\(500\) −0.778985 19.3492i −0.0348373 0.865324i
\(501\) 9.46410 + 16.3923i 0.422825 + 0.732354i
\(502\) −9.12436 5.26795i −0.407240 0.235120i
\(503\) 23.8564i 1.06370i 0.846837 + 0.531852i \(0.178504\pi\)
−0.846837 + 0.531852i \(0.821496\pi\)
\(504\) 0 0
\(505\) −9.85641 + 12.0716i −0.438604 + 0.537178i
\(506\) 3.12436 5.41154i 0.138895 0.240572i
\(507\) 2.59808 1.50000i 0.115385 0.0666173i
\(508\) 4.24264 2.44949i 0.188237 0.108679i
\(509\) 1.51575 2.62536i 0.0671844 0.116367i −0.830476 0.557054i \(-0.811932\pi\)
0.897661 + 0.440687i \(0.145265\pi\)
\(510\) −3.58630 2.92820i −0.158804 0.129663i
\(511\) 0 0
\(512\) 22.1841i 0.980408i
\(513\) −4.57081 2.63896i −0.201806 0.116513i
\(514\) −0.896575 1.55291i −0.0395462 0.0684961i
\(515\) −4.97056 + 30.5826i −0.219029 + 1.34763i
\(516\) 0 0
\(517\) 20.7846i 0.914106i
\(518\) 0 0
\(519\) 16.0000 0.702322
\(520\) −6.12701 16.1562i −0.268687 0.708498i
\(521\) −14.1421 24.4949i −0.619578 1.07314i −0.989563 0.144103i \(-0.953970\pi\)
0.369984 0.929038i \(-0.379363\pi\)
\(522\) 2.20925 1.27551i 0.0966964 0.0558277i
\(523\) 37.8564 + 21.8564i 1.65535 + 0.955714i 0.974821 + 0.222988i \(0.0715811\pi\)
0.680524 + 0.732726i \(0.261752\pi\)
\(524\) 9.79796 0.428026
\(525\) 0 0
\(526\) −3.94744 −0.172117
\(527\) 25.4558 + 14.6969i 1.10887 + 0.640209i
\(528\) −7.39230 + 4.26795i −0.321709 + 0.185739i
\(529\) −5.42820 9.40192i −0.236009 0.408779i
\(530\) −3.01604 7.95297i −0.131009 0.345455i
\(531\) 0.757875 0.0328890
\(532\) 0 0
\(533\) 33.9411i 1.47015i
\(534\) −4.00000 + 6.92820i −0.173097 + 0.299813i
\(535\) −5.58037 + 34.3345i −0.241260 + 1.48441i
\(536\) 12.1962 + 21.1244i 0.526794 + 0.912433i
\(537\) −9.00000 5.19615i −0.388379 0.224231i
\(538\) 16.0000i 0.689809i
\(539\) 0 0
\(540\) −3.00000 2.44949i −0.129099 0.105409i
\(541\) −13.3205 + 23.0718i −0.572693 + 0.991934i 0.423595 + 0.905852i \(0.360768\pi\)
−0.996288 + 0.0860822i \(0.972565\pi\)
\(542\) −0.758330 + 0.437822i −0.0325731 + 0.0188061i
\(543\) −5.46739 + 3.15660i −0.234628 + 0.135463i
\(544\) 10.2784 17.8028i 0.440684 0.763287i
\(545\) 22.4243 27.4641i 0.960553 1.17643i
\(546\) 0 0
\(547\) 10.0010i 0.427613i 0.976876 + 0.213807i \(0.0685862\pi\)
−0.976876 + 0.213807i \(0.931414\pi\)
\(548\) −15.2653 8.81345i −0.652103 0.376492i
\(549\) −0.328169 0.568406i −0.0140059 0.0242590i
\(550\) 5.94522 + 6.71112i 0.253505 + 0.286163i
\(551\) −13.0053 + 22.5259i −0.554045 + 0.959635i
\(552\) 6.73205i 0.286535i
\(553\) 0 0
\(554\) −5.85641 −0.248815
\(555\) −8.36965 22.0698i −0.355272 0.936812i
\(556\) 0.328169 + 0.568406i 0.0139175 + 0.0241058i
\(557\) 7.67664 4.43211i 0.325270 0.187795i −0.328469 0.944515i \(-0.606533\pi\)
0.653739 + 0.756720i \(0.273199\pi\)
\(558\) −3.29423 1.90192i −0.139456 0.0805149i
\(559\) 0 0
\(560\) 0 0
\(561\) −13.8564 −0.585018
\(562\) 12.4877 + 7.20977i 0.526761 + 0.304126i
\(563\) 3.58846 2.07180i 0.151235 0.0873158i −0.422473 0.906376i \(-0.638838\pi\)
0.573708 + 0.819060i \(0.305504\pi\)
\(564\) 5.19615 + 9.00000i 0.218797 + 0.378968i
\(565\) 11.0349 4.18482i 0.464242 0.176057i
\(566\) 1.10961 0.0466402
\(567\) 0 0
\(568\) 12.3490i 0.518152i
\(569\) −7.92820 + 13.7321i −0.332368 + 0.575678i −0.982976 0.183736i \(-0.941181\pi\)
0.650608 + 0.759414i \(0.274514\pi\)
\(570\) −6.02993 0.980040i −0.252566 0.0410494i
\(571\) 7.85641 + 13.6077i 0.328780 + 0.569464i 0.982270 0.187471i \(-0.0600291\pi\)
−0.653490 + 0.756935i \(0.726696\pi\)
\(572\) −20.7846 12.0000i −0.869048 0.501745i
\(573\) 7.46410i 0.311817i
\(574\) 0 0
\(575\) −17.0718 + 3.48477i −0.711943 + 0.145325i
\(576\) 1.13397 1.96410i 0.0472489 0.0818376i
\(577\) −3.46410 + 2.00000i −0.144212 + 0.0832611i −0.570370 0.821388i \(-0.693200\pi\)
0.426158 + 0.904649i \(0.359867\pi\)
\(578\) −0.448288 + 0.258819i −0.0186463 + 0.0107655i
\(579\) −3.20736 + 5.55532i −0.133294 + 0.230871i
\(580\) −12.0716 + 14.7846i −0.501245 + 0.613898i
\(581\) 0 0
\(582\) 9.79796i 0.406138i
\(583\) −22.0454 12.7279i −0.913027 0.527137i
\(584\) 2.82843 + 4.89898i 0.117041 + 0.202721i
\(585\) 1.43488 8.82843i 0.0593249 0.365011i
\(586\) −2.96713 + 5.13922i −0.122571 + 0.212299i
\(587\) 4.14359i 0.171024i 0.996337 + 0.0855122i \(0.0272527\pi\)
−0.996337 + 0.0855122i \(0.972747\pi\)
\(588\) 0 0
\(589\) 38.7846 1.59809
\(590\) 0.820219 0.311056i 0.0337679 0.0128060i
\(591\) 11.4016 + 19.7482i 0.469001 + 0.812333i
\(592\) 22.5259 13.0053i 0.925808 0.534516i
\(593\) −21.9282 12.6603i −0.900483 0.519894i −0.0231264 0.999733i \(-0.507362\pi\)
−0.877357 + 0.479838i \(0.840695\pi\)
\(594\) 1.79315 0.0735739
\(595\) 0 0
\(596\) −12.2487 −0.501727
\(597\) 7.02030 + 4.05317i 0.287322 + 0.165885i
\(598\) −6.24871 + 3.60770i −0.255529 + 0.147530i
\(599\) 14.6603 + 25.3923i 0.599002 + 1.03750i 0.992969 + 0.118377i \(0.0377691\pi\)
−0.393967 + 0.919125i \(0.628898\pi\)
\(600\) −9.16208 3.05902i −0.374040 0.124884i
\(601\) 25.1512 1.02594 0.512970 0.858406i \(-0.328545\pi\)
0.512970 + 0.858406i \(0.328545\pi\)
\(602\) 0 0
\(603\) 12.6264i 0.514186i
\(604\) 16.8564 29.1962i 0.685877 1.18797i
\(605\) 2.20711 + 0.358719i 0.0897317 + 0.0145840i
\(606\) 1.80385 + 3.12436i 0.0732763 + 0.126918i
\(607\) −10.3923 6.00000i −0.421811 0.243532i 0.274041 0.961718i \(-0.411640\pi\)
−0.695852 + 0.718186i \(0.744973\pi\)
\(608\) 27.1244i 1.10004i
\(609\) 0 0
\(610\) −0.588457 0.480473i −0.0238259 0.0194538i
\(611\) −12.0000 + 20.7846i −0.485468 + 0.840855i
\(612\) 6.00000 3.46410i 0.242536 0.140028i
\(613\) −8.48528 + 4.89898i −0.342717 + 0.197868i −0.661473 0.749969i \(-0.730068\pi\)
0.318756 + 0.947837i \(0.396735\pi\)
\(614\) −1.03528 + 1.79315i −0.0417803 + 0.0723657i
\(615\) −14.6969 12.0000i −0.592638 0.483887i
\(616\) 0 0
\(617\) 27.1475i 1.09292i 0.837487 + 0.546458i \(0.184024\pi\)
−0.837487 + 0.546458i \(0.815976\pi\)
\(618\) 6.21166 + 3.58630i 0.249869 + 0.144262i
\(619\) 10.3664 + 17.9551i 0.416659 + 0.721675i 0.995601 0.0936937i \(-0.0298674\pi\)
−0.578942 + 0.815369i \(0.696534\pi\)
\(620\) 28.0919 + 4.56575i 1.12820 + 0.183365i
\(621\) −1.74238 + 3.01790i −0.0699194 + 0.121104i
\(622\) 2.14359i 0.0859503i
\(623\) 0 0
\(624\) 9.85641 0.394572
\(625\) 3.01472 24.8176i 0.120589 0.992703i
\(626\) 0.757875 + 1.31268i 0.0302908 + 0.0524651i
\(627\) −15.8338 + 9.14162i −0.632339 + 0.365081i
\(628\) 7.60770 + 4.39230i 0.303580 + 0.175272i
\(629\) 42.2233 1.68355
\(630\) 0 0
\(631\) −25.3205 −1.00799 −0.503997 0.863706i \(-0.668138\pi\)
−0.503997 + 0.863706i \(0.668138\pi\)
\(632\) 7.58871 + 4.38134i 0.301863 + 0.174280i
\(633\) 23.3205 13.4641i 0.926907 0.535150i
\(634\) 1.22243 + 2.11731i 0.0485490 + 0.0840893i
\(635\) 5.91359 2.24264i 0.234674 0.0889965i
\(636\) 12.7279 0.504695
\(637\) 0 0
\(638\) 8.83701i 0.349861i
\(639\) −3.19615 + 5.53590i −0.126438 + 0.218997i
\(640\) 4.10820 25.2767i 0.162391 0.999149i
\(641\) −5.00000 8.66025i −0.197488 0.342059i 0.750225 0.661182i \(-0.229945\pi\)
−0.947713 + 0.319123i \(0.896612\pi\)
\(642\) 6.97372 + 4.02628i 0.275231 + 0.158905i
\(643\) 4.00000i 0.157745i −0.996885 0.0788723i \(-0.974868\pi\)
0.996885 0.0788723i \(-0.0251319\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 5.46410 9.46410i 0.214982 0.372360i
\(647\) 37.1769 21.4641i 1.46158 0.843841i 0.462491 0.886624i \(-0.346956\pi\)
0.999084 + 0.0427831i \(0.0136224\pi\)
\(648\) −1.67303 + 0.965926i −0.0657229 + 0.0379452i
\(649\) 1.31268 2.27362i 0.0515271 0.0892476i
\(650\) −2.07055 10.1436i −0.0812137 0.397864i
\(651\) 0 0
\(652\) 38.8401i 1.52110i
\(653\) −3.43400 1.98262i −0.134383 0.0775859i 0.431301 0.902208i \(-0.358055\pi\)
−0.565684 + 0.824622i \(0.691388\pi\)
\(654\) −4.10394 7.10823i −0.160477 0.277954i
\(655\) 12.4853 + 2.02922i 0.487840 + 0.0792883i
\(656\) 10.4543 18.1074i 0.408172 0.706974i
\(657\) 2.92820i 0.114240i
\(658\) 0 0
\(659\) −10.3923 −0.404827 −0.202413 0.979300i \(-0.564878\pi\)
−0.202413 + 0.979300i \(0.564878\pi\)
\(660\) −12.5446 + 4.75736i −0.488299 + 0.185180i
\(661\) 6.74290 + 11.6790i 0.262268 + 0.454262i 0.966844 0.255366i \(-0.0821961\pi\)
−0.704576 + 0.709629i \(0.748863\pi\)
\(662\) 3.93803 2.27362i 0.153056 0.0883669i
\(663\) 13.8564 + 8.00000i 0.538138 + 0.310694i
\(664\) 11.5911 0.449822
\(665\) 0 0
\(666\) −5.46410 −0.211730
\(667\) 14.8728 + 8.58682i 0.575877 + 0.332483i
\(668\) −28.3923 + 16.3923i −1.09853 + 0.634237i
\(669\) −4.00000 6.92820i −0.154649 0.267860i
\(670\) 5.18227 + 13.6651i 0.200209 + 0.527927i
\(671\) −2.27362 −0.0877723
\(672\) 0 0
\(673\) 21.8695i 0.843009i −0.906826 0.421504i \(-0.861502\pi\)
0.906826 0.421504i \(-0.138498\pi\)
\(674\) 4.58846 7.94744i 0.176741 0.306124i
\(675\) −3.31552 3.74264i −0.127614 0.144054i
\(676\) 2.59808 + 4.50000i 0.0999260 + 0.173077i
\(677\) −20.0718 11.5885i −0.771422 0.445381i 0.0619598 0.998079i \(-0.480265\pi\)
−0.833382 + 0.552698i \(0.813598\pi\)
\(678\) 2.73205i 0.104924i
\(679\) 0 0
\(680\) 10.9282 13.3843i 0.419077 0.513263i
\(681\) 2.00000 3.46410i 0.0766402 0.132745i
\(682\) −11.4115 + 6.58846i −0.436971 + 0.252285i
\(683\) 36.6544 21.1624i 1.40254 0.809758i 0.407889 0.913031i \(-0.366265\pi\)
0.994653 + 0.103273i \(0.0329317\pi\)
\(684\) 4.57081 7.91688i 0.174769 0.302709i
\(685\) −17.6269 14.3923i −0.673489 0.549902i
\(686\) 0 0
\(687\) 13.4858i 0.514515i
\(688\) 0 0
\(689\) 14.6969 + 25.4558i 0.559909 + 0.969790i
\(690\) −0.647075 + 3.98128i −0.0246337 + 0.151565i
\(691\) 5.46739 9.46979i 0.207989 0.360248i −0.743092 0.669189i \(-0.766641\pi\)
0.951081 + 0.308942i \(0.0999748\pi\)
\(692\) 27.7128i 1.05348i
\(693\) 0 0
\(694\) −16.0526 −0.609347
\(695\) 0.300457 + 0.792271i 0.0113970 + 0.0300526i
\(696\) 4.76028 + 8.24504i 0.180438 + 0.312528i
\(697\) 29.3939 16.9706i 1.11337 0.642806i
\(698\) −7.90192 4.56218i −0.299092 0.172681i
\(699\) 5.27792 0.199629
\(700\) 0 0
\(701\) −11.0718 −0.418176 −0.209088 0.977897i \(-0.567050\pi\)
−0.209088 + 0.977897i \(0.567050\pi\)
\(702\) −1.79315 1.03528i −0.0676781 0.0390740i
\(703\) 48.2487 27.8564i 1.81973 1.05062i
\(704\) −3.92820 6.80385i −0.148050 0.256430i
\(705\) 4.75736 + 12.5446i 0.179173 + 0.472458i
\(706\) 5.93426 0.223339
\(707\) 0 0
\(708\) 1.31268i 0.0493334i
\(709\) −5.46410 + 9.46410i −0.205209 + 0.355432i −0.950199 0.311643i \(-0.899121\pi\)
0.744991 + 0.667075i \(0.232454\pi\)
\(710\) −1.18697 + 7.30310i −0.0445461 + 0.274080i
\(711\) 2.26795 + 3.92820i 0.0850547 + 0.147319i
\(712\) −25.8564 14.9282i −0.969010 0.559458i
\(713\) 25.6077i 0.959016i
\(714\) 0 0
\(715\) −24.0000 19.5959i −0.897549 0.732846i
\(716\) 9.00000 15.5885i 0.336346 0.582568i
\(717\) −7.39230 + 4.26795i −0.276071 + 0.159389i
\(718\) 6.93237 4.00240i 0.258714 0.149368i
\(719\) −7.34847 + 12.7279i −0.274052 + 0.474671i −0.969895 0.243522i \(-0.921697\pi\)
0.695844 + 0.718193i \(0.255031\pi\)
\(720\) 3.48477 4.26795i 0.129870 0.159057i
\(721\) 0 0
\(722\) 4.58441i 0.170614i
\(723\) −12.1595 7.02030i −0.452217 0.261088i
\(724\) −5.46739 9.46979i −0.203194 0.351942i
\(725\) −18.4445 + 16.3395i −0.685011 + 0.606835i
\(726\) 0.258819 0.448288i 0.00960568 0.0166375i
\(727\) 23.7128i 0.879460i 0.898130 + 0.439730i \(0.144926\pi\)
−0.898130 + 0.439730i \(0.855074\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 1.20183 + 3.16908i 0.0444816 + 0.117293i
\(731\) 0 0
\(732\) 0.984508 0.568406i 0.0363885 0.0210089i
\(733\) −15.4641 8.92820i −0.571180 0.329771i 0.186441 0.982466i \(-0.440305\pi\)
−0.757620 + 0.652696i \(0.773638\pi\)
\(734\) −2.07055 −0.0764255
\(735\) 0 0
\(736\) −17.9090 −0.660133
\(737\) 37.8792 + 21.8695i 1.39530 + 0.805575i
\(738\) −3.80385 + 2.19615i −0.140022 + 0.0808415i
\(739\) −12.9282 22.3923i −0.475572 0.823714i 0.524037 0.851696i \(-0.324425\pi\)
−0.999608 + 0.0279814i \(0.991092\pi\)
\(740\) 38.2261 14.4967i 1.40522 0.532908i
\(741\) 21.1117 0.775556
\(742\) 0 0
\(743\) 51.1619i 1.87695i 0.345351 + 0.938474i \(0.387760\pi\)
−0.345351 + 0.938474i \(0.612240\pi\)
\(744\) 7.09808 12.2942i 0.260228 0.450728i
\(745\) −15.6082 2.53679i −0.571841 0.0929408i
\(746\) 1.85641 + 3.21539i 0.0679679 + 0.117724i
\(747\) 5.19615 + 3.00000i 0.190117 + 0.109764i
\(748\) 24.0000i 0.877527i
\(749\) 0 0
\(750\) −5.12436 2.68973i −0.187115 0.0982149i
\(751\) 18.3923 31.8564i 0.671145 1.16246i −0.306435 0.951892i \(-0.599136\pi\)
0.977580 0.210565i \(-0.0675304\pi\)
\(752\) −12.8038 + 7.39230i −0.466908 + 0.269570i
\(753\) 17.6269 10.1769i 0.642360 0.370867i
\(754\) −5.10205 + 8.83701i −0.185806 + 0.321825i
\(755\) 27.5264 33.7128i 1.00179 1.22693i
\(756\) 0 0
\(757\) 34.2929i 1.24640i 0.782064 + 0.623198i \(0.214167\pi\)
−0.782064 + 0.623198i \(0.785833\pi\)
\(758\) −5.13922 2.96713i −0.186665 0.107771i
\(759\) 6.03579 + 10.4543i 0.219085 + 0.379467i
\(760\) 3.65756 22.5040i 0.132674 0.816306i
\(761\) 9.04008 15.6579i 0.327703 0.567598i −0.654353 0.756189i \(-0.727059\pi\)
0.982056 + 0.188591i \(0.0603922\pi\)
\(762\) 1.46410i 0.0530388i
\(763\) 0 0
\(764\) −12.9282 −0.467726
\(765\) 8.36308 3.17157i 0.302368 0.114668i
\(766\) 6.17449 + 10.6945i 0.223093 + 0.386409i
\(767\) −2.62536 + 1.51575i −0.0947961 + 0.0547305i
\(768\) −1.20577 0.696152i −0.0435095 0.0251202i
\(769\) 39.2934 1.41696 0.708478 0.705733i \(-0.249382\pi\)
0.708478 + 0.705733i \(0.249382\pi\)
\(770\) 0 0
\(771\) 3.46410 0.124757
\(772\) −9.62209 5.55532i −0.346307 0.199940i
\(773\) 32.7846 18.9282i 1.17918 0.680800i 0.223356 0.974737i \(-0.428299\pi\)
0.955825 + 0.293937i \(0.0949655\pi\)
\(774\) 0 0
\(775\) 34.8511 + 11.6360i 1.25189 + 0.417979i
\(776\) −36.5665 −1.31266
\(777\) 0 0
\(778\) 5.73118i 0.205473i
\(779\) 22.3923 38.7846i 0.802288 1.38960i
\(780\) 15.2913 + 2.48528i 0.547516 + 0.0889873i
\(781\) 11.0718 + 19.1769i 0.396180 + 0.686204i
\(782\) −6.24871 3.60770i −0.223453 0.129011i
\(783\) 4.92820i 0.176120i
\(784\) 0 0
\(785\) 8.78461 + 7.17260i 0.313536 + 0.256001i
\(786\) 1.46410 2.53590i 0.0522228 0.0904525i
\(787\) 39.7128 22.9282i 1.41561 0.817302i 0.419700 0.907663i \(-0.362135\pi\)
0.995909 + 0.0903608i \(0.0288020\pi\)
\(788\) −34.2049 + 19.7482i −1.21850 + 0.703501i
\(789\) 3.81294 6.60420i 0.135744 0.235116i
\(790\) 4.06678 + 3.32051i 0.144689 + 0.118138i
\(791\) 0 0
\(792\) 6.69213i 0.237795i
\(793\) 2.27362 + 1.31268i 0.0807388 + 0.0466145i
\(794\) 6.13733 + 10.6302i 0.217806 + 0.377250i
\(795\) 16.2189 + 2.63604i 0.575224 + 0.0934907i
\(796\) −7.02030 + 12.1595i −0.248828 + 0.430983i
\(797\) 10.1436i 0.359305i 0.983730 + 0.179652i \(0.0574973\pi\)
−0.983730 + 0.179652i \(0.942503\pi\)
\(798\) 0 0
\(799\) −24.0000 −0.849059
\(800\) 8.13777 24.3735i 0.287713 0.861732i
\(801\) −7.72741 13.3843i −0.273034 0.472910i
\(802\) −0.896575 + 0.517638i −0.0316592 + 0.0182784i
\(803\) 8.78461 + 5.07180i 0.310002 + 0.178980i
\(804\) −21.8695 −0.771279
\(805\) 0 0
\(806\) 15.2154 0.535939
\(807\) 26.7685 + 15.4548i 0.942297 + 0.544035i
\(808\) −11.6603 + 6.73205i −0.410206 + 0.236833i
\(809\) 10.8564 + 18.8038i 0.381691 + 0.661108i 0.991304 0.131591i \(-0.0420085\pi\)
−0.609613 + 0.792699i \(0.708675\pi\)
\(810\) −1.08226 + 0.410432i −0.0380268 + 0.0144211i
\(811\) 25.6317 0.900051 0.450026 0.893016i \(-0.351415\pi\)
0.450026 + 0.893016i \(0.351415\pi\)
\(812\) 0 0
\(813\) 1.69161i 0.0593275i
\(814\) −9.46410 + 16.3923i −0.331717 + 0.574550i
\(815\) −8.04405 + 49.4929i −0.281771 + 1.73366i
\(816\) 4.92820 + 8.53590i 0.172522 + 0.298816i
\(817\) 0 0
\(818\) 5.90897i 0.206602i
\(819\) 0 0
\(820\) 20.7846 25.4558i 0.725830 0.888957i
\(821\) −9.39230 + 16.2679i −0.327794 + 0.567755i −0.982074 0.188497i \(-0.939638\pi\)
0.654280 + 0.756252i \(0.272972\pi\)
\(822\) −4.56218 + 2.63397i −0.159124 + 0.0918704i
\(823\) −26.5927 + 15.3533i −0.926962 + 0.535182i −0.885849 0.463973i \(-0.846423\pi\)
−0.0411123 + 0.999155i \(0.513090\pi\)
\(824\) −13.3843 + 23.1822i −0.466263 + 0.807591i
\(825\) −16.9706 + 3.46410i −0.590839 + 0.120605i
\(826\) 0 0
\(827\) 8.18067i 0.284470i −0.989833 0.142235i \(-0.954571\pi\)
0.989833 0.142235i \(-0.0454289\pi\)
\(828\) −5.22715 3.01790i −0.181656 0.104879i
\(829\) 3.25813 + 5.64325i 0.113160 + 0.195998i 0.917043 0.398789i \(-0.130570\pi\)
−0.803883 + 0.594788i \(0.797236\pi\)
\(830\) 6.85490 + 1.11412i 0.237937 + 0.0386717i
\(831\) 5.65685 9.79796i 0.196234 0.339887i
\(832\) 9.07180i 0.314508i
\(833\) 0 0
\(834\) 0.196152 0.00679220
\(835\) −39.5745 + 15.0080i −1.36953 + 0.519375i
\(836\) −15.8338 27.4249i −0.547622 0.948509i
\(837\) 6.36396 3.67423i 0.219971 0.127000i
\(838\) −9.46410 5.46410i −0.326932 0.188754i
\(839\) −20.3538 −0.702691 −0.351345 0.936246i \(-0.614276\pi\)
−0.351345 + 0.936246i \(0.614276\pi\)
\(840\) 0 0
\(841\) −4.71281 −0.162511
\(842\) 5.73118 + 3.30890i 0.197510 + 0.114032i
\(843\) −24.1244 + 13.9282i −0.830887 + 0.479713i
\(844\) 23.3205 + 40.3923i 0.802725 + 1.39036i
\(845\) 2.37868 + 6.27231i 0.0818291 + 0.215774i
\(846\) 3.10583 0.106781
\(847\) 0 0
\(848\) 18.1074i 0.621810i
\(849\) −1.07180 + 1.85641i −0.0367840 + 0.0637117i
\(850\) 7.74933 6.86495i 0.265800 0.235466i
\(851\) −18.3923 31.8564i −0.630480 1.09202i
\(852\) −9.58846 5.53590i −0.328495 0.189657i
\(853\) 13.0718i 0.447570i 0.974639 + 0.223785i \(0.0718413\pi\)
−0.974639 + 0.223785i \(0.928159\pi\)
\(854\) 0 0
\(855\) 7.46410 9.14162i 0.255267 0.312637i
\(856\) −15.0263 + 26.0263i −0.513588 + 0.889560i
\(857\) 8.53590 4.92820i 0.291581 0.168344i −0.347074 0.937838i \(-0.612825\pi\)
0.638655 + 0.769494i \(0.279491\pi\)
\(858\) −6.21166 + 3.58630i −0.212062 + 0.122434i
\(859\) 1.70522 2.95352i 0.0581813 0.100773i −0.835468 0.549539i \(-0.814803\pi\)
0.893649 + 0.448767i \(0.148137\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 19.3185i 0.657991i
\(863\) −13.7768 7.95404i −0.468968 0.270759i 0.246840 0.969056i \(-0.420608\pi\)
−0.715808 + 0.698298i \(0.753941\pi\)
\(864\) −2.56961 4.45069i −0.0874198 0.151416i
\(865\) −5.73951 + 35.3137i −0.195149 + 1.20070i
\(866\) 4.62158 8.00481i 0.157048 0.272014i
\(867\) 1.00000i 0.0339618i
\(868\) 0 0
\(869\) 15.7128 0.533021
\(870\) 2.02269 + 5.33361i 0.0685756 + 0.180826i
\(871\) −25.2528 43.7391i −0.855658 1.48204i
\(872\) 26.5283 15.3161i 0.898361 0.518669i
\(873\) −16.3923 9.46410i −0.554795 0.320311i
\(874\) −9.52056 −0.322038
\(875\) 0 0
\(876\) −5.07180 −0.171360
\(877\) 29.3939 + 16.9706i 0.992561 + 0.573055i 0.906039 0.423195i \(-0.139091\pi\)
0.0865220 + 0.996250i \(0.472425\pi\)
\(878\) −5.83013 + 3.36603i −0.196757 + 0.113598i
\(879\) −5.73205 9.92820i −0.193337 0.334870i
\(880\) −6.76806 17.8466i −0.228151 0.601609i
\(881\) 29.5969 0.997147 0.498573 0.866848i \(-0.333857\pi\)
0.498573 + 0.866848i \(0.333857\pi\)
\(882\) 0 0
\(883\) 29.3939i 0.989183i −0.869126 0.494591i \(-0.835318\pi\)
0.869126 0.494591i \(-0.164682\pi\)
\(884\) −13.8564 + 24.0000i −0.466041 + 0.807207i
\(885\) −0.271864 + 1.67271i −0.00913862 + 0.0562275i
\(886\) 3.24167 + 5.61474i 0.108906 + 0.188631i
\(887\) 11.8756 + 6.85641i 0.398745 + 0.230216i 0.685942 0.727656i \(-0.259390\pi\)
−0.287197 + 0.957871i \(0.592724\pi\)
\(888\) 20.3923i 0.684321i
\(889\) 0 0
\(890\) −13.8564 11.3137i −0.464468 0.379236i
\(891\) −1.73205 + 3.00000i −0.0580259 + 0.100504i
\(892\) 12.0000 6.92820i 0.401790 0.231973i
\(893\) −27.4249 + 15.8338i −0.917738 + 0.529856i
\(894\) −1.83032 + 3.17020i −0.0612149 + 0.106027i
\(895\) 14.6969 18.0000i 0.491264 0.601674i
\(896\) 0 0
\(897\) 13.9391i 0.465412i
\(898\) −16.0740 9.28032i −0.536396 0.309688i
\(899\) −18.1074 31.3629i −0.603915 1.04601i
\(900\) 6.48244 5.74264i 0.216081 0.191421i
\(901\) −14.6969 + 25.4558i −0.489626 + 0.848057i
\(902\) 15.2154i 0.506617i
\(903\) 0 0
\(904\) 10.1962 0.339119
\(905\) −5.00569 13.1994i −0.166395 0.438764i
\(906\) −5.03768 8.72552i −0.167366 0.289886i
\(907\) 5.85993 3.38323i 0.194576 0.112338i −0.399547 0.916713i \(-0.630833\pi\)
0.594123 + 0.804374i \(0.297499\pi\)
\(908\) 6.00000 + 3.46410i 0.199117 + 0.114960i
\(909\) −6.96953 −0.231165
\(910\) 0 0
\(911\) 9.60770 0.318317 0.159159 0.987253i \(-0.449122\pi\)
0.159159 + 0.987253i \(0.449122\pi\)
\(912\) 11.2629 + 6.50266i 0.372953 + 0.215325i
\(913\) 18.0000 10.3923i 0.595713 0.343935i
\(914\) 5.66025 + 9.80385i 0.187225 + 0.324282i
\(915\) 1.37225 0.520407i 0.0453653 0.0172041i
\(916\) −23.3581 −0.771773
\(917\) 0 0
\(918\) 2.07055i 0.0683384i
\(919\) −4.53590 + 7.85641i −0.149625 + 0.259159i −0.931089 0.364792i \(-0.881140\pi\)
0.781464 + 0.623951i \(0.214473\pi\)
\(920\) −14.8584 2.41492i −0.489865 0.0796175i
\(921\) −2.00000 3.46410i −0.0659022 0.114146i
\(922\) −14.5359 8.39230i −0.478714 0.276386i
\(923\) 25.5692i 0.841621i
\(924\) 0 0
\(925\) 51.7128 10.5558i 1.70031 0.347074i
\(926\) 5.80385 10.0526i 0.190726 0.330348i
\(927\) −12.0000 + 6.92820i −0.394132 + 0.227552i
\(928\) −21.9339 + 12.6636i −0.720016 + 0.415701i
\(929\) 9.04008 15.6579i 0.296596 0.513719i −0.678759 0.734361i \(-0.737482\pi\)
0.975355 + 0.220642i \(0.0708153\pi\)
\(930\) 5.37945 6.58846i 0.176399 0.216044i
\(931\) 0 0
\(932\) 9.14162i 0.299444i
\(933\) −3.58630 2.07055i −0.117410 0.0677868i
\(934\) −2.55103 4.41851i −0.0834721 0.144578i
\(935\) 4.97056 30.5826i 0.162555 1.00016i
\(936\) 3.86370 6.69213i 0.126289 0.218739i
\(937\) 16.7846i 0.548329i 0.961683 + 0.274165i \(0.0884013\pi\)
−0.961683 + 0.274165i \(0.911599\pi\)
\(938\) 0 0
\(939\) −2.92820 −0.0955583
\(940\) −21.7279 + 8.23999i −0.708687 + 0.268759i
\(941\) 0.101536 + 0.175865i 0.00330998 + 0.00573305i 0.867676 0.497131i \(-0.165613\pi\)
−0.864366 + 0.502864i \(0.832280\pi\)
\(942\) 2.27362 1.31268i 0.0740787 0.0427693i
\(943\) −25.6077 14.7846i −0.833901 0.481453i
\(944\) −1.86748 −0.0607813
\(945\) 0 0
\(946\) 0 0
\(947\) −15.9217 9.19239i −0.517385 0.298712i 0.218479 0.975842i \(-0.429890\pi\)
−0.735864 + 0.677129i \(0.763224\pi\)
\(948\) −6.80385 + 3.92820i −0.220979 + 0.127582i
\(949\) −5.85641 10.1436i −0.190107 0.329275i
\(950\) 4.32611 12.9571i 0.140357 0.420385i
\(951\) −4.72311 −0.153157
\(952\) 0 0
\(953\) 53.9160i 1.74651i −0.487264 0.873255i \(-0.662005\pi\)
0.487264 0.873255i \(-0.337995\pi\)
\(954\) 1.90192 3.29423i 0.0615771 0.106655i
\(955\) −16.4741 2.67752i −0.533088 0.0866425i
\(956\) −7.39230 12.8038i −0.239084 0.414106i
\(957\) 14.7846 + 8.53590i 0.477919 + 0.275926i
\(958\) 13.0718i 0.422331i
\(959\) 0 0
\(960\) 3.92820 + 3.20736i 0.126782 + 0.103517i
\(961\) −11.5000 + 19.9186i −0.370968 + 0.642535i
\(962\) 18.9282 10.9282i 0.610270 0.352339i
\(963\) −13.4722 + 7.77817i −0.434135 + 0.250648i
\(964\) 12.1595 21.0609i 0.391632 0.678326i
\(965\) −11.1106 9.07180i −0.357664 0.292031i
\(966\) 0 0
\(967\) 10.0010i 0.321611i 0.986986 + 0.160806i \(0.0514093\pi\)
−0.986986 + 0.160806i \(0.948591\pi\)
\(968\) 1.67303 + 0.965926i 0.0537733 + 0.0310460i
\(969\) 10.5558 + 18.2832i 0.339102 + 0.587342i
\(970\) −21.6251 3.51472i −0.694341 0.112851i
\(971\) −5.83272 + 10.1026i −0.187181 + 0.324207i −0.944309 0.329059i \(-0.893268\pi\)
0.757128 + 0.653266i \(0.226602\pi\)
\(972\) 1.73205i 0.0555556i
\(973\) 0 0
\(974\) 8.00000 0.256337
\(975\) 18.9706 + 6.33386i 0.607544 + 0.202846i
\(976\) 0.808643 + 1.40061i 0.0258840 + 0.0448324i
\(977\) 39.5200 22.8169i 1.26436 0.729977i 0.290443 0.956892i \(-0.406197\pi\)
0.973914 + 0.226916i \(0.0728642\pi\)
\(978\) 10.0526 + 5.80385i 0.321445 + 0.185587i
\(979\) −53.5370 −1.71105
\(980\) 0 0
\(981\) 15.8564 0.506256
\(982\) 18.5235 + 10.6945i 0.591108 + 0.341276i
\(983\) −21.4641 + 12.3923i −0.684599 + 0.395253i −0.801585 0.597880i \(-0.796010\pi\)
0.116987 + 0.993133i \(0.462676\pi\)
\(984\) −8.19615 14.1962i −0.261284 0.452557i
\(985\) −47.6764 + 18.0806i −1.51910 + 0.576095i
\(986\) −10.2041 −0.324965
\(987\) 0 0
\(988\) 36.5665i 1.16333i
\(989\) 0 0
\(990\) −0.643238 + 3.95768i −0.0204435 + 0.125783i
\(991\) −6.39230 11.0718i −0.203058 0.351707i 0.746454 0.665437i \(-0.231755\pi\)
−0.949512 + 0.313730i \(0.898421\pi\)
\(992\) 32.7058 + 18.8827i 1.03841 + 0.599526i
\(993\) 8.78461i 0.278771i
\(994\) 0 0
\(995\) −11.4641 + 14.0406i −0.363436 + 0.445117i
\(996\) −5.19615 + 9.00000i −0.164646 + 0.285176i
\(997\) −36.2487 + 20.9282i −1.14801 + 0.662803i −0.948401 0.317073i \(-0.897300\pi\)
−0.199607 + 0.979876i \(0.563967\pi\)
\(998\) −14.4567 + 8.34658i −0.457619 + 0.264206i
\(999\) 5.27792 9.14162i 0.166986 0.289228i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.q.c.79.3 8
5.4 even 2 735.2.q.d.79.2 8
7.2 even 3 735.2.d.f.589.3 8
7.3 odd 6 inner 735.2.q.c.214.2 8
7.4 even 3 735.2.q.d.214.2 8
7.5 odd 6 735.2.d.f.589.4 yes 8
7.6 odd 2 735.2.q.d.79.3 8
21.2 odd 6 2205.2.d.t.1324.6 8
21.5 even 6 2205.2.d.t.1324.5 8
35.2 odd 12 3675.2.a.bs.1.3 4
35.4 even 6 inner 735.2.q.c.214.3 8
35.9 even 6 735.2.d.f.589.6 yes 8
35.12 even 12 3675.2.a.bu.1.3 4
35.19 odd 6 735.2.d.f.589.5 yes 8
35.23 odd 12 3675.2.a.bu.1.2 4
35.24 odd 6 735.2.q.d.214.3 8
35.33 even 12 3675.2.a.bs.1.2 4
35.34 odd 2 inner 735.2.q.c.79.2 8
105.44 odd 6 2205.2.d.t.1324.4 8
105.89 even 6 2205.2.d.t.1324.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.d.f.589.3 8 7.2 even 3
735.2.d.f.589.4 yes 8 7.5 odd 6
735.2.d.f.589.5 yes 8 35.19 odd 6
735.2.d.f.589.6 yes 8 35.9 even 6
735.2.q.c.79.2 8 35.34 odd 2 inner
735.2.q.c.79.3 8 1.1 even 1 trivial
735.2.q.c.214.2 8 7.3 odd 6 inner
735.2.q.c.214.3 8 35.4 even 6 inner
735.2.q.d.79.2 8 5.4 even 2
735.2.q.d.79.3 8 7.6 odd 2
735.2.q.d.214.2 8 7.4 even 3
735.2.q.d.214.3 8 35.24 odd 6
2205.2.d.t.1324.3 8 105.89 even 6
2205.2.d.t.1324.4 8 105.44 odd 6
2205.2.d.t.1324.5 8 21.5 even 6
2205.2.d.t.1324.6 8 21.2 odd 6
3675.2.a.bs.1.2 4 35.33 even 12
3675.2.a.bs.1.3 4 35.2 odd 12
3675.2.a.bu.1.2 4 35.23 odd 12
3675.2.a.bu.1.3 4 35.12 even 12