Properties

Label 735.2.p.g.374.8
Level $735$
Weight $2$
Character 735.374
Analytic conductor $5.869$
Analytic rank $0$
Dimension $64$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(374,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.374"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 374.8
Character \(\chi\) \(=\) 735.374
Dual form 735.2.p.g.509.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.02274 - 1.77144i) q^{2} +(1.72810 - 0.116943i) q^{3} +(-1.09199 + 1.89138i) q^{4} +(0.990993 + 2.00448i) q^{5} +(-1.97455 - 2.94161i) q^{6} +0.376326 q^{8} +(2.97265 - 0.404178i) q^{9} +(2.53728 - 3.80554i) q^{10} +(4.46847 + 2.57987i) q^{11} +(-1.66588 + 3.39619i) q^{12} -2.98151 q^{13} +(1.94694 + 3.34805i) q^{15} +(1.79910 + 3.11613i) q^{16} +(1.17568 + 0.678781i) q^{17} +(-3.75622 - 4.85249i) q^{18} +(-2.67938 + 1.54694i) q^{19} +(-4.87339 - 0.314523i) q^{20} -10.5542i q^{22} +(3.61476 + 6.26095i) q^{23} +(0.650328 - 0.0440086i) q^{24} +(-3.03586 + 3.97285i) q^{25} +(3.04931 + 5.28156i) q^{26} +(5.08976 - 1.04609i) q^{27} -2.69332i q^{29} +(3.93963 - 6.87306i) q^{30} +(-3.76937 - 2.17625i) q^{31} +(4.05634 - 7.02578i) q^{32} +(8.02366 + 3.93572i) q^{33} -2.77686i q^{34} +(-2.48165 + 6.06377i) q^{36} +(6.58079 - 3.79942i) q^{37} +(5.48062 + 3.16424i) q^{38} +(-5.15235 + 0.348667i) q^{39} +(0.372936 + 0.754337i) q^{40} +7.68540 q^{41} -7.79107i q^{43} +(-9.75905 + 5.63439i) q^{44} +(3.75604 + 5.55807i) q^{45} +(7.39391 - 12.8066i) q^{46} +(-5.25990 + 3.03680i) q^{47} +(3.47342 + 5.17458i) q^{48} +(10.1425 + 1.31465i) q^{50} +(2.11107 + 1.03551i) q^{51} +(3.25578 - 5.63918i) q^{52} +(-3.14616 + 5.44930i) q^{53} +(-7.05858 - 7.94631i) q^{54} +(-0.743074 + 11.5136i) q^{55} +(-4.44934 + 2.98661i) q^{57} +(-4.77104 + 2.75456i) q^{58} +(-2.12502 + 3.68065i) q^{59} +(-8.45847 + 0.0263817i) q^{60} +(4.51526 - 2.60689i) q^{61} +8.90293i q^{62} -9.39791 q^{64} +(-2.95466 - 5.97638i) q^{65} +(-1.23423 - 18.2386i) q^{66} +(4.89919 + 2.82855i) q^{67} +(-2.56767 + 1.48244i) q^{68} +(6.97884 + 10.3968i) q^{69} -11.2688i q^{71} +(1.11868 - 0.152102i) q^{72} +(2.45608 - 4.25406i) q^{73} +(-13.4609 - 7.77163i) q^{74} +(-4.78168 + 7.22050i) q^{75} -6.75699i q^{76} +(5.88715 + 8.77046i) q^{78} +(-5.96472 - 10.3312i) q^{79} +(-4.46331 + 6.69431i) q^{80} +(8.67328 - 2.40296i) q^{81} +(-7.86016 - 13.6142i) q^{82} -12.1558i q^{83} +(-0.195507 + 3.02930i) q^{85} +(-13.8014 + 7.96823i) q^{86} +(-0.314964 - 4.65432i) q^{87} +(1.68160 + 0.970873i) q^{88} +(-4.66058 - 8.07237i) q^{89} +(6.00432 - 12.3380i) q^{90} -15.7891 q^{92} +(-6.76834 - 3.31997i) q^{93} +(10.7590 + 6.21171i) q^{94} +(-5.75607 - 3.83776i) q^{95} +(6.18814 - 12.6156i) q^{96} -19.2504 q^{97} +(14.3259 + 5.86300i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 16 q^{4} - 40 q^{9} + 32 q^{15} + 16 q^{16} - 64 q^{25} - 56 q^{30} - 32 q^{36} + 56 q^{39} + 32 q^{46} + 40 q^{51} - 8 q^{60} - 352 q^{64} - 48 q^{79} + 40 q^{81} - 128 q^{85} + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.02274 1.77144i −0.723186 1.25259i −0.959716 0.280970i \(-0.909344\pi\)
0.236531 0.971624i \(-0.423990\pi\)
\(3\) 1.72810 0.116943i 0.997718 0.0675170i
\(4\) −1.09199 + 1.89138i −0.545995 + 0.945691i
\(5\) 0.990993 + 2.00448i 0.443186 + 0.896430i
\(6\) −1.97455 2.94161i −0.806107 1.20091i
\(7\) 0 0
\(8\) 0.376326 0.133051
\(9\) 2.97265 0.404178i 0.990883 0.134726i
\(10\) 2.53728 3.80554i 0.802357 1.20342i
\(11\) 4.46847 + 2.57987i 1.34730 + 0.777861i 0.987866 0.155311i \(-0.0496379\pi\)
0.359430 + 0.933172i \(0.382971\pi\)
\(12\) −1.66588 + 3.39619i −0.480899 + 0.980397i
\(13\) −2.98151 −0.826923 −0.413462 0.910522i \(-0.635680\pi\)
−0.413462 + 0.910522i \(0.635680\pi\)
\(14\) 0 0
\(15\) 1.94694 + 3.34805i 0.502699 + 0.864462i
\(16\) 1.79910 + 3.11613i 0.449774 + 0.779032i
\(17\) 1.17568 + 0.678781i 0.285145 + 0.164629i 0.635750 0.771895i \(-0.280691\pi\)
−0.350605 + 0.936523i \(0.614024\pi\)
\(18\) −3.75622 4.85249i −0.885349 1.14374i
\(19\) −2.67938 + 1.54694i −0.614693 + 0.354893i −0.774800 0.632206i \(-0.782149\pi\)
0.160107 + 0.987100i \(0.448816\pi\)
\(20\) −4.87339 0.314523i −1.08972 0.0703294i
\(21\) 0 0
\(22\) 10.5542i 2.25015i
\(23\) 3.61476 + 6.26095i 0.753730 + 1.30550i 0.946003 + 0.324157i \(0.105081\pi\)
−0.192274 + 0.981341i \(0.561586\pi\)
\(24\) 0.650328 0.0440086i 0.132748 0.00898322i
\(25\) −3.03586 + 3.97285i −0.607173 + 0.794570i
\(26\) 3.04931 + 5.28156i 0.598019 + 1.03580i
\(27\) 5.08976 1.04609i 0.979526 0.201320i
\(28\) 0 0
\(29\) 2.69332i 0.500136i −0.968228 0.250068i \(-0.919547\pi\)
0.968228 0.250068i \(-0.0804531\pi\)
\(30\) 3.93963 6.87306i 0.719275 1.25484i
\(31\) −3.76937 2.17625i −0.676999 0.390865i 0.121725 0.992564i \(-0.461158\pi\)
−0.798723 + 0.601699i \(0.794491\pi\)
\(32\) 4.05634 7.02578i 0.717066 1.24199i
\(33\) 8.02366 + 3.93572i 1.39674 + 0.685121i
\(34\) 2.77686i 0.476228i
\(35\) 0 0
\(36\) −2.48165 + 6.06377i −0.413608 + 1.01063i
\(37\) 6.58079 3.79942i 1.08188 0.624621i 0.150473 0.988614i \(-0.451920\pi\)
0.931402 + 0.363993i \(0.118587\pi\)
\(38\) 5.48062 + 3.16424i 0.889074 + 0.513307i
\(39\) −5.15235 + 0.348667i −0.825036 + 0.0558314i
\(40\) 0.372936 + 0.754337i 0.0589664 + 0.119271i
\(41\) 7.68540 1.20026 0.600129 0.799903i \(-0.295116\pi\)
0.600129 + 0.799903i \(0.295116\pi\)
\(42\) 0 0
\(43\) 7.79107i 1.18813i −0.804418 0.594064i \(-0.797523\pi\)
0.804418 0.594064i \(-0.202477\pi\)
\(44\) −9.75905 + 5.63439i −1.47123 + 0.849417i
\(45\) 3.75604 + 5.55807i 0.559917 + 0.828548i
\(46\) 7.39391 12.8066i 1.09017 1.88823i
\(47\) −5.25990 + 3.03680i −0.767235 + 0.442963i −0.831887 0.554945i \(-0.812739\pi\)
0.0646524 + 0.997908i \(0.479406\pi\)
\(48\) 3.47342 + 5.17458i 0.501346 + 0.746887i
\(49\) 0 0
\(50\) 10.1425 + 1.31465i 1.43437 + 0.185920i
\(51\) 2.11107 + 1.03551i 0.295609 + 0.145001i
\(52\) 3.25578 5.63918i 0.451496 0.782014i
\(53\) −3.14616 + 5.44930i −0.432158 + 0.748519i −0.997059 0.0766394i \(-0.975581\pi\)
0.564901 + 0.825159i \(0.308914\pi\)
\(54\) −7.05858 7.94631i −0.960551 1.08136i
\(55\) −0.743074 + 11.5136i −0.100196 + 1.55249i
\(56\) 0 0
\(57\) −4.44934 + 2.98661i −0.589329 + 0.395586i
\(58\) −4.77104 + 2.75456i −0.626468 + 0.361692i
\(59\) −2.12502 + 3.68065i −0.276655 + 0.479180i −0.970551 0.240895i \(-0.922559\pi\)
0.693897 + 0.720075i \(0.255892\pi\)
\(60\) −8.45847 + 0.0263817i −1.09198 + 0.00340586i
\(61\) 4.51526 2.60689i 0.578120 0.333778i −0.182266 0.983249i \(-0.558343\pi\)
0.760386 + 0.649472i \(0.225010\pi\)
\(62\) 8.90293i 1.13067i
\(63\) 0 0
\(64\) −9.39791 −1.17474
\(65\) −2.95466 5.97638i −0.366481 0.741279i
\(66\) −1.23423 18.2386i −0.151924 2.24502i
\(67\) 4.89919 + 2.82855i 0.598531 + 0.345562i 0.768463 0.639894i \(-0.221022\pi\)
−0.169932 + 0.985456i \(0.554355\pi\)
\(68\) −2.56767 + 1.48244i −0.311375 + 0.179773i
\(69\) 6.97884 + 10.3968i 0.840153 + 1.25163i
\(70\) 0 0
\(71\) 11.2688i 1.33736i −0.743551 0.668679i \(-0.766860\pi\)
0.743551 0.668679i \(-0.233140\pi\)
\(72\) 1.11868 0.152102i 0.131838 0.0179254i
\(73\) 2.45608 4.25406i 0.287463 0.497900i −0.685741 0.727846i \(-0.740522\pi\)
0.973203 + 0.229946i \(0.0738549\pi\)
\(74\) −13.4609 7.77163i −1.56479 0.903434i
\(75\) −4.78168 + 7.22050i −0.552140 + 0.833751i
\(76\) 6.75699i 0.775079i
\(77\) 0 0
\(78\) 5.88715 + 8.77046i 0.666589 + 0.993059i
\(79\) −5.96472 10.3312i −0.671084 1.16235i −0.977597 0.210485i \(-0.932496\pi\)
0.306513 0.951866i \(-0.400838\pi\)
\(80\) −4.46331 + 6.69431i −0.499014 + 0.748447i
\(81\) 8.67328 2.40296i 0.963698 0.266995i
\(82\) −7.86016 13.6142i −0.868009 1.50344i
\(83\) 12.1558i 1.33428i −0.744934 0.667138i \(-0.767519\pi\)
0.744934 0.667138i \(-0.232481\pi\)
\(84\) 0 0
\(85\) −0.195507 + 3.02930i −0.0212057 + 0.328573i
\(86\) −13.8014 + 7.96823i −1.48824 + 0.859237i
\(87\) −0.314964 4.65432i −0.0337677 0.498995i
\(88\) 1.68160 + 0.970873i 0.179259 + 0.103495i
\(89\) −4.66058 8.07237i −0.494021 0.855669i 0.505955 0.862560i \(-0.331140\pi\)
−0.999976 + 0.00689023i \(0.997807\pi\)
\(90\) 6.00432 12.3380i 0.632911 1.30054i
\(91\) 0 0
\(92\) −15.7891 −1.64613
\(93\) −6.76834 3.31997i −0.701844 0.344265i
\(94\) 10.7590 + 6.21171i 1.10971 + 0.640689i
\(95\) −5.75607 3.83776i −0.590560 0.393746i
\(96\) 6.18814 12.6156i 0.631574 1.28757i
\(97\) −19.2504 −1.95458 −0.977289 0.211910i \(-0.932032\pi\)
−0.977289 + 0.211910i \(0.932032\pi\)
\(98\) 0 0
\(99\) 14.3259 + 5.86300i 1.43981 + 0.589254i
\(100\) −4.19904 10.0803i −0.419904 1.00803i
\(101\) −2.59470 + 4.49416i −0.258183 + 0.447185i −0.965755 0.259455i \(-0.916457\pi\)
0.707573 + 0.706641i \(0.249790\pi\)
\(102\) −0.324734 4.79869i −0.0321535 0.475141i
\(103\) 2.33050 + 4.03654i 0.229631 + 0.397733i 0.957699 0.287773i \(-0.0929147\pi\)
−0.728068 + 0.685505i \(0.759581\pi\)
\(104\) −1.12202 −0.110023
\(105\) 0 0
\(106\) 12.8708 1.25012
\(107\) 0.439926 + 0.761974i 0.0425293 + 0.0736628i 0.886506 0.462716i \(-0.153125\pi\)
−0.843977 + 0.536379i \(0.819792\pi\)
\(108\) −3.57942 + 10.7690i −0.344430 + 1.03625i
\(109\) −2.93877 + 5.09010i −0.281483 + 0.487543i −0.971750 0.236012i \(-0.924160\pi\)
0.690267 + 0.723555i \(0.257493\pi\)
\(110\) 21.1556 10.4591i 2.01710 0.997235i
\(111\) 10.9279 7.33535i 1.03723 0.696241i
\(112\) 0 0
\(113\) −3.00476 −0.282664 −0.141332 0.989962i \(-0.545139\pi\)
−0.141332 + 0.989962i \(0.545139\pi\)
\(114\) 9.84109 + 4.82720i 0.921703 + 0.452108i
\(115\) −8.96773 + 13.4503i −0.836245 + 1.25424i
\(116\) 5.09409 + 2.94107i 0.472974 + 0.273072i
\(117\) −8.86300 + 1.20506i −0.819384 + 0.111408i
\(118\) 8.69338 0.800291
\(119\) 0 0
\(120\) 0.732685 + 1.25996i 0.0668847 + 0.115018i
\(121\) 7.81150 + 13.5299i 0.710137 + 1.22999i
\(122\) −9.23587 5.33233i −0.836176 0.482766i
\(123\) 13.2811 0.898753i 1.19752 0.0810378i
\(124\) 8.23223 4.75288i 0.739276 0.426821i
\(125\) −10.9720 2.14826i −0.981366 0.192146i
\(126\) 0 0
\(127\) 4.49556i 0.398916i 0.979906 + 0.199458i \(0.0639182\pi\)
−0.979906 + 0.199458i \(0.936082\pi\)
\(128\) 1.49893 + 2.59623i 0.132488 + 0.229476i
\(129\) −0.911111 13.4637i −0.0802188 1.18542i
\(130\) −7.56493 + 11.3463i −0.663488 + 0.995134i
\(131\) 3.82312 + 6.62184i 0.334028 + 0.578553i 0.983298 0.182005i \(-0.0582587\pi\)
−0.649270 + 0.760558i \(0.724925\pi\)
\(132\) −16.2057 + 10.8780i −1.41053 + 0.946812i
\(133\) 0 0
\(134\) 11.5715i 0.999622i
\(135\) 7.14078 + 9.16565i 0.614581 + 0.788854i
\(136\) 0.442440 + 0.255443i 0.0379389 + 0.0219040i
\(137\) 1.60555 2.78090i 0.137172 0.237588i −0.789253 0.614068i \(-0.789532\pi\)
0.926425 + 0.376480i \(0.122866\pi\)
\(138\) 11.2798 22.9958i 0.960197 1.95753i
\(139\) 10.1096i 0.857483i −0.903427 0.428741i \(-0.858957\pi\)
0.903427 0.428741i \(-0.141043\pi\)
\(140\) 0 0
\(141\) −8.73449 + 5.86300i −0.735577 + 0.493754i
\(142\) −19.9619 + 11.5250i −1.67517 + 0.967159i
\(143\) −13.3228 7.69193i −1.11411 0.643232i
\(144\) 6.60755 + 8.53599i 0.550629 + 0.711333i
\(145\) 5.39870 2.66906i 0.448337 0.221653i
\(146\) −10.0477 −0.831555
\(147\) 0 0
\(148\) 16.5957i 1.36416i
\(149\) 5.63832 3.25529i 0.461909 0.266683i −0.250938 0.968003i \(-0.580739\pi\)
0.712847 + 0.701320i \(0.247406\pi\)
\(150\) 17.6811 + 1.08575i 1.44365 + 0.0886511i
\(151\) 5.87611 10.1777i 0.478191 0.828251i −0.521496 0.853254i \(-0.674626\pi\)
0.999687 + 0.0250023i \(0.00795931\pi\)
\(152\) −1.00832 + 0.582155i −0.0817857 + 0.0472190i
\(153\) 3.76924 + 1.54259i 0.304725 + 0.124711i
\(154\) 0 0
\(155\) 0.626818 9.71226i 0.0503472 0.780108i
\(156\) 4.96685 10.1258i 0.397666 0.810713i
\(157\) −6.00307 + 10.3976i −0.479097 + 0.829821i −0.999713 0.0239706i \(-0.992369\pi\)
0.520615 + 0.853791i \(0.325703\pi\)
\(158\) −12.2007 + 21.1322i −0.970636 + 1.68119i
\(159\) −4.79961 + 9.78485i −0.380634 + 0.775989i
\(160\) 18.1028 + 1.16834i 1.43115 + 0.0923650i
\(161\) 0 0
\(162\) −13.1272 12.9066i −1.03137 1.01404i
\(163\) 15.7593 9.09863i 1.23436 0.712659i 0.266426 0.963855i \(-0.414157\pi\)
0.967936 + 0.251196i \(0.0808239\pi\)
\(164\) −8.39238 + 14.5360i −0.655334 + 1.13507i
\(165\) 0.0623280 + 19.9835i 0.00485222 + 1.55572i
\(166\) −21.5333 + 12.4323i −1.67131 + 0.964930i
\(167\) 20.6432i 1.59742i 0.601716 + 0.798710i \(0.294484\pi\)
−0.601716 + 0.798710i \(0.705516\pi\)
\(168\) 0 0
\(169\) −4.11057 −0.316198
\(170\) 5.56616 2.75185i 0.426905 0.211057i
\(171\) −7.33963 + 5.68147i −0.561276 + 0.434473i
\(172\) 14.7359 + 8.50777i 1.12360 + 0.648712i
\(173\) −15.9654 + 9.21766i −1.21383 + 0.700805i −0.963592 0.267379i \(-0.913843\pi\)
−0.250239 + 0.968184i \(0.580509\pi\)
\(174\) −7.92270 + 5.31809i −0.600618 + 0.403163i
\(175\) 0 0
\(176\) 18.5658i 1.39945i
\(177\) −3.24183 + 6.60903i −0.243671 + 0.496765i
\(178\) −9.53312 + 16.5119i −0.714538 + 1.23762i
\(179\) 14.1419 + 8.16484i 1.05702 + 0.610269i 0.924605 0.380926i \(-0.124395\pi\)
0.132411 + 0.991195i \(0.457728\pi\)
\(180\) −14.6140 + 1.03475i −1.08926 + 0.0771256i
\(181\) 3.55998i 0.264612i −0.991209 0.132306i \(-0.957762\pi\)
0.991209 0.132306i \(-0.0422381\pi\)
\(182\) 0 0
\(183\) 7.49796 5.03299i 0.554265 0.372049i
\(184\) 1.36033 + 2.35616i 0.100285 + 0.173698i
\(185\) 14.1374 + 9.42585i 1.03940 + 0.693002i
\(186\) 1.04113 + 15.3851i 0.0763396 + 1.12809i
\(187\) 3.50234 + 6.06623i 0.256116 + 0.443606i
\(188\) 13.2646i 0.967423i
\(189\) 0 0
\(190\) −0.911387 + 14.1215i −0.0661189 + 1.02448i
\(191\) −0.285090 + 0.164597i −0.0206284 + 0.0119098i −0.510279 0.860009i \(-0.670458\pi\)
0.489650 + 0.871919i \(0.337124\pi\)
\(192\) −16.2405 + 1.09902i −1.17206 + 0.0793148i
\(193\) −6.98270 4.03147i −0.502626 0.290191i 0.227171 0.973855i \(-0.427052\pi\)
−0.729797 + 0.683664i \(0.760386\pi\)
\(194\) 19.6881 + 34.1008i 1.41352 + 2.44829i
\(195\) −5.80484 9.98225i −0.415693 0.714844i
\(196\) 0 0
\(197\) −9.61468 −0.685017 −0.342509 0.939515i \(-0.611277\pi\)
−0.342509 + 0.939515i \(0.611277\pi\)
\(198\) −4.26575 31.3738i −0.303154 2.22964i
\(199\) −9.66445 5.57977i −0.685095 0.395540i 0.116677 0.993170i \(-0.462776\pi\)
−0.801772 + 0.597630i \(0.796109\pi\)
\(200\) −1.14247 + 1.49508i −0.0807851 + 0.105718i
\(201\) 8.79706 + 4.31508i 0.620497 + 0.304363i
\(202\) 10.6148 0.746855
\(203\) 0 0
\(204\) −4.26382 + 2.86208i −0.298527 + 0.200386i
\(205\) 7.61618 + 15.4052i 0.531937 + 1.07595i
\(206\) 4.76699 8.25666i 0.332132 0.575269i
\(207\) 13.2759 + 17.1506i 0.922742 + 1.19205i
\(208\) −5.36403 9.29078i −0.371929 0.644199i
\(209\) −15.9637 −1.10423
\(210\) 0 0
\(211\) 1.20704 0.0830957 0.0415479 0.999137i \(-0.486771\pi\)
0.0415479 + 0.999137i \(0.486771\pi\)
\(212\) −6.87114 11.9012i −0.471912 0.817375i
\(213\) −1.31780 19.4736i −0.0902944 1.33431i
\(214\) 0.899859 1.55860i 0.0615131 0.106544i
\(215\) 15.6170 7.72090i 1.06507 0.526561i
\(216\) 1.91541 0.393670i 0.130327 0.0267859i
\(217\) 0 0
\(218\) 12.0224 0.814258
\(219\) 3.74687 7.63865i 0.253190 0.516172i
\(220\) −20.9652 13.9782i −1.41347 0.942408i
\(221\) −3.50532 2.02379i −0.235793 0.136135i
\(222\) −24.1705 11.8560i −1.62222 0.795722i
\(223\) 4.30580 0.288338 0.144169 0.989553i \(-0.453949\pi\)
0.144169 + 0.989553i \(0.453949\pi\)
\(224\) 0 0
\(225\) −7.41882 + 13.0369i −0.494588 + 0.869127i
\(226\) 3.07309 + 5.32274i 0.204419 + 0.354064i
\(227\) −3.50545 2.02387i −0.232665 0.134329i 0.379136 0.925341i \(-0.376221\pi\)
−0.611801 + 0.791012i \(0.709555\pi\)
\(228\) −0.790181 11.6767i −0.0523310 0.773311i
\(229\) −7.42385 + 4.28616i −0.490582 + 0.283238i −0.724816 0.688943i \(-0.758075\pi\)
0.234234 + 0.972180i \(0.424742\pi\)
\(230\) 32.9979 + 2.12965i 2.17582 + 0.140425i
\(231\) 0 0
\(232\) 1.01356i 0.0665438i
\(233\) 4.55956 + 7.89739i 0.298707 + 0.517375i 0.975840 0.218485i \(-0.0701114\pi\)
−0.677134 + 0.735860i \(0.736778\pi\)
\(234\) 11.1992 + 14.4678i 0.732116 + 0.945787i
\(235\) −11.2997 7.53390i −0.737113 0.491457i
\(236\) −4.64101 8.03846i −0.302104 0.523259i
\(237\) −11.5158 17.1558i −0.748031 1.11439i
\(238\) 0 0
\(239\) 17.7528i 1.14834i 0.818738 + 0.574168i \(0.194674\pi\)
−0.818738 + 0.574168i \(0.805326\pi\)
\(240\) −6.93019 + 12.0904i −0.447342 + 0.780431i
\(241\) 20.7990 + 12.0083i 1.33978 + 0.773524i 0.986775 0.162096i \(-0.0518254\pi\)
0.353008 + 0.935620i \(0.385159\pi\)
\(242\) 15.9783 27.6752i 1.02712 1.77903i
\(243\) 14.7073 5.16682i 0.943472 0.331452i
\(244\) 11.3868i 0.728964i
\(245\) 0 0
\(246\) −15.1752 22.6075i −0.967536 1.44140i
\(247\) 7.98863 4.61224i 0.508304 0.293469i
\(248\) −1.41851 0.818977i −0.0900755 0.0520051i
\(249\) −1.42154 21.0065i −0.0900864 1.33123i
\(250\) 7.41600 + 21.6333i 0.469029 + 1.36821i
\(251\) −8.80742 −0.555919 −0.277960 0.960593i \(-0.589658\pi\)
−0.277960 + 0.960593i \(0.589658\pi\)
\(252\) 0 0
\(253\) 37.3025i 2.34519i
\(254\) 7.96359 4.59778i 0.499680 0.288490i
\(255\) 0.0163989 + 5.25779i 0.00102694 + 0.329255i
\(256\) −6.33188 + 10.9671i −0.395742 + 0.685446i
\(257\) 10.0743 5.81639i 0.628416 0.362816i −0.151722 0.988423i \(-0.548482\pi\)
0.780139 + 0.625607i \(0.215149\pi\)
\(258\) −22.9183 + 15.3839i −1.42683 + 0.957758i
\(259\) 0 0
\(260\) 14.5301 + 0.937754i 0.901117 + 0.0581570i
\(261\) −1.08858 8.00629i −0.0673813 0.495577i
\(262\) 7.82011 13.5448i 0.483128 0.836803i
\(263\) −0.489850 + 0.848446i −0.0302055 + 0.0523174i −0.880733 0.473613i \(-0.842949\pi\)
0.850528 + 0.525931i \(0.176283\pi\)
\(264\) 3.01951 + 1.48111i 0.185838 + 0.0911562i
\(265\) −14.0408 0.906179i −0.862521 0.0556661i
\(266\) 0 0
\(267\) −8.99796 13.4048i −0.550666 0.820362i
\(268\) −10.6997 + 6.17749i −0.653590 + 0.377350i
\(269\) 10.3046 17.8481i 0.628282 1.08822i −0.359614 0.933101i \(-0.617092\pi\)
0.987896 0.155116i \(-0.0495751\pi\)
\(270\) 8.93321 22.0235i 0.543658 1.34031i
\(271\) −2.25140 + 1.29985i −0.136763 + 0.0789602i −0.566820 0.823841i \(-0.691827\pi\)
0.430057 + 0.902802i \(0.358493\pi\)
\(272\) 4.88477i 0.296183i
\(273\) 0 0
\(274\) −6.56824 −0.396802
\(275\) −23.8151 + 9.92042i −1.43611 + 0.598224i
\(276\) −27.2852 + 1.84643i −1.64237 + 0.111142i
\(277\) −16.5840 9.57476i −0.996434 0.575292i −0.0892430 0.996010i \(-0.528445\pi\)
−0.907191 + 0.420718i \(0.861778\pi\)
\(278\) −17.9085 + 10.3395i −1.07408 + 0.620119i
\(279\) −12.0846 4.94572i −0.723486 0.296093i
\(280\) 0 0
\(281\) 14.8209i 0.884138i −0.896981 0.442069i \(-0.854245\pi\)
0.896981 0.442069i \(-0.145755\pi\)
\(282\) 19.3190 + 9.47626i 1.15043 + 0.564303i
\(283\) −1.14292 + 1.97960i −0.0679398 + 0.117675i −0.897994 0.440007i \(-0.854976\pi\)
0.830054 + 0.557682i \(0.188309\pi\)
\(284\) 21.3136 + 12.3054i 1.26473 + 0.730191i
\(285\) −10.3958 5.95889i −0.615797 0.352974i
\(286\) 31.4674i 1.86070i
\(287\) 0 0
\(288\) 9.21840 22.5247i 0.543200 1.32728i
\(289\) −7.57851 13.1264i −0.445795 0.772139i
\(290\) −10.2495 6.83369i −0.601873 0.401288i
\(291\) −33.2665 + 2.25119i −1.95012 + 0.131967i
\(292\) 5.36403 + 9.29078i 0.313906 + 0.543702i
\(293\) 29.4268i 1.71913i −0.511023 0.859567i \(-0.670733\pi\)
0.511023 0.859567i \(-0.329267\pi\)
\(294\) 0 0
\(295\) −9.48367 0.612065i −0.552160 0.0356358i
\(296\) 2.47652 1.42982i 0.143945 0.0831066i
\(297\) 25.4423 + 8.45653i 1.47631 + 0.490698i
\(298\) −11.5331 6.65861i −0.668092 0.385723i
\(299\) −10.7775 18.6671i −0.623277 1.07955i
\(300\) −8.43517 16.9287i −0.487005 0.977378i
\(301\) 0 0
\(302\) −24.0389 −1.38328
\(303\) −3.95834 + 8.06978i −0.227401 + 0.463597i
\(304\) −9.64094 5.56620i −0.552946 0.319244i
\(305\) 9.70004 + 6.46733i 0.555423 + 0.370318i
\(306\) −1.12235 8.25463i −0.0641602 0.471886i
\(307\) 19.6726 1.12278 0.561388 0.827553i \(-0.310268\pi\)
0.561388 + 0.827553i \(0.310268\pi\)
\(308\) 0 0
\(309\) 4.49938 + 6.70301i 0.255961 + 0.381321i
\(310\) −17.8457 + 8.82274i −1.01357 + 0.501098i
\(311\) 3.88227 6.72428i 0.220143 0.381299i −0.734708 0.678383i \(-0.762681\pi\)
0.954851 + 0.297084i \(0.0960142\pi\)
\(312\) −1.93896 + 0.131212i −0.109772 + 0.00742843i
\(313\) 7.69453 + 13.3273i 0.434921 + 0.753305i 0.997289 0.0735820i \(-0.0234431\pi\)
−0.562368 + 0.826887i \(0.690110\pi\)
\(314\) 24.5583 1.38590
\(315\) 0 0
\(316\) 26.0537 1.46563
\(317\) 0.807245 + 1.39819i 0.0453394 + 0.0785301i 0.887805 0.460221i \(-0.152230\pi\)
−0.842465 + 0.538751i \(0.818896\pi\)
\(318\) 22.2420 1.50515i 1.24727 0.0844044i
\(319\) 6.94842 12.0350i 0.389037 0.673832i
\(320\) −9.31327 18.8379i −0.520627 1.05307i
\(321\) 0.849343 + 1.26532i 0.0474057 + 0.0706233i
\(322\) 0 0
\(323\) −4.20014 −0.233702
\(324\) −4.92623 + 19.0285i −0.273679 + 1.05714i
\(325\) 9.05147 11.8451i 0.502085 0.657048i
\(326\) −32.2353 18.6110i −1.78535 1.03077i
\(327\) −4.48323 + 9.13986i −0.247923 + 0.505435i
\(328\) 2.89221 0.159696
\(329\) 0 0
\(330\) 35.3358 20.5483i 1.94517 1.13115i
\(331\) −15.2284 26.3763i −0.837026 1.44977i −0.892370 0.451305i \(-0.850959\pi\)
0.0553437 0.998467i \(-0.482375\pi\)
\(332\) 22.9913 + 13.2741i 1.26181 + 0.728508i
\(333\) 18.0267 13.9542i 0.987859 0.764683i
\(334\) 36.5681 21.1126i 2.00092 1.15523i
\(335\) −0.814699 + 12.6234i −0.0445117 + 0.689689i
\(336\) 0 0
\(337\) 22.5247i 1.22700i −0.789696 0.613498i \(-0.789762\pi\)
0.789696 0.613498i \(-0.210238\pi\)
\(338\) 4.20404 + 7.28161i 0.228670 + 0.396067i
\(339\) −5.19253 + 0.351386i −0.282019 + 0.0190846i
\(340\) −5.51607 3.67774i −0.299151 0.199453i
\(341\) −11.2289 19.4490i −0.608078 1.05322i
\(342\) 17.5709 + 7.19103i 0.950124 + 0.388846i
\(343\) 0 0
\(344\) 2.93198i 0.158082i
\(345\) −13.9242 + 24.2921i −0.749654 + 1.30784i
\(346\) 32.6570 + 18.8545i 1.75565 + 1.01362i
\(347\) −6.22579 + 10.7834i −0.334218 + 0.578882i −0.983334 0.181807i \(-0.941805\pi\)
0.649116 + 0.760689i \(0.275139\pi\)
\(348\) 9.14703 + 4.48675i 0.490332 + 0.240515i
\(349\) 17.9519i 0.960945i −0.877010 0.480472i \(-0.840465\pi\)
0.877010 0.480472i \(-0.159535\pi\)
\(350\) 0 0
\(351\) −15.1752 + 3.11893i −0.809993 + 0.166476i
\(352\) 36.2513 20.9297i 1.93220 1.11556i
\(353\) 10.9825 + 6.34074i 0.584539 + 0.337484i 0.762935 0.646475i \(-0.223758\pi\)
−0.178396 + 0.983959i \(0.557091\pi\)
\(354\) 15.0230 1.01663i 0.798464 0.0540332i
\(355\) 22.5880 11.1673i 1.19885 0.592698i
\(356\) 20.3572 1.07893
\(357\) 0 0
\(358\) 33.4020i 1.76535i
\(359\) −0.0626501 + 0.0361710i −0.00330654 + 0.00190903i −0.501652 0.865069i \(-0.667274\pi\)
0.498346 + 0.866978i \(0.333941\pi\)
\(360\) 1.41349 + 2.09165i 0.0744977 + 0.110239i
\(361\) −4.71393 + 8.16477i −0.248102 + 0.429725i
\(362\) −6.30628 + 3.64093i −0.331451 + 0.191363i
\(363\) 15.0813 + 22.4675i 0.791562 + 1.17924i
\(364\) 0 0
\(365\) 10.9611 + 0.707418i 0.573732 + 0.0370280i
\(366\) −16.5841 8.13472i −0.866863 0.425209i
\(367\) −5.35942 + 9.28279i −0.279760 + 0.484558i −0.971325 0.237756i \(-0.923588\pi\)
0.691565 + 0.722314i \(0.256921\pi\)
\(368\) −13.0066 + 22.5281i −0.678016 + 1.17436i
\(369\) 22.8460 3.10627i 1.18931 0.161706i
\(370\) 2.23844 34.6836i 0.116371 1.80312i
\(371\) 0 0
\(372\) 13.6703 9.17614i 0.708771 0.475761i
\(373\) −18.5158 + 10.6901i −0.958710 + 0.553511i −0.895776 0.444506i \(-0.853379\pi\)
−0.0629341 + 0.998018i \(0.520046\pi\)
\(374\) 7.16395 12.4083i 0.370439 0.641620i
\(375\) −19.2119 2.42930i −0.992100 0.125449i
\(376\) −1.97943 + 1.14283i −0.102082 + 0.0589368i
\(377\) 8.03017i 0.413575i
\(378\) 0 0
\(379\) 24.3043 1.24843 0.624214 0.781253i \(-0.285419\pi\)
0.624214 + 0.781253i \(0.285419\pi\)
\(380\) 13.5442 6.69613i 0.694804 0.343504i
\(381\) 0.525723 + 7.76876i 0.0269336 + 0.398006i
\(382\) 0.583145 + 0.336679i 0.0298363 + 0.0172260i
\(383\) −6.39716 + 3.69340i −0.326880 + 0.188724i −0.654455 0.756101i \(-0.727102\pi\)
0.327575 + 0.944825i \(0.393768\pi\)
\(384\) 2.89392 + 4.31125i 0.147680 + 0.220008i
\(385\) 0 0
\(386\) 16.4925i 0.839449i
\(387\) −3.14898 23.1601i −0.160072 1.17730i
\(388\) 21.0212 36.4098i 1.06719 1.84843i
\(389\) −11.1441 6.43407i −0.565030 0.326220i 0.190132 0.981759i \(-0.439108\pi\)
−0.755162 + 0.655538i \(0.772442\pi\)
\(390\) −11.7461 + 20.4921i −0.594786 + 1.03766i
\(391\) 9.81452i 0.496342i
\(392\) 0 0
\(393\) 7.38111 + 10.9961i 0.372328 + 0.554681i
\(394\) 9.83330 + 17.0318i 0.495395 + 0.858049i
\(395\) 14.7977 22.1943i 0.744552 1.11672i
\(396\) −26.7329 + 20.6935i −1.34338 + 1.03989i
\(397\) −8.12330 14.0700i −0.407697 0.706151i 0.586935 0.809634i \(-0.300335\pi\)
−0.994631 + 0.103483i \(0.967001\pi\)
\(398\) 22.8266i 1.14419i
\(399\) 0 0
\(400\) −17.8417 2.31260i −0.892086 0.115630i
\(401\) 8.85133 5.11032i 0.442015 0.255197i −0.262437 0.964949i \(-0.584526\pi\)
0.704452 + 0.709752i \(0.251193\pi\)
\(402\) −1.35320 19.9966i −0.0674915 0.997341i
\(403\) 11.2384 + 6.48851i 0.559826 + 0.323216i
\(404\) −5.66678 9.81514i −0.281933 0.488322i
\(405\) 13.4118 + 15.0041i 0.666440 + 0.745559i
\(406\) 0 0
\(407\) 39.2081 1.94347
\(408\) 0.794451 + 0.389690i 0.0393312 + 0.0192925i
\(409\) −15.7321 9.08292i −0.777901 0.449122i 0.0577846 0.998329i \(-0.481596\pi\)
−0.835686 + 0.549208i \(0.814930\pi\)
\(410\) 19.5000 29.2471i 0.963035 1.44441i
\(411\) 2.44935 4.99342i 0.120817 0.246307i
\(412\) −10.1795 −0.501509
\(413\) 0 0
\(414\) 16.8034 41.0581i 0.825840 2.01789i
\(415\) 24.3661 12.0464i 1.19609 0.591332i
\(416\) −12.0940 + 20.9475i −0.592959 + 1.02703i
\(417\) −1.18224 17.4703i −0.0578947 0.855526i
\(418\) 16.3267 + 28.2786i 0.798564 + 1.38315i
\(419\) 3.38983 0.165604 0.0828019 0.996566i \(-0.473613\pi\)
0.0828019 + 0.996566i \(0.473613\pi\)
\(420\) 0 0
\(421\) −5.12428 −0.249742 −0.124871 0.992173i \(-0.539852\pi\)
−0.124871 + 0.992173i \(0.539852\pi\)
\(422\) −1.23448 2.13819i −0.0600936 0.104085i
\(423\) −14.4084 + 11.1533i −0.700561 + 0.542291i
\(424\) −1.18398 + 2.05071i −0.0574991 + 0.0995914i
\(425\) −6.26591 + 2.61012i −0.303941 + 0.126610i
\(426\) −33.1484 + 22.2508i −1.60605 + 1.07805i
\(427\) 0 0
\(428\) −1.92158 −0.0928830
\(429\) −23.9227 11.7344i −1.15500 0.566543i
\(430\) −29.6492 19.7681i −1.42981 0.953303i
\(431\) 11.3803 + 6.57042i 0.548170 + 0.316486i 0.748384 0.663266i \(-0.230830\pi\)
−0.200214 + 0.979752i \(0.564164\pi\)
\(432\) 12.4167 + 13.9783i 0.597400 + 0.672533i
\(433\) 4.76504 0.228993 0.114497 0.993424i \(-0.463475\pi\)
0.114497 + 0.993424i \(0.463475\pi\)
\(434\) 0 0
\(435\) 9.01735 5.24374i 0.432349 0.251418i
\(436\) −6.41821 11.1167i −0.307377 0.532392i
\(437\) −19.3707 11.1837i −0.926625 0.534987i
\(438\) −17.3635 + 1.17501i −0.829658 + 0.0561441i
\(439\) −24.7933 + 14.3144i −1.18332 + 0.683189i −0.956780 0.290813i \(-0.906074\pi\)
−0.226538 + 0.974002i \(0.572741\pi\)
\(440\) −0.279638 + 4.33286i −0.0133312 + 0.206561i
\(441\) 0 0
\(442\) 8.27925i 0.393804i
\(443\) 14.2368 + 24.6589i 0.676411 + 1.17158i 0.976054 + 0.217527i \(0.0697989\pi\)
−0.299644 + 0.954051i \(0.596868\pi\)
\(444\) 1.94075 + 28.6790i 0.0921039 + 1.36105i
\(445\) 11.5623 17.3417i 0.548105 0.822076i
\(446\) −4.40371 7.62745i −0.208522 0.361170i
\(447\) 9.36289 6.28482i 0.442849 0.297262i
\(448\) 0 0
\(449\) 3.55207i 0.167633i 0.996481 + 0.0838164i \(0.0267109\pi\)
−0.996481 + 0.0838164i \(0.973289\pi\)
\(450\) 30.6816 0.191391i 1.44634 0.00902228i
\(451\) 34.3420 + 19.8274i 1.61710 + 0.933634i
\(452\) 3.28117 5.68315i 0.154333 0.267313i
\(453\) 8.96429 18.2753i 0.421179 0.858647i
\(454\) 8.27957i 0.388579i
\(455\) 0 0
\(456\) −1.67440 + 1.12394i −0.0784109 + 0.0526331i
\(457\) −25.3222 + 14.6198i −1.18452 + 0.683885i −0.957057 0.289901i \(-0.906378\pi\)
−0.227467 + 0.973786i \(0.573044\pi\)
\(458\) 15.1853 + 8.76725i 0.709564 + 0.409667i
\(459\) 6.69401 + 2.22497i 0.312450 + 0.103852i
\(460\) −15.6469 31.6490i −0.729541 1.47564i
\(461\) −28.3247 −1.31921 −0.659607 0.751611i \(-0.729277\pi\)
−0.659607 + 0.751611i \(0.729277\pi\)
\(462\) 0 0
\(463\) 39.6458i 1.84249i −0.388977 0.921247i \(-0.627172\pi\)
0.388977 0.921247i \(-0.372828\pi\)
\(464\) 8.39272 4.84554i 0.389622 0.224948i
\(465\) −0.0525766 16.8571i −0.00243818 0.781727i
\(466\) 9.32648 16.1539i 0.432041 0.748317i
\(467\) −17.7695 + 10.2592i −0.822272 + 0.474739i −0.851199 0.524842i \(-0.824124\pi\)
0.0289272 + 0.999582i \(0.490791\pi\)
\(468\) 7.39907 18.0792i 0.342022 0.835712i
\(469\) 0 0
\(470\) −1.78914 + 27.7220i −0.0825270 + 1.27872i
\(471\) −9.15797 + 18.6701i −0.421977 + 0.860274i
\(472\) −0.799701 + 1.38512i −0.0368092 + 0.0637555i
\(473\) 20.1000 34.8142i 0.924199 1.60076i
\(474\) −18.6128 + 37.9454i −0.854912 + 1.74289i
\(475\) 1.98848 15.3411i 0.0912375 0.703898i
\(476\) 0 0
\(477\) −7.14993 + 17.4705i −0.327373 + 0.799918i
\(478\) 31.4480 18.1565i 1.43840 0.830460i
\(479\) 3.30937 5.73200i 0.151209 0.261902i −0.780463 0.625202i \(-0.785017\pi\)
0.931672 + 0.363300i \(0.118350\pi\)
\(480\) 31.4201 0.0979983i 1.43412 0.00447299i
\(481\) −19.6207 + 11.3280i −0.894628 + 0.516514i
\(482\) 49.1255i 2.23761i
\(483\) 0 0
\(484\) −34.1203 −1.55092
\(485\) −19.0770 38.5869i −0.866241 1.75214i
\(486\) −24.1944 20.7687i −1.09748 0.942087i
\(487\) −17.1819 9.91996i −0.778585 0.449516i 0.0573437 0.998354i \(-0.481737\pi\)
−0.835929 + 0.548838i \(0.815070\pi\)
\(488\) 1.69921 0.981038i 0.0769196 0.0444095i
\(489\) 26.1696 17.5663i 1.18343 0.794374i
\(490\) 0 0
\(491\) 11.6654i 0.526454i −0.964734 0.263227i \(-0.915213\pi\)
0.964734 0.263227i \(-0.0847868\pi\)
\(492\) −12.8030 + 26.1011i −0.577202 + 1.17673i
\(493\) 1.82817 3.16649i 0.0823367 0.142611i
\(494\) −16.3406 9.43422i −0.735196 0.424466i
\(495\) 2.44464 + 34.5262i 0.109878 + 1.55184i
\(496\) 15.6611i 0.703205i
\(497\) 0 0
\(498\) −35.7578 + 24.0023i −1.60234 + 1.07557i
\(499\) 7.47555 + 12.9480i 0.334651 + 0.579633i 0.983418 0.181354i \(-0.0580481\pi\)
−0.648766 + 0.760988i \(0.724715\pi\)
\(500\) 16.0445 18.4064i 0.717532 0.823158i
\(501\) 2.41408 + 35.6735i 0.107853 + 1.59378i
\(502\) 9.00769 + 15.6018i 0.402033 + 0.696341i
\(503\) 2.45361i 0.109401i −0.998503 0.0547006i \(-0.982580\pi\)
0.998503 0.0547006i \(-0.0174204\pi\)
\(504\) 0 0
\(505\) −11.5798 0.747345i −0.515293 0.0332564i
\(506\) 66.0790 38.1507i 2.93757 1.69601i
\(507\) −7.10347 + 0.480702i −0.315476 + 0.0213487i
\(508\) −8.50281 4.90910i −0.377251 0.217806i
\(509\) 4.51330 + 7.81726i 0.200048 + 0.346494i 0.948544 0.316646i \(-0.102557\pi\)
−0.748495 + 0.663140i \(0.769223\pi\)
\(510\) 9.29706 5.40639i 0.411681 0.239399i
\(511\) 0 0
\(512\) 31.8992 1.40976
\(513\) −12.0192 + 10.6765i −0.530660 + 0.471377i
\(514\) −20.6067 11.8973i −0.908923 0.524767i
\(515\) −5.78165 + 8.67163i −0.254770 + 0.382117i
\(516\) 26.4600 + 12.9790i 1.16484 + 0.571369i
\(517\) −31.3383 −1.37826
\(518\) 0 0
\(519\) −26.5119 + 17.7961i −1.16374 + 0.781160i
\(520\) −1.11191 2.24907i −0.0487607 0.0986280i
\(521\) −10.7379 + 18.5986i −0.470436 + 0.814819i −0.999428 0.0338078i \(-0.989237\pi\)
0.528993 + 0.848626i \(0.322570\pi\)
\(522\) −13.0693 + 10.1167i −0.572027 + 0.442795i
\(523\) −16.7146 28.9505i −0.730876 1.26591i −0.956509 0.291702i \(-0.905778\pi\)
0.225633 0.974212i \(-0.427555\pi\)
\(524\) −16.6992 −0.729510
\(525\) 0 0
\(526\) 2.00396 0.0873766
\(527\) −2.95439 5.11715i −0.128695 0.222907i
\(528\) 2.17113 + 32.0835i 0.0944865 + 1.39625i
\(529\) −14.6330 + 25.3451i −0.636217 + 1.10196i
\(530\) 12.7549 + 25.7992i 0.554036 + 1.12065i
\(531\) −4.82931 + 11.8002i −0.209574 + 0.512084i
\(532\) 0 0
\(533\) −22.9141 −0.992521
\(534\) −14.5432 + 29.6489i −0.629347 + 1.28304i
\(535\) −1.09140 + 1.63693i −0.0471852 + 0.0707708i
\(536\) 1.84369 + 1.06446i 0.0796353 + 0.0459775i
\(537\) 25.3934 + 12.4558i 1.09581 + 0.537509i
\(538\) −42.1557 −1.81746
\(539\) 0 0
\(540\) −25.1334 + 3.49715i −1.08157 + 0.150493i
\(541\) 2.35776 + 4.08376i 0.101368 + 0.175574i 0.912248 0.409637i \(-0.134345\pi\)
−0.810881 + 0.585212i \(0.801011\pi\)
\(542\) 4.60520 + 2.65881i 0.197810 + 0.114206i
\(543\) −0.416315 6.15200i −0.0178658 0.264008i
\(544\) 9.53793 5.50673i 0.408935 0.236099i
\(545\) −13.1153 0.846445i −0.561797 0.0362577i
\(546\) 0 0
\(547\) 1.20004i 0.0513100i −0.999671 0.0256550i \(-0.991833\pi\)
0.999671 0.0256550i \(-0.00816713\pi\)
\(548\) 3.50649 + 6.07342i 0.149790 + 0.259444i
\(549\) 12.3686 9.57433i 0.527881 0.408622i
\(550\) 41.9300 + 32.0410i 1.78790 + 1.36623i
\(551\) 4.16641 + 7.21643i 0.177495 + 0.307430i
\(552\) 2.62632 + 3.91259i 0.111783 + 0.166531i
\(553\) 0 0
\(554\) 39.1699i 1.66417i
\(555\) 25.5331 + 14.6355i 1.08382 + 0.621244i
\(556\) 19.1211 + 11.0395i 0.810913 + 0.468181i
\(557\) −5.53829 + 9.59261i −0.234665 + 0.406452i −0.959175 0.282812i \(-0.908733\pi\)
0.724510 + 0.689264i \(0.242066\pi\)
\(558\) 3.59836 + 26.4653i 0.152331 + 1.12036i
\(559\) 23.2292i 0.982491i
\(560\) 0 0
\(561\) 6.76179 + 10.0735i 0.285483 + 0.425302i
\(562\) −26.2542 + 15.1579i −1.10747 + 0.639396i
\(563\) 3.89342 + 2.24787i 0.164088 + 0.0947364i 0.579795 0.814762i \(-0.303133\pi\)
−0.415707 + 0.909499i \(0.636466\pi\)
\(564\) −1.55120 22.9226i −0.0653175 0.965215i
\(565\) −2.97770 6.02298i −0.125273 0.253389i
\(566\) 4.67565 0.196532
\(567\) 0 0
\(568\) 4.24073i 0.177937i
\(569\) 22.3092 12.8802i 0.935250 0.539967i 0.0467822 0.998905i \(-0.485103\pi\)
0.888468 + 0.458938i \(0.151770\pi\)
\(570\) 0.0764458 + 24.5100i 0.00320196 + 1.02661i
\(571\) −6.15890 + 10.6675i −0.257742 + 0.446422i −0.965637 0.259896i \(-0.916312\pi\)
0.707895 + 0.706318i \(0.249645\pi\)
\(572\) 29.0968 16.7990i 1.21660 0.702402i
\(573\) −0.473415 + 0.317778i −0.0197772 + 0.0132754i
\(574\) 0 0
\(575\) −35.8477 4.64649i −1.49495 0.193772i
\(576\) −27.9367 + 3.79843i −1.16403 + 0.158268i
\(577\) 19.3036 33.4348i 0.803619 1.39191i −0.113601 0.993526i \(-0.536239\pi\)
0.917220 0.398382i \(-0.130428\pi\)
\(578\) −15.5017 + 26.8497i −0.644785 + 1.11680i
\(579\) −12.5383 6.15019i −0.521072 0.255593i
\(580\) −0.847110 + 13.1256i −0.0351743 + 0.545010i
\(581\) 0 0
\(582\) 38.0108 + 56.6271i 1.57560 + 2.34727i
\(583\) −28.1170 + 16.2334i −1.16449 + 0.672318i
\(584\) 0.924287 1.60091i 0.0382473 0.0662462i
\(585\) −11.1987 16.5715i −0.463009 0.685146i
\(586\) −52.1278 + 30.0960i −2.15338 + 1.24325i
\(587\) 36.4813i 1.50574i 0.658166 + 0.752872i \(0.271332\pi\)
−0.658166 + 0.752872i \(0.728668\pi\)
\(588\) 0 0
\(589\) 13.4661 0.554862
\(590\) 8.61508 + 17.4257i 0.354677 + 0.717404i
\(591\) −16.6151 + 1.12437i −0.683454 + 0.0462503i
\(592\) 23.6789 + 13.6710i 0.973199 + 0.561877i
\(593\) 25.5462 14.7491i 1.04906 0.605673i 0.126672 0.991945i \(-0.459571\pi\)
0.922385 + 0.386272i \(0.126237\pi\)
\(594\) −11.0406 53.7181i −0.453000 2.20408i
\(595\) 0 0
\(596\) 14.2190i 0.582431i
\(597\) −17.3536 8.51221i −0.710237 0.348381i
\(598\) −22.0451 + 38.1832i −0.901490 + 1.56143i
\(599\) 29.5321 + 17.0504i 1.20665 + 0.696658i 0.962025 0.272960i \(-0.0880026\pi\)
0.244622 + 0.969618i \(0.421336\pi\)
\(600\) −1.79947 + 2.71726i −0.0734630 + 0.110932i
\(601\) 26.3724i 1.07575i 0.843023 + 0.537877i \(0.180773\pi\)
−0.843023 + 0.537877i \(0.819227\pi\)
\(602\) 0 0
\(603\) 15.7068 + 6.42814i 0.639630 + 0.261774i
\(604\) 12.8333 + 22.2279i 0.522180 + 0.904442i
\(605\) −19.3793 + 29.0660i −0.787880 + 1.18170i
\(606\) 18.3434 1.24133i 0.745151 0.0504254i
\(607\) −13.0019 22.5200i −0.527732 0.914059i −0.999477 0.0323243i \(-0.989709\pi\)
0.471745 0.881735i \(-0.343624\pi\)
\(608\) 25.0997i 1.01793i
\(609\) 0 0
\(610\) 1.53586 23.7974i 0.0621850 0.963528i
\(611\) 15.6825 9.05427i 0.634445 0.366297i
\(612\) −7.03360 + 5.44458i −0.284316 + 0.220084i
\(613\) 32.9089 + 19.0000i 1.32918 + 0.767402i 0.985173 0.171565i \(-0.0548824\pi\)
0.344007 + 0.938967i \(0.388216\pi\)
\(614\) −20.1199 34.8488i −0.811975 1.40638i
\(615\) 14.9630 + 25.7311i 0.603368 + 1.03758i
\(616\) 0 0
\(617\) −11.9931 −0.482824 −0.241412 0.970423i \(-0.577610\pi\)
−0.241412 + 0.970423i \(0.577610\pi\)
\(618\) 7.27226 14.8258i 0.292533 0.596381i
\(619\) −4.69663 2.71160i −0.188774 0.108988i 0.402635 0.915361i \(-0.368094\pi\)
−0.591408 + 0.806372i \(0.701428\pi\)
\(620\) 17.6851 + 11.7912i 0.710251 + 0.473548i
\(621\) 24.9478 + 28.0854i 1.00112 + 1.12703i
\(622\) −15.8822 −0.636817
\(623\) 0 0
\(624\) −10.3561 15.4281i −0.414574 0.617618i
\(625\) −6.56706 24.1221i −0.262682 0.964882i
\(626\) 15.7390 27.2607i 0.629057 1.08956i
\(627\) −27.5868 + 1.86684i −1.10171 + 0.0745544i
\(628\) −13.1106 22.7082i −0.523169 0.906156i
\(629\) 10.3159 0.411322
\(630\) 0 0
\(631\) −8.33250 −0.331711 −0.165856 0.986150i \(-0.553039\pi\)
−0.165856 + 0.986150i \(0.553039\pi\)
\(632\) −2.24468 3.88790i −0.0892885 0.154652i
\(633\) 2.08588 0.141154i 0.0829061 0.00561037i
\(634\) 1.65120 2.85996i 0.0655776 0.113584i
\(635\) −9.01124 + 4.45507i −0.357600 + 0.176794i
\(636\) −13.2658 19.7629i −0.526022 0.783648i
\(637\) 0 0
\(638\) −28.4257 −1.12538
\(639\) −4.55459 33.4981i −0.180177 1.32517i
\(640\) −3.71865 + 5.57743i −0.146993 + 0.220467i
\(641\) −17.5189 10.1146i −0.691957 0.399501i 0.112388 0.993664i \(-0.464150\pi\)
−0.804345 + 0.594163i \(0.797483\pi\)
\(642\) 1.37278 2.79865i 0.0541792 0.110454i
\(643\) 15.2611 0.601838 0.300919 0.953650i \(-0.402707\pi\)
0.300919 + 0.953650i \(0.402707\pi\)
\(644\) 0 0
\(645\) 26.0849 15.1688i 1.02709 0.597270i
\(646\) 4.29565 + 7.44028i 0.169010 + 0.292734i
\(647\) 1.15882 + 0.669043i 0.0455577 + 0.0263028i 0.522606 0.852574i \(-0.324960\pi\)
−0.477048 + 0.878877i \(0.658293\pi\)
\(648\) 3.26398 0.904294i 0.128221 0.0355240i
\(649\) −18.9912 + 10.9646i −0.745471 + 0.430398i
\(650\) −30.2401 3.91965i −1.18612 0.153741i
\(651\) 0 0
\(652\) 39.7424i 1.55643i
\(653\) −12.3467 21.3850i −0.483162 0.836862i 0.516651 0.856196i \(-0.327179\pi\)
−0.999813 + 0.0193346i \(0.993845\pi\)
\(654\) 20.7758 1.40593i 0.812400 0.0549763i
\(655\) −9.48465 + 14.2256i −0.370596 + 0.555839i
\(656\) 13.8268 + 23.9487i 0.539845 + 0.935039i
\(657\) 5.58167 13.6385i 0.217762 0.532089i
\(658\) 0 0
\(659\) 26.9484i 1.04976i −0.851176 0.524880i \(-0.824110\pi\)
0.851176 0.524880i \(-0.175890\pi\)
\(660\) −37.8645 21.7039i −1.47387 0.844824i
\(661\) −20.6311 11.9114i −0.802458 0.463300i 0.0418717 0.999123i \(-0.486668\pi\)
−0.844330 + 0.535823i \(0.820001\pi\)
\(662\) −31.1493 + 53.9521i −1.21065 + 2.09691i
\(663\) −6.29420 3.08739i −0.244446 0.119904i
\(664\) 4.57455i 0.177527i
\(665\) 0 0
\(666\) −43.1555 17.6617i −1.67224 0.684379i
\(667\) 16.8627 9.73570i 0.652927 0.376968i
\(668\) −39.0442 22.5422i −1.51067 0.872183i
\(669\) 7.44085 0.503533i 0.287680 0.0194677i
\(670\) 23.1947 11.4672i 0.896091 0.443018i
\(671\) 26.9018 1.03853
\(672\) 0 0
\(673\) 6.03450i 0.232613i −0.993213 0.116307i \(-0.962895\pi\)
0.993213 0.116307i \(-0.0371055\pi\)
\(674\) −39.9010 + 23.0369i −1.53693 + 0.887346i
\(675\) −11.2959 + 23.3966i −0.434779 + 0.900537i
\(676\) 4.48870 7.77466i 0.172642 0.299025i
\(677\) 31.8105 18.3658i 1.22258 0.705854i 0.257109 0.966382i \(-0.417230\pi\)
0.965466 + 0.260528i \(0.0838967\pi\)
\(678\) 5.93305 + 8.83885i 0.227858 + 0.339454i
\(679\) 0 0
\(680\) −0.0735744 + 1.14000i −0.00282145 + 0.0437171i
\(681\) −6.29444 3.08751i −0.241203 0.118314i
\(682\) −22.9684 + 39.7825i −0.879507 + 1.52335i
\(683\) 10.8878 18.8582i 0.416609 0.721587i −0.578987 0.815337i \(-0.696552\pi\)
0.995596 + 0.0937493i \(0.0298852\pi\)
\(684\) −2.73102 20.0861i −0.104423 0.768013i
\(685\) 7.16534 + 0.462443i 0.273774 + 0.0176690i
\(686\) 0 0
\(687\) −12.3279 + 8.27508i −0.470339 + 0.315714i
\(688\) 24.2780 14.0169i 0.925589 0.534389i
\(689\) 9.38031 16.2472i 0.357361 0.618968i
\(690\) 57.2727 0.178632i 2.18034 0.00680039i
\(691\) 37.6212 21.7206i 1.43118 0.826292i 0.433968 0.900928i \(-0.357113\pi\)
0.997211 + 0.0746366i \(0.0237797\pi\)
\(692\) 40.2623i 1.53054i
\(693\) 0 0
\(694\) 25.4694 0.966806
\(695\) 20.2644 10.0185i 0.768673 0.380024i
\(696\) −0.118529 1.75154i −0.00449284 0.0663919i
\(697\) 9.03559 + 5.21670i 0.342247 + 0.197597i
\(698\) −31.8007 + 18.3601i −1.20367 + 0.694942i
\(699\) 8.80291 + 13.1143i 0.332957 + 0.496027i
\(700\) 0 0
\(701\) 8.07995i 0.305176i 0.988290 + 0.152588i \(0.0487607\pi\)
−0.988290 + 0.152588i \(0.951239\pi\)
\(702\) 21.0453 + 23.6921i 0.794302 + 0.894199i
\(703\) −11.7550 + 20.3602i −0.443347 + 0.767900i
\(704\) −41.9943 24.2454i −1.58272 0.913784i
\(705\) −20.4081 11.6979i −0.768613 0.440568i
\(706\) 25.9397i 0.976253i
\(707\) 0 0
\(708\) −8.96016 13.3485i −0.336744 0.501668i
\(709\) 10.1372 + 17.5581i 0.380710 + 0.659408i 0.991164 0.132643i \(-0.0423464\pi\)
−0.610454 + 0.792052i \(0.709013\pi\)
\(710\) −42.8838 28.5920i −1.60940 1.07304i
\(711\) −21.9067 28.3002i −0.821564 1.06134i
\(712\) −1.75390 3.03784i −0.0657301 0.113848i
\(713\) 31.4664i 1.17843i
\(714\) 0 0
\(715\) 2.21549 34.3280i 0.0828545 1.28379i
\(716\) −30.8856 + 17.8318i −1.15425 + 0.666407i
\(717\) 2.07607 + 30.6787i 0.0775322 + 1.14572i
\(718\) 0.128149 + 0.0739871i 0.00478249 + 0.00276117i
\(719\) −15.2126 26.3490i −0.567335 0.982654i −0.996828 0.0795834i \(-0.974641\pi\)
0.429493 0.903070i \(-0.358692\pi\)
\(720\) −10.5622 + 21.7038i −0.393629 + 0.808853i
\(721\) 0 0
\(722\) 19.2845 0.717694
\(723\) 37.3471 + 18.3193i 1.38895 + 0.681301i
\(724\) 6.73329 + 3.88747i 0.250241 + 0.144477i
\(725\) 10.7001 + 8.17655i 0.397393 + 0.303669i
\(726\) 24.3756 49.6939i 0.904663 1.84431i
\(727\) 51.1502 1.89706 0.948528 0.316692i \(-0.102572\pi\)
0.948528 + 0.316692i \(0.102572\pi\)
\(728\) 0 0
\(729\) 24.8114 10.6487i 0.918941 0.394396i
\(730\) −9.95723 20.1404i −0.368533 0.745431i
\(731\) 5.28843 9.15983i 0.195600 0.338789i
\(732\) 1.33160 + 19.6775i 0.0492174 + 0.727300i
\(733\) −18.2685 31.6419i −0.674761 1.16872i −0.976539 0.215342i \(-0.930913\pi\)
0.301778 0.953378i \(-0.402420\pi\)
\(734\) 21.9252 0.809272
\(735\) 0 0
\(736\) 58.6508 2.16190
\(737\) 14.5946 + 25.2786i 0.537599 + 0.931148i
\(738\) −28.8680 37.2933i −1.06265 1.37279i
\(739\) −8.04332 + 13.9314i −0.295878 + 0.512476i −0.975189 0.221375i \(-0.928946\pi\)
0.679310 + 0.733851i \(0.262279\pi\)
\(740\) −33.2657 + 16.4462i −1.22287 + 0.604576i
\(741\) 13.2658 8.90461i 0.487330 0.327119i
\(742\) 0 0
\(743\) 27.5407 1.01037 0.505186 0.863011i \(-0.331424\pi\)
0.505186 + 0.863011i \(0.331424\pi\)
\(744\) −2.54710 1.24939i −0.0933812 0.0458048i
\(745\) 12.1127 + 8.07592i 0.443774 + 0.295879i
\(746\) 37.8736 + 21.8663i 1.38665 + 0.800583i
\(747\) −4.91312 36.1350i −0.179762 1.32211i
\(748\) −15.2981 −0.559353
\(749\) 0 0
\(750\) 15.3454 + 36.5173i 0.560336 + 1.33342i
\(751\) 19.1381 + 33.1481i 0.698357 + 1.20959i 0.969036 + 0.246921i \(0.0794187\pi\)
−0.270678 + 0.962670i \(0.587248\pi\)
\(752\) −18.9261 10.9270i −0.690165 0.398467i
\(753\) −15.2201 + 1.02996i −0.554651 + 0.0375340i
\(754\) 14.2249 8.21276i 0.518041 0.299091i
\(755\) 26.2242 + 1.69248i 0.954397 + 0.0615956i
\(756\) 0 0
\(757\) 36.0954i 1.31191i 0.754800 + 0.655955i \(0.227734\pi\)
−0.754800 + 0.655955i \(0.772266\pi\)
\(758\) −24.8570 43.0535i −0.902845 1.56377i
\(759\) 4.36226 + 64.4624i 0.158340 + 2.33984i
\(760\) −2.16616 1.44425i −0.0785747 0.0523883i
\(761\) −15.1094 26.1703i −0.547716 0.948672i −0.998431 0.0560037i \(-0.982164\pi\)
0.450715 0.892668i \(-0.351169\pi\)
\(762\) 13.2242 8.87670i 0.479062 0.321569i
\(763\) 0 0
\(764\) 0.718951i 0.0260108i
\(765\) 0.643200 + 9.08406i 0.0232549 + 0.328435i
\(766\) 13.0852 + 7.55477i 0.472789 + 0.272965i
\(767\) 6.33579 10.9739i 0.228772 0.396245i
\(768\) −9.65958 + 19.6927i −0.348560 + 0.710601i
\(769\) 16.8667i 0.608228i 0.952636 + 0.304114i \(0.0983603\pi\)
−0.952636 + 0.304114i \(0.901640\pi\)
\(770\) 0 0
\(771\) 16.7292 11.2294i 0.602486 0.404417i
\(772\) 15.2501 8.80464i 0.548862 0.316886i
\(773\) −30.8665 17.8208i −1.11019 0.640968i −0.171311 0.985217i \(-0.554800\pi\)
−0.938879 + 0.344248i \(0.888134\pi\)
\(774\) −37.8061 + 29.2650i −1.35891 + 1.05191i
\(775\) 20.0892 8.36835i 0.721625 0.300600i
\(776\) −7.24441 −0.260059
\(777\) 0 0
\(778\) 26.3215i 0.943671i
\(779\) −20.5921 + 11.8889i −0.737790 + 0.425963i
\(780\) 25.2191 0.0786574i 0.902987 0.00281639i
\(781\) 29.0720 50.3543i 1.04028 1.80182i
\(782\) 17.3858 10.0377i 0.621715 0.358947i
\(783\) −2.81745 13.7084i −0.100687 0.489896i
\(784\) 0 0
\(785\) −26.7908 1.72905i −0.956205 0.0617124i
\(786\) 11.9300 24.3213i 0.425527 0.867513i
\(787\) −0.818196 + 1.41716i −0.0291655 + 0.0505162i −0.880240 0.474529i \(-0.842618\pi\)
0.851074 + 0.525045i \(0.175952\pi\)
\(788\) 10.4991 18.1850i 0.374016 0.647815i
\(789\) −0.747290 + 1.52348i −0.0266042 + 0.0542374i
\(790\) −54.4499 3.51414i −1.93724 0.125027i
\(791\) 0 0
\(792\) 5.39121 + 2.20640i 0.191568 + 0.0784010i
\(793\) −13.4623 + 7.77247i −0.478061 + 0.276009i
\(794\) −16.6160 + 28.7798i −0.589681 + 1.02136i
\(795\) −24.3699 + 0.0760089i −0.864311 + 0.00269576i
\(796\) 21.1070 12.1861i 0.748116 0.431925i
\(797\) 13.2950i 0.470934i 0.971882 + 0.235467i \(0.0756620\pi\)
−0.971882 + 0.235467i \(0.924338\pi\)
\(798\) 0 0
\(799\) −8.24529 −0.291698
\(800\) 15.5979 + 37.4445i 0.551468 + 1.32386i
\(801\) −17.1170 22.1126i −0.604798 0.781311i
\(802\) −18.1052 10.4530i −0.639317 0.369110i
\(803\) 21.9499 12.6728i 0.774594 0.447212i
\(804\) −17.7678 + 11.9266i −0.626621 + 0.420618i
\(805\) 0 0
\(806\) 26.5442i 0.934980i
\(807\) 15.7202 32.0483i 0.553376 1.12815i
\(808\) −0.976453 + 1.69127i −0.0343515 + 0.0594985i
\(809\) −30.7676 17.7637i −1.08173 0.624537i −0.150367 0.988630i \(-0.548046\pi\)
−0.931363 + 0.364093i \(0.881379\pi\)
\(810\) 12.8620 39.1035i 0.451924 1.37396i
\(811\) 31.4512i 1.10440i −0.833711 0.552201i \(-0.813788\pi\)
0.833711 0.552201i \(-0.186212\pi\)
\(812\) 0 0
\(813\) −3.73864 + 2.50955i −0.131120 + 0.0880138i
\(814\) −40.0997 69.4546i −1.40549 2.43438i
\(815\) 33.8553 + 22.5725i 1.18590 + 0.790679i
\(816\) 0.571239 + 8.44136i 0.0199974 + 0.295507i
\(817\) 12.0524 + 20.8753i 0.421658 + 0.730334i
\(818\) 37.1578i 1.29919i
\(819\) 0 0
\(820\) −37.4539 2.41723i −1.30795 0.0844134i
\(821\) −42.4107 + 24.4858i −1.48014 + 0.854561i −0.999747 0.0224909i \(-0.992840\pi\)
−0.480396 + 0.877052i \(0.659507\pi\)
\(822\) −11.3506 + 0.768109i −0.395896 + 0.0267909i
\(823\) 33.6438 + 19.4243i 1.17275 + 0.677087i 0.954326 0.298767i \(-0.0965754\pi\)
0.218423 + 0.975854i \(0.429909\pi\)
\(824\) 0.877027 + 1.51906i 0.0305527 + 0.0529188i
\(825\) −39.9948 + 19.9285i −1.39244 + 0.693820i
\(826\) 0 0
\(827\) 44.6506 1.55265 0.776327 0.630330i \(-0.217081\pi\)
0.776327 + 0.630330i \(0.217081\pi\)
\(828\) −46.9355 + 6.38161i −1.63112 + 0.221776i
\(829\) −36.4907 21.0679i −1.26737 0.731719i −0.292884 0.956148i \(-0.594615\pi\)
−0.974491 + 0.224429i \(0.927948\pi\)
\(830\) −46.2595 30.8427i −1.60569 1.07057i
\(831\) −29.7784 14.6068i −1.03300 0.506703i
\(832\) 28.0200 0.971419
\(833\) 0 0
\(834\) −29.7385 + 19.9619i −1.02976 + 0.691223i
\(835\) −41.3789 + 20.4573i −1.43198 + 0.707954i
\(836\) 17.4322 30.1934i 0.602904 1.04426i
\(837\) −21.4617 7.13349i −0.741827 0.246569i
\(838\) −3.46691 6.00486i −0.119762 0.207434i
\(839\) 25.5067 0.880588 0.440294 0.897854i \(-0.354874\pi\)
0.440294 + 0.897854i \(0.354874\pi\)
\(840\) 0 0
\(841\) 21.7460 0.749863
\(842\) 5.24080 + 9.07733i 0.180610 + 0.312825i
\(843\) −1.73319 25.6119i −0.0596944 0.882121i
\(844\) −1.31807 + 2.28296i −0.0453698 + 0.0785829i
\(845\) −4.07355 8.23955i −0.140134 0.283449i
\(846\) 34.4934 + 14.1167i 1.18591 + 0.485342i
\(847\) 0 0
\(848\) −22.6410 −0.777494
\(849\) −1.74359 + 3.55461i −0.0598397 + 0.121994i
\(850\) 11.0321 + 8.43018i 0.378396 + 0.289153i
\(851\) 47.5760 + 27.4680i 1.63088 + 0.941591i
\(852\) 38.2710 + 18.7725i 1.31114 + 0.643134i
\(853\) 6.38527 0.218628 0.109314 0.994007i \(-0.465135\pi\)
0.109314 + 0.994007i \(0.465135\pi\)
\(854\) 0 0
\(855\) −18.6619 9.08183i −0.638224 0.310592i
\(856\) 0.165555 + 0.286750i 0.00565857 + 0.00980093i
\(857\) 48.2820 + 27.8756i 1.64928 + 0.952212i 0.977359 + 0.211590i \(0.0678641\pi\)
0.671922 + 0.740622i \(0.265469\pi\)
\(858\) 3.67988 + 54.3787i 0.125629 + 1.85646i
\(859\) 23.6086 13.6304i 0.805514 0.465064i −0.0398813 0.999204i \(-0.512698\pi\)
0.845396 + 0.534140i \(0.179365\pi\)
\(860\) −2.45047 + 37.9689i −0.0835603 + 1.29473i
\(861\) 0 0
\(862\) 26.8793i 0.915513i
\(863\) −11.0986 19.2234i −0.377801 0.654371i 0.612941 0.790129i \(-0.289986\pi\)
−0.990742 + 0.135758i \(0.956653\pi\)
\(864\) 13.2962 40.0029i 0.452346 1.36093i
\(865\) −34.2982 22.8678i −1.16618 0.777527i
\(866\) −4.87339 8.44095i −0.165604 0.286835i
\(867\) −14.6315 21.7974i −0.496910 0.740279i
\(868\) 0 0
\(869\) 61.5529i 2.08804i
\(870\) −18.5113 10.6107i −0.627593 0.359736i
\(871\) −14.6070 8.43336i −0.494939 0.285753i
\(872\) −1.10593 + 1.91553i −0.0374517 + 0.0648682i
\(873\) −57.2246 + 7.78057i −1.93676 + 0.263332i
\(874\) 45.7519i 1.54758i
\(875\) 0 0
\(876\) 10.3561 + 15.4281i 0.349899 + 0.521267i
\(877\) −24.5874 + 14.1955i −0.830256 + 0.479348i −0.853940 0.520371i \(-0.825794\pi\)
0.0236844 + 0.999719i \(0.492460\pi\)
\(878\) 50.7141 + 29.2798i 1.71152 + 0.988145i
\(879\) −3.44126 50.8525i −0.116071 1.71521i
\(880\) −37.2147 + 18.3986i −1.25451 + 0.620215i
\(881\) 20.0653 0.676017 0.338009 0.941143i \(-0.390247\pi\)
0.338009 + 0.941143i \(0.390247\pi\)
\(882\) 0 0
\(883\) 31.1643i 1.04876i 0.851484 + 0.524381i \(0.175703\pi\)
−0.851484 + 0.524381i \(0.824297\pi\)
\(884\) 7.65554 4.41993i 0.257484 0.148658i
\(885\) −16.4603 + 0.0513391i −0.553307 + 0.00172574i
\(886\) 29.1211 50.4392i 0.978341 1.69454i
\(887\) 11.0655 6.38865i 0.371542 0.214510i −0.302590 0.953121i \(-0.597851\pi\)
0.674132 + 0.738611i \(0.264518\pi\)
\(888\) 4.11246 2.76048i 0.138005 0.0926356i
\(889\) 0 0
\(890\) −42.5449 2.74580i −1.42611 0.0920394i
\(891\) 44.9556 + 11.6384i 1.50607 + 0.389902i
\(892\) −4.70189 + 8.14391i −0.157431 + 0.272678i
\(893\) 9.39553 16.2735i 0.314409 0.544573i
\(894\) −20.7089 10.1580i −0.692611 0.339735i
\(895\) −2.35170 + 36.4385i −0.0786085 + 1.21800i
\(896\) 0 0
\(897\) −20.8075 30.9983i −0.694742 1.03500i
\(898\) 6.29227 3.63284i 0.209976 0.121230i
\(899\) −5.86132 + 10.1521i −0.195486 + 0.338592i
\(900\) −16.5565 28.2680i −0.551883 0.942267i
\(901\) −7.39776 + 4.27110i −0.246455 + 0.142291i
\(902\) 81.1129i 2.70076i
\(903\) 0 0
\(904\) −1.13077 −0.0376088
\(905\) 7.13591 3.52792i 0.237206 0.117272i
\(906\) −41.5416 + 2.81118i −1.38013 + 0.0933952i
\(907\) −0.294628 0.170103i −0.00978295 0.00564819i 0.495101 0.868836i \(-0.335131\pi\)
−0.504884 + 0.863187i \(0.668465\pi\)
\(908\) 7.65583 4.42009i 0.254068 0.146686i
\(909\) −5.89670 + 14.4083i −0.195581 + 0.477892i
\(910\) 0 0
\(911\) 34.4235i 1.14050i 0.821471 + 0.570250i \(0.193154\pi\)
−0.821471 + 0.570250i \(0.806846\pi\)
\(912\) −17.3114 8.49150i −0.573239 0.281182i
\(913\) 31.3605 54.3181i 1.03788 1.79767i
\(914\) 51.7960 + 29.9045i 1.71326 + 0.989152i
\(915\) 17.5189 + 10.0418i 0.579158 + 0.331973i
\(916\) 18.7218i 0.618585i
\(917\) 0 0
\(918\) −2.90484 14.1336i −0.0958741 0.466477i
\(919\) 19.6862 + 34.0974i 0.649386 + 1.12477i 0.983270 + 0.182156i \(0.0583075\pi\)
−0.333883 + 0.942614i \(0.608359\pi\)
\(920\) −3.37479 + 5.06168i −0.111263 + 0.166879i
\(921\) 33.9962 2.30057i 1.12021 0.0758064i
\(922\) 28.9688 + 50.1754i 0.954037 + 1.65244i
\(923\) 33.5980i 1.10589i
\(924\) 0 0
\(925\) −4.88386 + 37.6790i −0.160580 + 1.23888i
\(926\) −70.2299 + 40.5473i −2.30790 + 1.33247i
\(927\) 8.55924 + 11.0573i 0.281122 + 0.363169i
\(928\) −18.9227 10.9250i −0.621167 0.358631i
\(929\) 22.4875 + 38.9495i 0.737791 + 1.27789i 0.953488 + 0.301431i \(0.0974642\pi\)
−0.215697 + 0.976460i \(0.569202\pi\)
\(930\) −29.8074 + 17.3335i −0.977423 + 0.568388i
\(931\) 0 0
\(932\) −19.9160 −0.652369
\(933\) 5.92258 12.0742i 0.193897 0.395292i
\(934\) 36.3470 + 20.9850i 1.18931 + 0.686649i
\(935\) −8.68883 + 13.0320i −0.284155 + 0.426190i
\(936\) −3.33537 + 0.453496i −0.109020 + 0.0148230i
\(937\) 30.0270 0.980941 0.490470 0.871458i \(-0.336825\pi\)
0.490470 + 0.871458i \(0.336825\pi\)
\(938\) 0 0
\(939\) 14.8554 + 22.1311i 0.484789 + 0.722221i
\(940\) 26.5887 13.1452i 0.867227 0.428748i
\(941\) 2.04631 3.54431i 0.0667077 0.115541i −0.830743 0.556657i \(-0.812084\pi\)
0.897450 + 0.441116i \(0.145417\pi\)
\(942\) 42.4392 2.87192i 1.38274 0.0935721i
\(943\) 27.7809 + 48.1179i 0.904670 + 1.56693i
\(944\) −15.2925 −0.497728
\(945\) 0 0
\(946\) −82.2282 −2.67347
\(947\) −0.875134 1.51578i −0.0284380 0.0492561i 0.851456 0.524426i \(-0.175720\pi\)
−0.879894 + 0.475170i \(0.842387\pi\)
\(948\) 45.0233 3.04679i 1.46229 0.0989552i
\(949\) −7.32285 + 12.6835i −0.237710 + 0.411725i
\(950\) −29.2095 + 12.1675i −0.947680 + 0.394765i
\(951\) 1.55851 + 2.32181i 0.0505380 + 0.0752897i
\(952\) 0 0
\(953\) 33.2268 1.07632 0.538161 0.842842i \(-0.319119\pi\)
0.538161 + 0.842842i \(0.319119\pi\)
\(954\) 38.2603 5.20208i 1.23872 0.168424i
\(955\) −0.612453 0.408342i −0.0198185 0.0132136i
\(956\) −33.5774 19.3859i −1.08597 0.626985i
\(957\) 10.6001 21.6103i 0.342654 0.698561i
\(958\) −13.5385 −0.437409
\(959\) 0 0
\(960\) −18.2972 31.4646i −0.590540 1.01552i
\(961\) −6.02790 10.4406i −0.194448 0.336795i
\(962\) 40.1337 + 23.1712i 1.29396 + 0.747070i
\(963\) 1.61572 + 2.08727i 0.0520658 + 0.0672614i
\(964\) −45.4247 + 26.2259i −1.46303 + 0.844680i
\(965\) 1.16117 17.9918i 0.0373794 0.579178i
\(966\) 0 0
\(967\) 4.20353i 0.135176i 0.997713 + 0.0675882i \(0.0215304\pi\)
−0.997713 + 0.0675882i \(0.978470\pi\)
\(968\) 2.93967 + 5.09166i 0.0944845 + 0.163652i
\(969\) −7.25826 + 0.491177i −0.233169 + 0.0157789i
\(970\) −48.8435 + 73.2580i −1.56827 + 2.35217i
\(971\) 25.7671 + 44.6300i 0.826907 + 1.43224i 0.900453 + 0.434953i \(0.143235\pi\)
−0.0735462 + 0.997292i \(0.523432\pi\)
\(972\) −6.28776 + 33.4592i −0.201680 + 1.07320i
\(973\) 0 0
\(974\) 40.5821i 1.30033i
\(975\) 14.2566 21.5280i 0.456578 0.689448i
\(976\) 16.2468 + 9.38008i 0.520047 + 0.300249i
\(977\) −24.8093 + 42.9710i −0.793720 + 1.37476i 0.129929 + 0.991523i \(0.458525\pi\)
−0.923649 + 0.383240i \(0.874808\pi\)
\(978\) −57.8821 28.3920i −1.85087 0.907877i
\(979\) 48.0949i 1.53712i
\(980\) 0 0
\(981\) −6.67862 + 16.3189i −0.213232 + 0.521021i
\(982\) −20.6646 + 11.9307i −0.659433 + 0.380724i
\(983\) −18.8016 10.8551i −0.599677 0.346224i 0.169238 0.985575i \(-0.445869\pi\)
−0.768914 + 0.639352i \(0.779203\pi\)
\(984\) 4.99803 0.338224i 0.159331 0.0107822i
\(985\) −9.52808 19.2724i −0.303590 0.614070i
\(986\) −7.47897 −0.238179
\(987\) 0 0
\(988\) 20.1461i 0.640931i
\(989\) 48.7795 28.1629i 1.55110 0.895527i
\(990\) 58.6607 39.6418i 1.86436 1.25990i
\(991\) 8.17396 14.1577i 0.259655 0.449735i −0.706495 0.707718i \(-0.749725\pi\)
0.966149 + 0.257983i \(0.0830580\pi\)
\(992\) −30.5797 + 17.6552i −0.970905 + 0.560553i
\(993\) −29.4006 43.8000i −0.933000 1.38995i
\(994\) 0 0
\(995\) 1.60713 24.9017i 0.0509493 0.789437i
\(996\) 41.2836 + 20.2502i 1.30812 + 0.641652i
\(997\) −16.4511 + 28.4941i −0.521010 + 0.902416i 0.478691 + 0.877983i \(0.341111\pi\)
−0.999701 + 0.0244329i \(0.992222\pi\)
\(998\) 15.2911 26.4849i 0.484030 0.838365i
\(999\) 29.5201 26.2222i 0.933976 0.829635i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.p.g.374.8 64
3.2 odd 2 inner 735.2.p.g.374.26 64
5.4 even 2 inner 735.2.p.g.374.25 64
7.2 even 3 inner 735.2.p.g.509.6 64
7.3 odd 6 735.2.g.c.734.28 yes 32
7.4 even 3 735.2.g.c.734.25 yes 32
7.5 odd 6 inner 735.2.p.g.509.7 64
7.6 odd 2 inner 735.2.p.g.374.5 64
15.14 odd 2 inner 735.2.p.g.374.7 64
21.2 odd 6 inner 735.2.p.g.509.28 64
21.5 even 6 inner 735.2.p.g.509.25 64
21.11 odd 6 735.2.g.c.734.6 yes 32
21.17 even 6 735.2.g.c.734.7 yes 32
21.20 even 2 inner 735.2.p.g.374.27 64
35.4 even 6 735.2.g.c.734.8 yes 32
35.9 even 6 inner 735.2.p.g.509.27 64
35.19 odd 6 inner 735.2.p.g.509.26 64
35.24 odd 6 735.2.g.c.734.5 32
35.34 odd 2 inner 735.2.p.g.374.28 64
105.44 odd 6 inner 735.2.p.g.509.5 64
105.59 even 6 735.2.g.c.734.26 yes 32
105.74 odd 6 735.2.g.c.734.27 yes 32
105.89 even 6 inner 735.2.p.g.509.8 64
105.104 even 2 inner 735.2.p.g.374.6 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.g.c.734.5 32 35.24 odd 6
735.2.g.c.734.6 yes 32 21.11 odd 6
735.2.g.c.734.7 yes 32 21.17 even 6
735.2.g.c.734.8 yes 32 35.4 even 6
735.2.g.c.734.25 yes 32 7.4 even 3
735.2.g.c.734.26 yes 32 105.59 even 6
735.2.g.c.734.27 yes 32 105.74 odd 6
735.2.g.c.734.28 yes 32 7.3 odd 6
735.2.p.g.374.5 64 7.6 odd 2 inner
735.2.p.g.374.6 64 105.104 even 2 inner
735.2.p.g.374.7 64 15.14 odd 2 inner
735.2.p.g.374.8 64 1.1 even 1 trivial
735.2.p.g.374.25 64 5.4 even 2 inner
735.2.p.g.374.26 64 3.2 odd 2 inner
735.2.p.g.374.27 64 21.20 even 2 inner
735.2.p.g.374.28 64 35.34 odd 2 inner
735.2.p.g.509.5 64 105.44 odd 6 inner
735.2.p.g.509.6 64 7.2 even 3 inner
735.2.p.g.509.7 64 7.5 odd 6 inner
735.2.p.g.509.8 64 105.89 even 6 inner
735.2.p.g.509.25 64 21.5 even 6 inner
735.2.p.g.509.26 64 35.19 odd 6 inner
735.2.p.g.509.27 64 35.9 even 6 inner
735.2.p.g.509.28 64 21.2 odd 6 inner