Properties

Label 735.2.p.f.509.6
Level $735$
Weight $2$
Character 735.509
Analytic conductor $5.869$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(374,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.374"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 509.6
Character \(\chi\) \(=\) 735.509
Dual form 735.2.p.f.374.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.322403 + 0.558418i) q^{2} +(-1.15761 + 1.28838i) q^{3} +(0.792113 + 1.37198i) q^{4} +(1.60193 - 1.56008i) q^{5} +(-0.346239 - 1.06181i) q^{6} -2.31113 q^{8} +(-0.319861 - 2.98290i) q^{9} +(0.354709 + 1.39752i) q^{10} +(3.51044 - 2.02675i) q^{11} +(-2.68460 - 0.567678i) q^{12} +4.21339 q^{13} +(0.155565 + 3.86986i) q^{15} +(-0.839111 + 1.45338i) q^{16} +(1.88498 - 1.08830i) q^{17} +(1.76883 + 0.783079i) q^{18} +(3.87634 + 2.23800i) q^{19} +(3.40930 + 0.962052i) q^{20} +2.61372i q^{22} +(0.322403 - 0.558418i) q^{23} +(2.67540 - 2.97762i) q^{24} +(0.132327 - 4.99825i) q^{25} +(-1.35841 + 2.35284i) q^{26} +(4.21339 + 3.04094i) q^{27} +1.16875i q^{29} +(-2.21115 - 1.16078i) q^{30} +(0.339111 - 0.195786i) q^{31} +(-2.85219 - 4.94014i) q^{32} +(-1.45250 + 6.86898i) q^{33} +1.40348i q^{34} +(3.83911 - 2.80164i) q^{36} +(-3.69236 - 2.13178i) q^{37} +(-2.49949 + 1.44308i) q^{38} +(-4.87748 + 5.42846i) q^{39} +(-3.70226 + 3.60554i) q^{40} -2.27971 q^{41} +6.54419i q^{43} +(5.56132 + 3.21083i) q^{44} +(-5.16594 - 4.27937i) q^{45} +(0.207887 + 0.360071i) q^{46} +(-6.75621 - 3.90070i) q^{47} +(-0.901147 - 2.76355i) q^{48} +(2.74845 + 1.68534i) q^{50} +(-0.779941 + 3.68841i) q^{51} +(3.33748 + 5.78069i) q^{52} +(3.60074 + 6.23667i) q^{53} +(-3.05653 + 1.37243i) q^{54} +(2.46157 - 8.72325i) q^{55} +(-7.37071 + 2.40346i) q^{57} +(-0.652654 - 0.376810i) q^{58} +(5.66247 + 9.80768i) q^{59} +(-5.18614 + 3.27880i) q^{60} +(-6.05456 - 3.49560i) q^{61} +0.252487i q^{62} +0.321779 q^{64} +(6.74954 - 6.57321i) q^{65} +(-3.36748 - 3.02568i) q^{66} +(7.56680 - 4.36870i) q^{67} +(2.98624 + 1.72411i) q^{68} +(0.346239 + 1.06181i) q^{69} +8.13766i q^{71} +(0.739241 + 6.89387i) q^{72} +(-2.61843 - 4.53525i) q^{73} +(2.38085 - 1.37459i) q^{74} +(6.28647 + 5.95653i) q^{75} +7.09101i q^{76} +(-1.45884 - 4.47383i) q^{78} +(-1.87634 + 3.24991i) q^{79} +(0.923194 + 3.63729i) q^{80} +(-8.79538 + 1.90823i) q^{81} +(0.734986 - 1.27303i) q^{82} +5.27461i q^{83} +(1.32178 - 4.68409i) q^{85} +(-3.65439 - 2.10987i) q^{86} +(-1.50580 - 1.35297i) q^{87} +(-8.11308 + 4.68409i) q^{88} +(0.447379 - 0.774883i) q^{89} +(4.05520 - 1.50507i) q^{90} +1.02152 q^{92} +(-0.140312 + 0.663548i) q^{93} +(4.35644 - 2.51519i) q^{94} +(9.70106 - 2.46227i) q^{95} +(9.66653 + 2.04406i) q^{96} -3.89968 q^{97} +(-7.16845 - 9.82300i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 12 q^{4} - 6 q^{9} - 24 q^{15} - 12 q^{16} - 18 q^{24} - 12 q^{25} + 18 q^{30} + 84 q^{36} - 12 q^{39} + 72 q^{40} + 18 q^{45} + 36 q^{46} - 12 q^{51} + 36 q^{54} + 12 q^{60} - 36 q^{61} + 24 q^{64}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.322403 + 0.558418i −0.227973 + 0.394861i −0.957207 0.289403i \(-0.906543\pi\)
0.729234 + 0.684264i \(0.239877\pi\)
\(3\) −1.15761 + 1.28838i −0.668349 + 0.743848i
\(4\) 0.792113 + 1.37198i 0.396056 + 0.685990i
\(5\) 1.60193 1.56008i 0.716403 0.697687i
\(6\) −0.346239 1.06181i −0.141351 0.433483i
\(7\) 0 0
\(8\) −2.31113 −0.817108
\(9\) −0.319861 2.98290i −0.106620 0.994300i
\(10\) 0.354709 + 1.39752i 0.112169 + 0.441934i
\(11\) 3.51044 2.02675i 1.05844 0.611089i 0.133437 0.991057i \(-0.457398\pi\)
0.924999 + 0.379968i \(0.124065\pi\)
\(12\) −2.68460 0.567678i −0.774976 0.163874i
\(13\) 4.21339 1.16858 0.584292 0.811543i \(-0.301372\pi\)
0.584292 + 0.811543i \(0.301372\pi\)
\(14\) 0 0
\(15\) 0.155565 + 3.86986i 0.0401666 + 0.999193i
\(16\) −0.839111 + 1.45338i −0.209778 + 0.363346i
\(17\) 1.88498 1.08830i 0.457176 0.263951i −0.253680 0.967288i \(-0.581641\pi\)
0.710856 + 0.703338i \(0.248308\pi\)
\(18\) 1.76883 + 0.783079i 0.416917 + 0.184574i
\(19\) 3.87634 + 2.23800i 0.889293 + 0.513434i 0.873711 0.486445i \(-0.161707\pi\)
0.0155818 + 0.999879i \(0.495040\pi\)
\(20\) 3.40930 + 0.962052i 0.762342 + 0.215121i
\(21\) 0 0
\(22\) 2.61372i 0.557248i
\(23\) 0.322403 0.558418i 0.0672257 0.116438i −0.830453 0.557088i \(-0.811919\pi\)
0.897679 + 0.440650i \(0.145252\pi\)
\(24\) 2.67540 2.97762i 0.546113 0.607804i
\(25\) 0.132327 4.99825i 0.0264655 0.999650i
\(26\) −1.35841 + 2.35284i −0.266406 + 0.461429i
\(27\) 4.21339 + 3.04094i 0.810868 + 0.585229i
\(28\) 0 0
\(29\) 1.16875i 0.217032i 0.994095 + 0.108516i \(0.0346099\pi\)
−0.994095 + 0.108516i \(0.965390\pi\)
\(30\) −2.21115 1.16078i −0.403700 0.211929i
\(31\) 0.339111 0.195786i 0.0609061 0.0351641i −0.469238 0.883072i \(-0.655471\pi\)
0.530144 + 0.847908i \(0.322138\pi\)
\(32\) −2.85219 4.94014i −0.504201 0.873302i
\(33\) −1.45250 + 6.86898i −0.252847 + 1.19574i
\(34\) 1.40348i 0.240695i
\(35\) 0 0
\(36\) 3.83911 2.80164i 0.639852 0.466939i
\(37\) −3.69236 2.13178i −0.607020 0.350463i 0.164778 0.986331i \(-0.447309\pi\)
−0.771798 + 0.635868i \(0.780642\pi\)
\(38\) −2.49949 + 1.44308i −0.405470 + 0.234098i
\(39\) −4.87748 + 5.42846i −0.781022 + 0.869250i
\(40\) −3.70226 + 3.60554i −0.585378 + 0.570085i
\(41\) −2.27971 −0.356031 −0.178016 0.984028i \(-0.556968\pi\)
−0.178016 + 0.984028i \(0.556968\pi\)
\(42\) 0 0
\(43\) 6.54419i 0.997980i 0.866608 + 0.498990i \(0.166295\pi\)
−0.866608 + 0.498990i \(0.833705\pi\)
\(44\) 5.56132 + 3.21083i 0.838401 + 0.484051i
\(45\) −5.16594 4.27937i −0.770093 0.637931i
\(46\) 0.207887 + 0.360071i 0.0306513 + 0.0530896i
\(47\) −6.75621 3.90070i −0.985494 0.568975i −0.0815698 0.996668i \(-0.525993\pi\)
−0.903924 + 0.427692i \(0.859327\pi\)
\(48\) −0.901147 2.76355i −0.130069 0.398884i
\(49\) 0 0
\(50\) 2.74845 + 1.68534i 0.388690 + 0.238344i
\(51\) −0.779941 + 3.68841i −0.109214 + 0.516480i
\(52\) 3.33748 + 5.78069i 0.462825 + 0.801637i
\(53\) 3.60074 + 6.23667i 0.494600 + 0.856672i 0.999981 0.00622439i \(-0.00198130\pi\)
−0.505381 + 0.862896i \(0.668648\pi\)
\(54\) −3.05653 + 1.37243i −0.415941 + 0.186764i
\(55\) 2.46157 8.72325i 0.331918 1.17624i
\(56\) 0 0
\(57\) −7.37071 + 2.40346i −0.976274 + 0.318346i
\(58\) −0.652654 0.376810i −0.0856977 0.0494776i
\(59\) 5.66247 + 9.80768i 0.737190 + 1.27685i 0.953756 + 0.300583i \(0.0971812\pi\)
−0.216566 + 0.976268i \(0.569485\pi\)
\(60\) −5.18614 + 3.27880i −0.669528 + 0.423291i
\(61\) −6.05456 3.49560i −0.775207 0.447566i 0.0595220 0.998227i \(-0.481042\pi\)
−0.834729 + 0.550661i \(0.814376\pi\)
\(62\) 0.252487i 0.0320659i
\(63\) 0 0
\(64\) 0.321779 0.0402224
\(65\) 6.74954 6.57321i 0.837177 0.815307i
\(66\) −3.36748 3.02568i −0.414508 0.372436i
\(67\) 7.56680 4.36870i 0.924432 0.533721i 0.0393859 0.999224i \(-0.487460\pi\)
0.885046 + 0.465503i \(0.154127\pi\)
\(68\) 2.98624 + 1.72411i 0.362135 + 0.209079i
\(69\) 0.346239 + 1.06181i 0.0416822 + 0.127827i
\(70\) 0 0
\(71\) 8.13766i 0.965762i 0.875686 + 0.482881i \(0.160410\pi\)
−0.875686 + 0.482881i \(0.839590\pi\)
\(72\) 0.739241 + 6.89387i 0.0871204 + 0.812450i
\(73\) −2.61843 4.53525i −0.306464 0.530810i 0.671123 0.741346i \(-0.265812\pi\)
−0.977586 + 0.210536i \(0.932479\pi\)
\(74\) 2.38085 1.37459i 0.276769 0.159792i
\(75\) 6.28647 + 5.95653i 0.725900 + 0.687801i
\(76\) 7.09101i 0.813394i
\(77\) 0 0
\(78\) −1.45884 4.47383i −0.165181 0.506561i
\(79\) −1.87634 + 3.24991i −0.211105 + 0.365644i −0.952060 0.305910i \(-0.901039\pi\)
0.740956 + 0.671554i \(0.234373\pi\)
\(80\) 0.923194 + 3.63729i 0.103216 + 0.406661i
\(81\) −8.79538 + 1.90823i −0.977264 + 0.212025i
\(82\) 0.734986 1.27303i 0.0811656 0.140583i
\(83\) 5.27461i 0.578964i 0.957183 + 0.289482i \(0.0934831\pi\)
−0.957183 + 0.289482i \(0.906517\pi\)
\(84\) 0 0
\(85\) 1.32178 4.68409i 0.143367 0.508061i
\(86\) −3.65439 2.10987i −0.394064 0.227513i
\(87\) −1.50580 1.35297i −0.161439 0.145053i
\(88\) −8.11308 + 4.68409i −0.864857 + 0.499325i
\(89\) 0.447379 0.774883i 0.0474221 0.0821375i −0.841340 0.540506i \(-0.818233\pi\)
0.888762 + 0.458369i \(0.151566\pi\)
\(90\) 4.05520 1.50507i 0.427455 0.158649i
\(91\) 0 0
\(92\) 1.02152 0.106501
\(93\) −0.140312 + 0.663548i −0.0145497 + 0.0688068i
\(94\) 4.35644 2.51519i 0.449333 0.259422i
\(95\) 9.70106 2.46227i 0.995308 0.252623i
\(96\) 9.66653 + 2.04406i 0.986586 + 0.208621i
\(97\) −3.89968 −0.395953 −0.197976 0.980207i \(-0.563437\pi\)
−0.197976 + 0.980207i \(0.563437\pi\)
\(98\) 0 0
\(99\) −7.16845 9.82300i −0.720456 0.987249i
\(100\) 6.96231 3.77763i 0.696231 0.377763i
\(101\) 3.29188 + 5.70171i 0.327555 + 0.567341i 0.982026 0.188745i \(-0.0604421\pi\)
−0.654471 + 0.756087i \(0.727109\pi\)
\(102\) −1.80822 1.62469i −0.179040 0.160868i
\(103\) 4.90721 8.49954i 0.483522 0.837485i −0.516299 0.856408i \(-0.672691\pi\)
0.999821 + 0.0189238i \(0.00602398\pi\)
\(104\) −9.73770 −0.954860
\(105\) 0 0
\(106\) −4.64356 −0.451022
\(107\) −9.38974 + 16.2635i −0.907740 + 1.57225i −0.0905447 + 0.995892i \(0.528861\pi\)
−0.817196 + 0.576360i \(0.804473\pi\)
\(108\) −0.834627 + 8.18946i −0.0803120 + 0.788031i
\(109\) −0.453002 0.784623i −0.0433897 0.0751532i 0.843515 0.537106i \(-0.180482\pi\)
−0.886905 + 0.461952i \(0.847149\pi\)
\(110\) 4.07761 + 4.18699i 0.388784 + 0.399214i
\(111\) 7.02088 2.28939i 0.666392 0.217299i
\(112\) 0 0
\(113\) 8.82955 0.830614 0.415307 0.909681i \(-0.363674\pi\)
0.415307 + 0.909681i \(0.363674\pi\)
\(114\) 1.03420 4.89082i 0.0968618 0.458067i
\(115\) −0.354709 1.39752i −0.0330768 0.130319i
\(116\) −1.60351 + 0.925786i −0.148882 + 0.0859570i
\(117\) −1.34770 12.5681i −0.124595 1.16192i
\(118\) −7.30238 −0.672239
\(119\) 0 0
\(120\) −0.359530 8.94374i −0.0328205 0.816448i
\(121\) 2.71545 4.70330i 0.246859 0.427572i
\(122\) 3.90402 2.25398i 0.353453 0.204066i
\(123\) 2.63903 2.93714i 0.237953 0.264833i
\(124\) 0.537228 + 0.310168i 0.0482445 + 0.0278540i
\(125\) −7.58567 8.21326i −0.678483 0.734616i
\(126\) 0 0
\(127\) 15.8249i 1.40424i −0.712060 0.702118i \(-0.752238\pi\)
0.712060 0.702118i \(-0.247762\pi\)
\(128\) 5.60064 9.70060i 0.495032 0.857420i
\(129\) −8.43142 7.57564i −0.742345 0.666998i
\(130\) 1.49453 + 5.88829i 0.131079 + 0.516437i
\(131\) 8.27814 14.3382i 0.723265 1.25273i −0.236419 0.971651i \(-0.575974\pi\)
0.959684 0.281080i \(-0.0906928\pi\)
\(132\) −10.5746 + 3.44821i −0.920405 + 0.300128i
\(133\) 0 0
\(134\) 5.63392i 0.486697i
\(135\) 11.4936 1.70185i 0.989215 0.146472i
\(136\) −4.35644 + 2.51519i −0.373562 + 0.215676i
\(137\) −9.93080 17.2007i −0.848446 1.46955i −0.882595 0.470135i \(-0.844205\pi\)
0.0341490 0.999417i \(-0.489128\pi\)
\(138\) −0.704563 0.148985i −0.0599764 0.0126825i
\(139\) 0.228766i 0.0194037i 0.999953 + 0.00970183i \(0.00308824\pi\)
−0.999953 + 0.00970183i \(0.996912\pi\)
\(140\) 0 0
\(141\) 12.8467 4.18908i 1.08188 0.352784i
\(142\) −4.54422 2.62361i −0.381342 0.220168i
\(143\) 14.7909 8.53950i 1.23687 0.714109i
\(144\) 4.60369 + 2.03810i 0.383641 + 0.169842i
\(145\) 1.82335 + 1.87226i 0.151421 + 0.155483i
\(146\) 3.37675 0.279462
\(147\) 0 0
\(148\) 6.75445i 0.555212i
\(149\) −8.62438 4.97929i −0.706537 0.407919i 0.103240 0.994656i \(-0.467079\pi\)
−0.809777 + 0.586737i \(0.800412\pi\)
\(150\) −5.35301 + 1.59008i −0.437072 + 0.129829i
\(151\) 2.53723 + 4.39461i 0.206477 + 0.357628i 0.950602 0.310412i \(-0.100467\pi\)
−0.744126 + 0.668040i \(0.767134\pi\)
\(152\) −8.95872 5.17232i −0.726648 0.419530i
\(153\) −3.84921 5.27461i −0.311190 0.426427i
\(154\) 0 0
\(155\) 0.237789 0.842672i 0.0190997 0.0676850i
\(156\) −11.3113 2.39185i −0.905625 0.191501i
\(157\) −8.42678 14.5956i −0.672531 1.16486i −0.977184 0.212394i \(-0.931874\pi\)
0.304653 0.952463i \(-0.401459\pi\)
\(158\) −1.20987 2.09556i −0.0962524 0.166714i
\(159\) −12.2035 2.58052i −0.967799 0.204648i
\(160\) −12.2760 3.46410i −0.970503 0.273861i
\(161\) 0 0
\(162\) 1.77007 5.52672i 0.139070 0.434220i
\(163\) 4.16292 + 2.40346i 0.326065 + 0.188254i 0.654093 0.756414i \(-0.273051\pi\)
−0.328028 + 0.944668i \(0.606384\pi\)
\(164\) −1.80579 3.12772i −0.141008 0.244234i
\(165\) 8.38934 + 13.2696i 0.653109 + 1.03304i
\(166\) −2.94544 1.70055i −0.228611 0.131988i
\(167\) 4.45089i 0.344420i 0.985060 + 0.172210i \(0.0550908\pi\)
−0.985060 + 0.172210i \(0.944909\pi\)
\(168\) 0 0
\(169\) 4.75268 0.365590
\(170\) 2.18953 + 2.24827i 0.167930 + 0.172434i
\(171\) 5.43585 12.2786i 0.415690 0.938966i
\(172\) −8.97849 + 5.18374i −0.684604 + 0.395256i
\(173\) 9.91963 + 5.72710i 0.754175 + 0.435423i 0.827201 0.561907i \(-0.189932\pi\)
−0.0730252 + 0.997330i \(0.523265\pi\)
\(174\) 1.24100 0.404668i 0.0940797 0.0306778i
\(175\) 0 0
\(176\) 6.80268i 0.512771i
\(177\) −19.1910 4.05808i −1.44248 0.305024i
\(178\) 0.288473 + 0.499649i 0.0216219 + 0.0374503i
\(179\) 9.04522 5.22226i 0.676071 0.390330i −0.122302 0.992493i \(-0.539028\pi\)
0.798373 + 0.602163i \(0.205694\pi\)
\(180\) 1.77920 10.4773i 0.132614 0.780933i
\(181\) 11.9616i 0.889095i 0.895755 + 0.444548i \(0.146636\pi\)
−0.895755 + 0.444548i \(0.853364\pi\)
\(182\) 0 0
\(183\) 11.5125 3.75404i 0.851030 0.277506i
\(184\) −0.745115 + 1.29058i −0.0549306 + 0.0951426i
\(185\) −9.24062 + 2.34540i −0.679384 + 0.172437i
\(186\) −0.325300 0.292283i −0.0238522 0.0214312i
\(187\) 4.41141 7.64079i 0.322594 0.558750i
\(188\) 12.3592i 0.901385i
\(189\) 0 0
\(190\) −1.75268 + 6.21109i −0.127153 + 0.450600i
\(191\) 12.2522 + 7.07383i 0.886541 + 0.511844i 0.872809 0.488061i \(-0.162296\pi\)
0.0137312 + 0.999906i \(0.495629\pi\)
\(192\) −0.372496 + 0.414574i −0.0268826 + 0.0299193i
\(193\) 5.36185 3.09566i 0.385954 0.222831i −0.294452 0.955666i \(-0.595137\pi\)
0.680406 + 0.732836i \(0.261804\pi\)
\(194\) 1.25727 2.17765i 0.0902667 0.156346i
\(195\) 0.655455 + 16.3052i 0.0469381 + 1.16764i
\(196\) 0 0
\(197\) −13.0751 −0.931562 −0.465781 0.884900i \(-0.654227\pi\)
−0.465781 + 0.884900i \(0.654227\pi\)
\(198\) 7.79647 0.836029i 0.554071 0.0594140i
\(199\) −14.6810 + 8.47608i −1.04071 + 0.600854i −0.920034 0.391838i \(-0.871839\pi\)
−0.120675 + 0.992692i \(0.538506\pi\)
\(200\) −0.305826 + 11.5516i −0.0216251 + 0.816821i
\(201\) −3.13088 + 14.8062i −0.220835 + 1.04435i
\(202\) −4.24525 −0.298695
\(203\) 0 0
\(204\) −5.67822 + 1.85157i −0.397555 + 0.129636i
\(205\) −3.65193 + 3.55652i −0.255062 + 0.248398i
\(206\) 3.16420 + 5.48055i 0.220460 + 0.381848i
\(207\) −1.76883 0.783079i −0.122942 0.0544278i
\(208\) −3.53550 + 6.12367i −0.245143 + 0.424600i
\(209\) 18.1435 1.25501
\(210\) 0 0
\(211\) −18.4309 −1.26884 −0.634418 0.772990i \(-0.718760\pi\)
−0.634418 + 0.772990i \(0.718760\pi\)
\(212\) −5.70439 + 9.88029i −0.391779 + 0.678581i
\(213\) −10.4844 9.42027i −0.718381 0.645466i
\(214\) −6.05456 10.4868i −0.413881 0.716863i
\(215\) 10.2094 + 10.4833i 0.696277 + 0.714955i
\(216\) −9.73770 7.02801i −0.662566 0.478195i
\(217\) 0 0
\(218\) 0.584197 0.0395668
\(219\) 8.87426 + 1.87653i 0.599667 + 0.126804i
\(220\) 13.9180 3.53258i 0.938349 0.238166i
\(221\) 7.94218 4.58542i 0.534249 0.308449i
\(222\) −0.985115 + 4.65869i −0.0661166 + 0.312671i
\(223\) 0.627418 0.0420150 0.0210075 0.999779i \(-0.493313\pi\)
0.0210075 + 0.999779i \(0.493313\pi\)
\(224\) 0 0
\(225\) −14.9516 + 1.20403i −0.996773 + 0.0802685i
\(226\) −2.84667 + 4.93058i −0.189358 + 0.327977i
\(227\) −4.70200 + 2.71470i −0.312082 + 0.180181i −0.647858 0.761761i \(-0.724335\pi\)
0.335776 + 0.941942i \(0.391002\pi\)
\(228\) −9.13593 8.20865i −0.605042 0.543631i
\(229\) 12.4482 + 7.18699i 0.822602 + 0.474930i 0.851313 0.524658i \(-0.175807\pi\)
−0.0287108 + 0.999588i \(0.509140\pi\)
\(230\) 0.894758 + 0.252487i 0.0589986 + 0.0166485i
\(231\) 0 0
\(232\) 2.70114i 0.177339i
\(233\) 4.21524 7.30101i 0.276150 0.478305i −0.694275 0.719710i \(-0.744275\pi\)
0.970425 + 0.241405i \(0.0776081\pi\)
\(234\) 7.45277 + 3.29942i 0.487203 + 0.215690i
\(235\) −16.9083 + 4.29157i −1.10298 + 0.279951i
\(236\) −8.97062 + 15.5376i −0.583938 + 1.01141i
\(237\) −2.01506 6.17959i −0.130892 0.401407i
\(238\) 0 0
\(239\) 2.71852i 0.175847i 0.996127 + 0.0879233i \(0.0280230\pi\)
−0.996127 + 0.0879233i \(0.971977\pi\)
\(240\) −5.75492 3.02114i −0.371478 0.195014i
\(241\) 1.32457 0.764739i 0.0853229 0.0492612i −0.456732 0.889605i \(-0.650980\pi\)
0.542054 + 0.840343i \(0.317647\pi\)
\(242\) 1.75094 + 3.03271i 0.112555 + 0.194950i
\(243\) 7.72312 13.5408i 0.495438 0.868643i
\(244\) 11.0756i 0.709045i
\(245\) 0 0
\(246\) 0.789324 + 2.42062i 0.0503255 + 0.154333i
\(247\) 16.3325 + 9.42959i 1.03921 + 0.599991i
\(248\) −0.783728 + 0.452486i −0.0497668 + 0.0287329i
\(249\) −6.79572 6.10597i −0.430661 0.386950i
\(250\) 7.03208 1.58800i 0.444748 0.100434i
\(251\) −8.81039 −0.556107 −0.278054 0.960566i \(-0.589689\pi\)
−0.278054 + 0.960566i \(0.589689\pi\)
\(252\) 0 0
\(253\) 2.61372i 0.164323i
\(254\) 8.83694 + 5.10201i 0.554479 + 0.320128i
\(255\) 4.50479 + 7.12532i 0.282101 + 0.446205i
\(256\) 3.93311 + 6.81234i 0.245819 + 0.425771i
\(257\) −17.4101 10.0517i −1.08601 0.627011i −0.153502 0.988148i \(-0.549055\pi\)
−0.932512 + 0.361138i \(0.882388\pi\)
\(258\) 6.94869 2.26585i 0.432607 0.141066i
\(259\) 0 0
\(260\) 14.3647 + 4.05350i 0.890861 + 0.251388i
\(261\) 3.48628 0.373839i 0.215795 0.0231401i
\(262\) 5.33780 + 9.24533i 0.329770 + 0.571179i
\(263\) 4.37959 + 7.58568i 0.270057 + 0.467753i 0.968876 0.247546i \(-0.0796240\pi\)
−0.698819 + 0.715299i \(0.746291\pi\)
\(264\) 3.35691 15.8751i 0.206604 0.977046i
\(265\) 15.4978 + 4.37324i 0.952022 + 0.268646i
\(266\) 0 0
\(267\) 0.480454 + 1.47341i 0.0294033 + 0.0901713i
\(268\) 11.9875 + 6.92100i 0.732255 + 0.422767i
\(269\) −8.62438 14.9379i −0.525838 0.910778i −0.999547 0.0300966i \(-0.990419\pi\)
0.473709 0.880681i \(-0.342915\pi\)
\(270\) −2.75524 + 6.96694i −0.167678 + 0.423994i
\(271\) −19.6117 11.3228i −1.19132 0.687812i −0.232718 0.972544i \(-0.574762\pi\)
−0.958607 + 0.284733i \(0.908095\pi\)
\(272\) 3.65280i 0.221484i
\(273\) 0 0
\(274\) 12.8069 0.773692
\(275\) −9.66568 17.8142i −0.582863 1.07424i
\(276\) −1.18252 + 1.31611i −0.0711795 + 0.0792203i
\(277\) 11.4413 6.60561i 0.687438 0.396893i −0.115213 0.993341i \(-0.536755\pi\)
0.802652 + 0.596448i \(0.203422\pi\)
\(278\) −0.127747 0.0737548i −0.00766176 0.00442352i
\(279\) −0.692477 0.948908i −0.0414575 0.0568097i
\(280\) 0 0
\(281\) 32.8703i 1.96088i −0.196817 0.980440i \(-0.563060\pi\)
0.196817 0.980440i \(-0.436940\pi\)
\(282\) −1.80255 + 8.52439i −0.107340 + 0.507620i
\(283\) 7.90575 + 13.6932i 0.469948 + 0.813974i 0.999410 0.0343601i \(-0.0109393\pi\)
−0.529462 + 0.848334i \(0.677606\pi\)
\(284\) −11.1647 + 6.44594i −0.662503 + 0.382496i
\(285\) −8.05774 + 15.3490i −0.477299 + 0.909198i
\(286\) 11.0126i 0.651191i
\(287\) 0 0
\(288\) −13.8236 + 10.0880i −0.814566 + 0.594439i
\(289\) −6.13122 + 10.6196i −0.360660 + 0.624682i
\(290\) −1.63336 + 0.414568i −0.0959139 + 0.0243443i
\(291\) 4.51433 5.02429i 0.264635 0.294529i
\(292\) 4.14818 7.18485i 0.242754 0.420462i
\(293\) 20.7797i 1.21396i 0.794716 + 0.606982i \(0.207620\pi\)
−0.794716 + 0.606982i \(0.792380\pi\)
\(294\) 0 0
\(295\) 24.3716 + 6.87729i 1.41897 + 0.400411i
\(296\) 8.53351 + 4.92683i 0.496000 + 0.286366i
\(297\) 20.9541 + 2.13553i 1.21588 + 0.123916i
\(298\) 5.56105 3.21068i 0.322143 0.185989i
\(299\) 1.35841 2.35284i 0.0785589 0.136068i
\(300\) −3.19264 + 13.3432i −0.184327 + 0.770367i
\(301\) 0 0
\(302\) −3.27204 −0.188285
\(303\) −11.1567 2.35917i −0.640937 0.135531i
\(304\) −6.50535 + 3.75587i −0.373108 + 0.215414i
\(305\) −15.1524 + 3.84588i −0.867621 + 0.220214i
\(306\) 4.18644 0.448919i 0.239323 0.0256630i
\(307\) 12.9857 0.741136 0.370568 0.928805i \(-0.379163\pi\)
0.370568 + 0.928805i \(0.379163\pi\)
\(308\) 0 0
\(309\) 5.27001 + 16.1616i 0.299800 + 0.919399i
\(310\) 0.393899 + 0.404466i 0.0223720 + 0.0229721i
\(311\) −0.228825 0.396337i −0.0129755 0.0224742i 0.859465 0.511195i \(-0.170797\pi\)
−0.872440 + 0.488721i \(0.837464\pi\)
\(312\) 11.2725 12.5459i 0.638179 0.710271i
\(313\) −13.8710 + 24.0252i −0.784033 + 1.35799i 0.145542 + 0.989352i \(0.453507\pi\)
−0.929575 + 0.368633i \(0.879826\pi\)
\(314\) 10.8673 0.613276
\(315\) 0 0
\(316\) −5.94509 −0.334437
\(317\) 2.26170 3.91737i 0.127030 0.220022i −0.795495 0.605960i \(-0.792789\pi\)
0.922524 + 0.385939i \(0.126122\pi\)
\(318\) 5.37545 5.98268i 0.301440 0.335492i
\(319\) 2.36878 + 4.10284i 0.132626 + 0.229715i
\(320\) 0.515466 0.501999i 0.0288154 0.0280626i
\(321\) −10.0839 30.9244i −0.562830 1.72603i
\(322\) 0 0
\(323\) 9.74245 0.542084
\(324\) −9.58498 10.5555i −0.532499 0.586419i
\(325\) 0.557547 21.0596i 0.0309272 1.16818i
\(326\) −2.68428 + 1.54977i −0.148668 + 0.0858337i
\(327\) 1.53530 + 0.324650i 0.0849021 + 0.0179532i
\(328\) 5.26871 0.290916
\(329\) 0 0
\(330\) −10.1147 + 0.406603i −0.556798 + 0.0223828i
\(331\) 11.4482 19.8289i 0.629252 1.08990i −0.358451 0.933549i \(-0.616695\pi\)
0.987702 0.156347i \(-0.0499718\pi\)
\(332\) −7.23666 + 4.17809i −0.397163 + 0.229302i
\(333\) −5.17785 + 11.6958i −0.283745 + 0.640926i
\(334\) −2.48546 1.43498i −0.135998 0.0785186i
\(335\) 5.30596 18.8031i 0.289895 1.02732i
\(336\) 0 0
\(337\) 31.2616i 1.70293i 0.524413 + 0.851464i \(0.324285\pi\)
−0.524413 + 0.851464i \(0.675715\pi\)
\(338\) −1.53228 + 2.65398i −0.0833449 + 0.144358i
\(339\) −10.2212 + 11.3758i −0.555140 + 0.617851i
\(340\) 7.47347 1.89687i 0.405306 0.102872i
\(341\) 0.793618 1.37459i 0.0429768 0.0744380i
\(342\) 5.10405 + 6.99413i 0.275995 + 0.378199i
\(343\) 0 0
\(344\) 15.1245i 0.815457i
\(345\) 2.21115 + 1.16078i 0.119045 + 0.0624945i
\(346\) −6.39623 + 3.69287i −0.343864 + 0.198530i
\(347\) −1.39335 2.41336i −0.0747992 0.129556i 0.826200 0.563377i \(-0.190498\pi\)
−0.900999 + 0.433821i \(0.857165\pi\)
\(348\) 0.663476 3.13763i 0.0355661 0.168195i
\(349\) 16.5636i 0.886627i −0.896367 0.443314i \(-0.853803\pi\)
0.896367 0.443314i \(-0.146197\pi\)
\(350\) 0 0
\(351\) 17.7527 + 12.8127i 0.947568 + 0.683890i
\(352\) −20.0249 11.5614i −1.06733 0.616223i
\(353\) −2.83794 + 1.63849i −0.151048 + 0.0872078i −0.573619 0.819122i \(-0.694461\pi\)
0.422571 + 0.906330i \(0.361128\pi\)
\(354\) 8.45334 9.40826i 0.449290 0.500044i
\(355\) 12.6954 + 13.0359i 0.673800 + 0.691875i
\(356\) 1.41750 0.0751273
\(357\) 0 0
\(358\) 6.73469i 0.355939i
\(359\) −14.7282 8.50335i −0.777326 0.448789i 0.0581557 0.998308i \(-0.481478\pi\)
−0.835482 + 0.549518i \(0.814811\pi\)
\(360\) 11.9392 + 9.89019i 0.629249 + 0.521259i
\(361\) 0.517332 + 0.896045i 0.0272280 + 0.0471603i
\(362\) −6.67955 3.85644i −0.351069 0.202690i
\(363\) 2.91620 + 8.94314i 0.153061 + 0.469393i
\(364\) 0 0
\(365\) −11.2698 3.18018i −0.589891 0.166458i
\(366\) −1.61535 + 7.63911i −0.0844355 + 0.399303i
\(367\) 8.55840 + 14.8236i 0.446745 + 0.773785i 0.998172 0.0604381i \(-0.0192498\pi\)
−0.551427 + 0.834223i \(0.685916\pi\)
\(368\) 0.541063 + 0.937149i 0.0282049 + 0.0488523i
\(369\) 0.729192 + 6.80015i 0.0379602 + 0.354002i
\(370\) 1.66949 5.91630i 0.0867926 0.307574i
\(371\) 0 0
\(372\) −1.02152 + 0.333100i −0.0529632 + 0.0172704i
\(373\) −25.0397 14.4567i −1.29651 0.748538i −0.316706 0.948524i \(-0.602577\pi\)
−0.979799 + 0.199986i \(0.935910\pi\)
\(374\) 2.84450 + 4.92683i 0.147086 + 0.254760i
\(375\) 19.3631 0.265463i 0.999906 0.0137084i
\(376\) 15.6145 + 9.01502i 0.805255 + 0.464914i
\(377\) 4.92442i 0.253621i
\(378\) 0 0
\(379\) −0.559557 −0.0287425 −0.0143712 0.999897i \(-0.504575\pi\)
−0.0143712 + 0.999897i \(0.504575\pi\)
\(380\) 11.0625 + 11.3593i 0.567495 + 0.582718i
\(381\) 20.3886 + 18.3192i 1.04454 + 0.938519i
\(382\) −7.90031 + 4.56125i −0.404215 + 0.233374i
\(383\) −3.28951 1.89920i −0.168086 0.0970447i 0.413597 0.910460i \(-0.364272\pi\)
−0.581683 + 0.813415i \(0.697606\pi\)
\(384\) 6.01470 + 18.4453i 0.306937 + 0.941284i
\(385\) 0 0
\(386\) 3.99220i 0.203198i
\(387\) 19.5207 2.09323i 0.992291 0.106405i
\(388\) −3.08899 5.35029i −0.156820 0.271620i
\(389\) 7.88909 4.55477i 0.399993 0.230936i −0.286488 0.958084i \(-0.592488\pi\)
0.686481 + 0.727148i \(0.259155\pi\)
\(390\) −9.31646 4.89084i −0.471757 0.247657i
\(391\) 1.40348i 0.0709770i
\(392\) 0 0
\(393\) 8.89016 + 27.2635i 0.448449 + 1.37526i
\(394\) 4.21545 7.30137i 0.212371 0.367838i
\(395\) 2.06436 + 8.13335i 0.103869 + 0.409233i
\(396\) 7.79874 17.6159i 0.391901 0.885232i
\(397\) −12.1191 + 20.9910i −0.608242 + 1.05351i 0.383288 + 0.923629i \(0.374792\pi\)
−0.991530 + 0.129878i \(0.958542\pi\)
\(398\) 10.9309i 0.547914i
\(399\) 0 0
\(400\) 7.15333 + 4.38641i 0.357666 + 0.219320i
\(401\) −26.1500 15.0977i −1.30587 0.753944i −0.324466 0.945897i \(-0.605185\pi\)
−0.981404 + 0.191953i \(0.938518\pi\)
\(402\) −7.25865 6.52190i −0.362028 0.325283i
\(403\) 1.42881 0.824921i 0.0711739 0.0410923i
\(404\) −5.21509 + 9.03279i −0.259460 + 0.449398i
\(405\) −11.1126 + 16.7783i −0.552187 + 0.833720i
\(406\) 0 0
\(407\) −17.2824 −0.856656
\(408\) 1.80255 8.52439i 0.0892393 0.422020i
\(409\) 21.3618 12.3332i 1.05627 0.609839i 0.131874 0.991267i \(-0.457901\pi\)
0.924399 + 0.381427i \(0.124567\pi\)
\(410\) −0.808636 3.18594i −0.0399357 0.157342i
\(411\) 33.6571 + 7.11704i 1.66018 + 0.351058i
\(412\) 15.5483 0.766008
\(413\) 0 0
\(414\) 1.00756 0.735280i 0.0495189 0.0361370i
\(415\) 8.22880 + 8.44954i 0.403936 + 0.414771i
\(416\) −12.0174 20.8148i −0.589202 1.02053i
\(417\) −0.294738 0.264822i −0.0144334 0.0129684i
\(418\) −5.84953 + 10.1317i −0.286110 + 0.495556i
\(419\) −39.4615 −1.92782 −0.963911 0.266226i \(-0.914223\pi\)
−0.963911 + 0.266226i \(0.914223\pi\)
\(420\) 0 0
\(421\) −30.9363 −1.50774 −0.753870 0.657023i \(-0.771815\pi\)
−0.753870 + 0.657023i \(0.771815\pi\)
\(422\) 5.94218 10.2921i 0.289261 0.501014i
\(423\) −9.47434 + 21.4008i −0.460658 + 1.04054i
\(424\) −8.32178 14.4137i −0.404141 0.699993i
\(425\) −5.19014 9.56563i −0.251759 0.464001i
\(426\) 8.64066 2.81757i 0.418641 0.136512i
\(427\) 0 0
\(428\) −29.7509 −1.43807
\(429\) −6.11994 + 28.9417i −0.295474 + 1.39732i
\(430\) −9.14562 + 2.32129i −0.441041 + 0.111942i
\(431\) −26.6240 + 15.3713i −1.28243 + 0.740412i −0.977292 0.211896i \(-0.932036\pi\)
−0.305138 + 0.952308i \(0.598703\pi\)
\(432\) −7.95515 + 3.57198i −0.382742 + 0.171857i
\(433\) −2.95856 −0.142179 −0.0710896 0.997470i \(-0.522648\pi\)
−0.0710896 + 0.997470i \(0.522648\pi\)
\(434\) 0 0
\(435\) −4.52292 + 0.181817i −0.216857 + 0.00871746i
\(436\) 0.717658 1.24302i 0.0343696 0.0595298i
\(437\) 2.49949 1.44308i 0.119567 0.0690318i
\(438\) −3.90897 + 4.35055i −0.186778 + 0.207877i
\(439\) −15.0772 8.70485i −0.719598 0.415460i 0.0950070 0.995477i \(-0.469713\pi\)
−0.814605 + 0.580017i \(0.803046\pi\)
\(440\) −5.68901 + 20.1606i −0.271213 + 0.961117i
\(441\) 0 0
\(442\) 5.91341i 0.281272i
\(443\) −15.8970 + 27.5344i −0.755288 + 1.30820i 0.189942 + 0.981795i \(0.439170\pi\)
−0.945231 + 0.326403i \(0.894163\pi\)
\(444\) 8.70232 + 7.81904i 0.412994 + 0.371075i
\(445\) −0.492209 1.93925i −0.0233329 0.0919293i
\(446\) −0.202281 + 0.350362i −0.00957830 + 0.0165901i
\(447\) 16.3989 5.34741i 0.775643 0.252924i
\(448\) 0 0
\(449\) 2.99461i 0.141324i −0.997500 0.0706621i \(-0.977489\pi\)
0.997500 0.0706621i \(-0.0225112\pi\)
\(450\) 4.14809 8.73743i 0.195543 0.411886i
\(451\) −8.00279 + 4.62041i −0.376837 + 0.217567i
\(452\) 6.99400 + 12.1140i 0.328970 + 0.569793i
\(453\) −8.59907 1.81834i −0.404019 0.0854329i
\(454\) 3.50091i 0.164306i
\(455\) 0 0
\(456\) 17.0347 5.55471i 0.797721 0.260123i
\(457\) −7.62540 4.40252i −0.356701 0.205941i 0.310932 0.950432i \(-0.399359\pi\)
−0.667633 + 0.744491i \(0.732692\pi\)
\(458\) −8.02669 + 4.63421i −0.375063 + 0.216543i
\(459\) 11.2516 + 1.14671i 0.525181 + 0.0535237i
\(460\) 1.63639 1.59365i 0.0762973 0.0743041i
\(461\) 31.9710 1.48904 0.744519 0.667602i \(-0.232679\pi\)
0.744519 + 0.667602i \(0.232679\pi\)
\(462\) 0 0
\(463\) 6.94495i 0.322759i −0.986892 0.161380i \(-0.948406\pi\)
0.986892 0.161380i \(-0.0515943\pi\)
\(464\) −1.69865 0.980715i −0.0788577 0.0455285i
\(465\) 0.810416 + 1.28185i 0.0375821 + 0.0594445i
\(466\) 2.71801 + 4.70774i 0.125910 + 0.218082i
\(467\) 21.1944 + 12.2366i 0.980758 + 0.566241i 0.902499 0.430692i \(-0.141731\pi\)
0.0782589 + 0.996933i \(0.475064\pi\)
\(468\) 16.1757 11.8044i 0.747721 0.545658i
\(469\) 0 0
\(470\) 3.05480 10.8255i 0.140908 0.499344i
\(471\) 28.5597 + 6.03916i 1.31596 + 0.278270i
\(472\) −13.0867 22.6668i −0.602364 1.04332i
\(473\) 13.2635 + 22.9730i 0.609854 + 1.05630i
\(474\) 4.10045 + 0.867071i 0.188340 + 0.0398259i
\(475\) 11.6991 19.0788i 0.536789 0.875393i
\(476\) 0 0
\(477\) 17.4516 12.7355i 0.799054 0.583119i
\(478\) −1.51807 0.876459i −0.0694350 0.0400883i
\(479\) −12.1451 21.0359i −0.554923 0.961156i −0.997909 0.0646271i \(-0.979414\pi\)
0.442986 0.896529i \(-0.353919\pi\)
\(480\) 18.6740 11.8061i 0.852345 0.538872i
\(481\) −15.5573 8.98204i −0.709354 0.409546i
\(482\) 0.986217i 0.0449209i
\(483\) 0 0
\(484\) 8.60377 0.391080
\(485\) −6.24700 + 6.08380i −0.283662 + 0.276251i
\(486\) 5.07148 + 8.67833i 0.230047 + 0.393657i
\(487\) −8.44934 + 4.87823i −0.382876 + 0.221054i −0.679069 0.734075i \(-0.737616\pi\)
0.296193 + 0.955128i \(0.404283\pi\)
\(488\) 13.9929 + 8.07879i 0.633427 + 0.365710i
\(489\) −7.91563 + 2.58115i −0.357957 + 0.116724i
\(490\) 0 0
\(491\) 23.6689i 1.06816i 0.845434 + 0.534080i \(0.179342\pi\)
−0.845434 + 0.534080i \(0.820658\pi\)
\(492\) 6.12011 + 1.29414i 0.275916 + 0.0583444i
\(493\) 1.27195 + 2.20308i 0.0572858 + 0.0992219i
\(494\) −10.5313 + 6.08026i −0.473826 + 0.273564i
\(495\) −26.8079 4.55239i −1.20493 0.204615i
\(496\) 0.657143i 0.0295066i
\(497\) 0 0
\(498\) 5.60064 1.82627i 0.250971 0.0818373i
\(499\) 5.73534 9.93391i 0.256749 0.444703i −0.708620 0.705590i \(-0.750682\pi\)
0.965369 + 0.260888i \(0.0840152\pi\)
\(500\) 5.25972 16.9132i 0.235222 0.756382i
\(501\) −5.73445 5.15241i −0.256196 0.230193i
\(502\) 2.84050 4.91988i 0.126778 0.219585i
\(503\) 16.8580i 0.751659i 0.926689 + 0.375830i \(0.122642\pi\)
−0.926689 + 0.375830i \(0.877358\pi\)
\(504\) 0 0
\(505\) 14.1685 + 3.99812i 0.630488 + 0.177914i
\(506\) 1.45955 + 0.842672i 0.0648849 + 0.0374613i
\(507\) −5.50176 + 6.12327i −0.244342 + 0.271944i
\(508\) 21.7115 12.5351i 0.963292 0.556157i
\(509\) −1.47582 + 2.55620i −0.0654147 + 0.113302i −0.896878 0.442278i \(-0.854170\pi\)
0.831463 + 0.555580i \(0.187504\pi\)
\(510\) −5.43127 + 0.218332i −0.240500 + 0.00966790i
\(511\) 0 0
\(512\) 17.3304 0.765902
\(513\) 9.52689 + 21.2173i 0.420623 + 0.936767i
\(514\) 11.2262 6.48142i 0.495164 0.285883i
\(515\) −5.39894 21.2713i −0.237906 0.937323i
\(516\) 3.71499 17.5685i 0.163543 0.773410i
\(517\) −31.6230 −1.39078
\(518\) 0 0
\(519\) −18.8618 + 6.15051i −0.827941 + 0.269977i
\(520\) −15.5991 + 15.1915i −0.684064 + 0.666193i
\(521\) −7.91563 13.7103i −0.346790 0.600658i 0.638887 0.769300i \(-0.279395\pi\)
−0.985677 + 0.168642i \(0.946062\pi\)
\(522\) −0.915228 + 2.06733i −0.0400584 + 0.0904845i
\(523\) 10.9800 19.0179i 0.480122 0.831595i −0.519618 0.854398i \(-0.673926\pi\)
0.999740 + 0.0228034i \(0.00725919\pi\)
\(524\) 26.2289 1.14581
\(525\) 0 0
\(526\) −5.64798 −0.246263
\(527\) 0.426145 0.738105i 0.0185632 0.0321524i
\(528\) −8.76445 7.87487i −0.381424 0.342710i
\(529\) 11.2921 + 19.5585i 0.490961 + 0.850370i
\(530\) −7.43863 + 7.24430i −0.323113 + 0.314672i
\(531\) 27.4441 20.0277i 1.19097 0.869126i
\(532\) 0 0
\(533\) −9.60532 −0.416053
\(534\) −0.977680 0.206738i −0.0423083 0.00894641i
\(535\) 10.3306 + 40.7016i 0.446633 + 1.75968i
\(536\) −17.4879 + 10.0966i −0.755361 + 0.436108i
\(537\) −3.74260 + 17.6991i −0.161505 + 0.763771i
\(538\) 11.1221 0.479508
\(539\) 0 0
\(540\) 11.4392 + 14.4210i 0.492263 + 0.620580i
\(541\) −2.34667 + 4.06456i −0.100891 + 0.174749i −0.912052 0.410074i \(-0.865503\pi\)
0.811161 + 0.584823i \(0.198836\pi\)
\(542\) 12.6457 7.30101i 0.543181 0.313605i
\(543\) −15.4111 13.8469i −0.661352 0.594225i
\(544\) −10.7527 6.20806i −0.461017 0.266168i
\(545\) −1.94975 0.550189i −0.0835180 0.0235675i
\(546\) 0 0
\(547\) 14.9485i 0.639151i −0.947561 0.319575i \(-0.896460\pi\)
0.947561 0.319575i \(-0.103540\pi\)
\(548\) 15.7326 27.2497i 0.672065 1.16405i
\(549\) −8.49041 + 19.1782i −0.362362 + 0.818508i
\(550\) 13.0640 + 0.345867i 0.557052 + 0.0147478i
\(551\) −2.61568 + 4.53049i −0.111432 + 0.193005i
\(552\) −0.800202 2.45398i −0.0340589 0.104448i
\(553\) 0 0
\(554\) 8.51867i 0.361924i
\(555\) 7.67530 14.6205i 0.325798 0.620607i
\(556\) −0.313862 + 0.181208i −0.0133107 + 0.00768494i
\(557\) −0.614501 1.06435i −0.0260373 0.0450979i 0.852713 0.522379i \(-0.174956\pi\)
−0.878750 + 0.477282i \(0.841622\pi\)
\(558\) 0.753144 0.0807609i 0.0318831 0.00341888i
\(559\) 27.5732i 1.16622i
\(560\) 0 0
\(561\) 4.73755 + 14.5287i 0.200020 + 0.613401i
\(562\) 18.3554 + 10.5975i 0.774276 + 0.447028i
\(563\) −3.64387 + 2.10379i −0.153571 + 0.0886643i −0.574816 0.818282i \(-0.694926\pi\)
0.421245 + 0.906947i \(0.361593\pi\)
\(564\) 15.9233 + 14.3071i 0.670494 + 0.602440i
\(565\) 14.1443 13.7748i 0.595054 0.579509i
\(566\) −10.1953 −0.428542
\(567\) 0 0
\(568\) 18.8072i 0.789132i
\(569\) 22.3139 + 12.8829i 0.935447 + 0.540081i 0.888530 0.458818i \(-0.151727\pi\)
0.0469169 + 0.998899i \(0.485060\pi\)
\(570\) −5.97334 9.44816i −0.250196 0.395740i
\(571\) −12.3419 21.3768i −0.516492 0.894591i −0.999817 0.0191497i \(-0.993904\pi\)
0.483324 0.875441i \(-0.339429\pi\)
\(572\) 23.4320 + 13.5285i 0.979743 + 0.565655i
\(573\) −23.2972 + 7.59681i −0.973253 + 0.317361i
\(574\) 0 0
\(575\) −2.74845 1.68534i −0.114618 0.0702837i
\(576\) −0.102925 0.959834i −0.00428852 0.0399931i
\(577\) 2.86692 + 4.96565i 0.119351 + 0.206723i 0.919511 0.393065i \(-0.128585\pi\)
−0.800159 + 0.599787i \(0.795252\pi\)
\(578\) −3.95345 6.84757i −0.164442 0.284822i
\(579\) −2.21855 + 10.4917i −0.0921996 + 0.436020i
\(580\) −1.12440 + 3.98463i −0.0466883 + 0.165453i
\(581\) 0 0
\(582\) 1.35022 + 4.14073i 0.0559684 + 0.171639i
\(583\) 25.2804 + 14.5956i 1.04701 + 0.604489i
\(584\) 6.05152 + 10.4815i 0.250414 + 0.433729i
\(585\) −21.7661 18.0307i −0.899919 0.745477i
\(586\) −11.6038 6.69944i −0.479347 0.276751i
\(587\) 31.0435i 1.28130i −0.767832 0.640652i \(-0.778664\pi\)
0.767832 0.640652i \(-0.221336\pi\)
\(588\) 0 0
\(589\) 1.75268 0.0722178
\(590\) −11.6979 + 11.3923i −0.481594 + 0.469012i
\(591\) 15.1359 16.8457i 0.622608 0.692941i
\(592\) 6.19659 3.57760i 0.254678 0.147039i
\(593\) −28.2124 16.2884i −1.15854 0.668885i −0.207588 0.978216i \(-0.566561\pi\)
−0.950954 + 0.309331i \(0.899895\pi\)
\(594\) −7.94818 + 11.0126i −0.326118 + 0.451854i
\(595\) 0 0
\(596\) 15.7766i 0.646236i
\(597\) 6.07449 28.7268i 0.248612 1.17571i
\(598\) 0.875911 + 1.51712i 0.0358187 + 0.0620397i
\(599\) −31.8553 + 18.3917i −1.30157 + 0.751463i −0.980674 0.195650i \(-0.937318\pi\)
−0.320899 + 0.947113i \(0.603985\pi\)
\(600\) −14.5289 13.7663i −0.593138 0.562007i
\(601\) 42.5075i 1.73392i 0.498380 + 0.866959i \(0.333929\pi\)
−0.498380 + 0.866959i \(0.666071\pi\)
\(602\) 0 0
\(603\) −15.4517 21.1736i −0.629242 0.862257i
\(604\) −4.01954 + 6.96205i −0.163553 + 0.283282i
\(605\) −2.98755 11.7706i −0.121461 0.478544i
\(606\) 4.91436 5.46951i 0.199632 0.222184i
\(607\) 8.47607 14.6810i 0.344033 0.595883i −0.641144 0.767420i \(-0.721540\pi\)
0.985178 + 0.171537i \(0.0548734\pi\)
\(608\) 25.5329i 1.03550i
\(609\) 0 0
\(610\) 2.73755 9.70127i 0.110840 0.392793i
\(611\) −28.4666 16.4352i −1.15163 0.664896i
\(612\) 4.18765 9.45913i 0.169276 0.382363i
\(613\) −30.0373 + 17.3421i −1.21320 + 0.700439i −0.963454 0.267873i \(-0.913679\pi\)
−0.249742 + 0.968312i \(0.580346\pi\)
\(614\) −4.18664 + 7.25148i −0.168959 + 0.292646i
\(615\) −0.354643 8.82216i −0.0143006 0.355744i
\(616\) 0 0
\(617\) 45.7116 1.84028 0.920140 0.391590i \(-0.128075\pi\)
0.920140 + 0.391590i \(0.128075\pi\)
\(618\) −10.7240 2.26766i −0.431381 0.0912188i
\(619\) 34.2356 19.7659i 1.37604 0.794459i 0.384363 0.923182i \(-0.374421\pi\)
0.991681 + 0.128723i \(0.0410877\pi\)
\(620\) 1.34448 0.341249i 0.0539958 0.0137049i
\(621\) 3.05653 1.37243i 0.122654 0.0550736i
\(622\) 0.295096 0.0118323
\(623\) 0 0
\(624\) −3.79689 11.6439i −0.151997 0.466130i
\(625\) −24.9650 1.32281i −0.998599 0.0529124i
\(626\) −8.94408 15.4916i −0.357477 0.619169i
\(627\) −21.0032 + 23.3758i −0.838787 + 0.933540i
\(628\) 13.3499 23.1228i 0.532720 0.922698i
\(629\) −9.28004 −0.370020
\(630\) 0 0
\(631\) −21.1685 −0.842703 −0.421351 0.906897i \(-0.638444\pi\)
−0.421351 + 0.906897i \(0.638444\pi\)
\(632\) 4.33646 7.51097i 0.172495 0.298770i
\(633\) 21.3359 23.7461i 0.848024 0.943821i
\(634\) 1.45835 + 2.52594i 0.0579187 + 0.100318i
\(635\) −24.6881 25.3504i −0.979718 1.00600i
\(636\) −6.12612 18.7870i −0.242916 0.744952i
\(637\) 0 0
\(638\) −3.05480 −0.120941
\(639\) 24.2738 2.60292i 0.960257 0.102970i
\(640\) −6.16186 24.2771i −0.243569 0.959635i
\(641\) 30.6083 17.6717i 1.20896 0.697991i 0.246424 0.969162i \(-0.420744\pi\)
0.962531 + 0.271171i \(0.0874109\pi\)
\(642\) 20.5199 + 4.33908i 0.809854 + 0.171250i
\(643\) −26.0538 −1.02746 −0.513731 0.857951i \(-0.671737\pi\)
−0.513731 + 0.857951i \(0.671737\pi\)
\(644\) 0 0
\(645\) −25.3251 + 1.01805i −0.997174 + 0.0400855i
\(646\) −3.14099 + 5.44036i −0.123581 + 0.214048i
\(647\) −35.3707 + 20.4213i −1.39057 + 0.802844i −0.993378 0.114894i \(-0.963347\pi\)
−0.397188 + 0.917737i \(0.630014\pi\)
\(648\) 20.3273 4.41016i 0.798530 0.173248i
\(649\) 39.7555 + 22.9528i 1.56054 + 0.900977i
\(650\) 11.5803 + 7.10102i 0.454217 + 0.278525i
\(651\) 0 0
\(652\) 7.61525i 0.298236i
\(653\) −12.0041 + 20.7918i −0.469758 + 0.813645i −0.999402 0.0345747i \(-0.988992\pi\)
0.529644 + 0.848220i \(0.322326\pi\)
\(654\) −0.676274 + 0.752669i −0.0264444 + 0.0294317i
\(655\) −9.10766 35.8832i −0.355866 1.40207i
\(656\) 1.91293 3.31329i 0.0746874 0.129362i
\(657\) −12.6906 + 9.26115i −0.495109 + 0.361312i
\(658\) 0 0
\(659\) 38.7398i 1.50909i −0.656248 0.754545i \(-0.727858\pi\)
0.656248 0.754545i \(-0.272142\pi\)
\(660\) −11.5603 + 22.0210i −0.449985 + 0.857167i
\(661\) −44.0826 + 25.4511i −1.71461 + 0.989933i −0.786539 + 0.617541i \(0.788129\pi\)
−0.928075 + 0.372392i \(0.878538\pi\)
\(662\) 7.38188 + 12.7858i 0.286905 + 0.496934i
\(663\) −3.28620 + 15.5407i −0.127625 + 0.603551i
\(664\) 12.1903i 0.473076i
\(665\) 0 0
\(666\) −4.86179 6.66217i −0.188391 0.258154i
\(667\) 0.652654 + 0.376810i 0.0252709 + 0.0145901i
\(668\) −6.10653 + 3.52560i −0.236269 + 0.136410i
\(669\) −0.726307 + 0.808354i −0.0280807 + 0.0312528i
\(670\) 8.78934 + 9.02512i 0.339562 + 0.348671i
\(671\) −28.3389 −1.09401
\(672\) 0 0
\(673\) 3.33192i 0.128436i −0.997936 0.0642181i \(-0.979545\pi\)
0.997936 0.0642181i \(-0.0204553\pi\)
\(674\) −17.4570 10.0788i −0.672420 0.388222i
\(675\) 15.7569 20.6572i 0.606484 0.795095i
\(676\) 3.76466 + 6.52057i 0.144794 + 0.250791i
\(677\) 28.0352 + 16.1861i 1.07748 + 0.622083i 0.930215 0.367014i \(-0.119620\pi\)
0.147264 + 0.989097i \(0.452953\pi\)
\(678\) −3.05713 9.37531i −0.117408 0.360057i
\(679\) 0 0
\(680\) −3.05480 + 10.8255i −0.117146 + 0.415140i
\(681\) 1.94552 9.20055i 0.0745526 0.352566i
\(682\) 0.511729 + 0.886341i 0.0195951 + 0.0339398i
\(683\) −10.8868 18.8566i −0.416573 0.721526i 0.579019 0.815314i \(-0.303436\pi\)
−0.995592 + 0.0937881i \(0.970102\pi\)
\(684\) 21.1518 2.26814i 0.808758 0.0867245i
\(685\) −42.7427 12.0614i −1.63312 0.460841i
\(686\) 0 0
\(687\) −23.6698 + 7.71833i −0.903060 + 0.294473i
\(688\) −9.51121 5.49130i −0.362611 0.209354i
\(689\) 15.1713 + 26.2775i 0.577982 + 1.00109i
\(690\) −1.36108 + 0.860509i −0.0518156 + 0.0327590i
\(691\) −5.15554 2.97655i −0.196126 0.113233i 0.398721 0.917072i \(-0.369454\pi\)
−0.594847 + 0.803839i \(0.702787\pi\)
\(692\) 18.1460i 0.689809i
\(693\) 0 0
\(694\) 1.79689 0.0682088
\(695\) 0.356892 + 0.366466i 0.0135377 + 0.0139008i
\(696\) 3.48011 + 3.12688i 0.131913 + 0.118524i
\(697\) −4.29722 + 2.48100i −0.162769 + 0.0939747i
\(698\) 9.24939 + 5.34014i 0.350095 + 0.202127i
\(699\) 4.52688 + 13.8826i 0.171222 + 0.525088i
\(700\) 0 0
\(701\) 19.3393i 0.730434i −0.930922 0.365217i \(-0.880995\pi\)
0.930922 0.365217i \(-0.119005\pi\)
\(702\) −12.8783 + 5.78257i −0.486062 + 0.218249i
\(703\) −9.54188 16.5270i −0.359879 0.623329i
\(704\) 1.12958 0.652166i 0.0425728 0.0245794i
\(705\) 14.0441 26.7524i 0.528932 1.00755i
\(706\) 2.11301i 0.0795242i
\(707\) 0 0
\(708\) −9.63383 29.5441i −0.362061 1.11034i
\(709\) 16.9012 29.2738i 0.634739 1.09940i −0.351831 0.936063i \(-0.614441\pi\)
0.986570 0.163337i \(-0.0522257\pi\)
\(710\) −11.3725 + 2.88650i −0.426803 + 0.108329i
\(711\) 10.2943 + 4.55741i 0.386068 + 0.170916i
\(712\) −1.03395 + 1.79086i −0.0387490 + 0.0671152i
\(713\) 0.252487i 0.00945573i
\(714\) 0 0
\(715\) 10.3716 36.7545i 0.387875 1.37454i
\(716\) 14.3297 + 8.27324i 0.535525 + 0.309185i
\(717\) −3.50250 3.14700i −0.130803 0.117527i
\(718\) 9.49685 5.48301i 0.354419 0.204624i
\(719\) 13.7118 23.7495i 0.511363 0.885707i −0.488550 0.872536i \(-0.662474\pi\)
0.999913 0.0131713i \(-0.00419267\pi\)
\(720\) 10.5544 3.91722i 0.393338 0.145986i
\(721\) 0 0
\(722\) −0.667157 −0.0248290
\(723\) −0.548060 + 2.59182i −0.0203826 + 0.0963909i
\(724\) −16.4110 + 9.47490i −0.609910 + 0.352132i
\(725\) 5.84173 + 0.154658i 0.216956 + 0.00574387i
\(726\) −5.93420 1.25483i −0.220239 0.0465712i
\(727\) −6.14612 −0.227947 −0.113973 0.993484i \(-0.536358\pi\)
−0.113973 + 0.993484i \(0.536358\pi\)
\(728\) 0 0
\(729\) 8.50535 + 25.6254i 0.315013 + 0.949087i
\(730\) 5.40930 5.26799i 0.200207 0.194977i
\(731\) 7.12202 + 12.3357i 0.263417 + 0.456252i
\(732\) 14.2697 + 12.8213i 0.527422 + 0.473889i
\(733\) 8.41748 14.5795i 0.310907 0.538506i −0.667652 0.744473i \(-0.732701\pi\)
0.978559 + 0.205967i \(0.0660340\pi\)
\(734\) −11.0370 −0.407384
\(735\) 0 0
\(736\) −3.67822 −0.135581
\(737\) 17.7085 30.6721i 0.652302 1.12982i
\(738\) −4.03242 1.78520i −0.148436 0.0657139i
\(739\) 19.3419 + 33.5012i 0.711503 + 1.23236i 0.964293 + 0.264838i \(0.0853186\pi\)
−0.252790 + 0.967521i \(0.581348\pi\)
\(740\) −10.5375 10.8201i −0.387364 0.397756i
\(741\) −31.0557 + 10.1267i −1.14086 + 0.372015i
\(742\) 0 0
\(743\) 39.3563 1.44384 0.721920 0.691976i \(-0.243260\pi\)
0.721920 + 0.691976i \(0.243260\pi\)
\(744\) 0.324280 1.53355i 0.0118887 0.0562225i
\(745\) −21.5837 + 5.47824i −0.790765 + 0.200707i
\(746\) 16.1457 9.32174i 0.591137 0.341293i
\(747\) 15.7336 1.68714i 0.575664 0.0617294i
\(748\) 13.9773 0.511062
\(749\) 0 0
\(750\) −6.09448 + 10.8983i −0.222539 + 0.397949i
\(751\) −16.1416 + 27.9580i −0.589014 + 1.02020i 0.405347 + 0.914163i \(0.367151\pi\)
−0.994362 + 0.106040i \(0.966183\pi\)
\(752\) 11.3384 6.54623i 0.413469 0.238717i
\(753\) 10.1990 11.3512i 0.371673 0.413659i
\(754\) −2.74989 1.58765i −0.100145 0.0578187i
\(755\) 10.9204 + 3.08156i 0.397433 + 0.112150i
\(756\) 0 0
\(757\) 40.0667i 1.45625i −0.685446 0.728124i \(-0.740393\pi\)
0.685446 0.728124i \(-0.259607\pi\)
\(758\) 0.180403 0.312467i 0.00655252 0.0113493i
\(759\) 3.36748 + 3.02568i 0.122232 + 0.109825i
\(760\) −22.4204 + 5.69061i −0.813274 + 0.206420i
\(761\) −6.58977 + 11.4138i −0.238879 + 0.413750i −0.960393 0.278649i \(-0.910113\pi\)
0.721514 + 0.692400i \(0.243447\pi\)
\(762\) −16.8031 + 5.47920i −0.608712 + 0.198491i
\(763\) 0 0
\(764\) 22.4131i 0.810877i
\(765\) −14.3949 2.44448i −0.520450 0.0883802i
\(766\) 2.12110 1.22462i 0.0766384 0.0442472i
\(767\) 23.8582 + 41.3236i 0.861469 + 1.49211i
\(768\) −13.3299 2.81871i −0.481002 0.101711i
\(769\) 12.7709i 0.460530i −0.973128 0.230265i \(-0.926041\pi\)
0.973128 0.230265i \(-0.0739593\pi\)
\(770\) 0 0
\(771\) 33.1047 10.7949i 1.19224 0.388768i
\(772\) 8.49437 + 4.90423i 0.305719 + 0.176507i
\(773\) 15.7518 9.09428i 0.566551 0.327099i −0.189219 0.981935i \(-0.560596\pi\)
0.755771 + 0.654836i \(0.227262\pi\)
\(774\) −5.12462 + 11.5756i −0.184201 + 0.416075i
\(775\) −0.933711 1.72087i −0.0335399 0.0618154i
\(776\) 9.01267 0.323536
\(777\) 0 0
\(778\) 5.87388i 0.210589i
\(779\) −8.83694 5.10201i −0.316616 0.182798i
\(780\) −21.8512 + 13.8149i −0.782400 + 0.494651i
\(781\) 16.4930 + 28.5667i 0.590167 + 1.02220i
\(782\) 0.783728 + 0.452486i 0.0280261 + 0.0161809i
\(783\) −3.55412 + 4.92442i −0.127014 + 0.175985i
\(784\) 0 0
\(785\) −36.2693 10.2347i −1.29451 0.365291i
\(786\) −18.0906 3.82540i −0.645272 0.136447i
\(787\) −0.619297 1.07265i −0.0220756 0.0382360i 0.854777 0.518996i \(-0.173694\pi\)
−0.876852 + 0.480760i \(0.840361\pi\)
\(788\) −10.3569 17.9388i −0.368951 0.639042i
\(789\) −14.8431 3.13869i −0.528430 0.111740i
\(790\) −5.20736 1.46944i −0.185270 0.0522803i
\(791\) 0 0
\(792\) 16.5672 + 22.7022i 0.588690 + 0.806689i
\(793\) −25.5102 14.7283i −0.905895 0.523019i
\(794\) −7.81449 13.5351i −0.277326 0.480343i
\(795\) −23.5749 + 14.9046i −0.836114 + 0.528610i
\(796\) −23.2580 13.4280i −0.824359 0.475944i
\(797\) 51.4416i 1.82216i −0.412235 0.911078i \(-0.635252\pi\)
0.412235 0.911078i \(-0.364748\pi\)
\(798\) 0 0
\(799\) −16.9805 −0.600725
\(800\) −25.0695 + 13.6023i −0.886340 + 0.480912i
\(801\) −2.45450 1.08663i −0.0867254 0.0383942i
\(802\) 16.8617 9.73510i 0.595407 0.343758i
\(803\) −18.3836 10.6138i −0.648745 0.374553i
\(804\) −22.7938 + 7.43268i −0.803876 + 0.262130i
\(805\) 0 0
\(806\) 1.06383i 0.0374718i
\(807\) 29.2294 + 6.18077i 1.02892 + 0.217574i
\(808\) −7.60797 13.1774i −0.267647 0.463579i
\(809\) −2.44518 + 1.41172i −0.0859679 + 0.0496336i −0.542368 0.840141i \(-0.682472\pi\)
0.456400 + 0.889775i \(0.349139\pi\)
\(810\) −5.78658 11.6148i −0.203320 0.408103i
\(811\) 0.162805i 0.00571687i 0.999996 + 0.00285843i \(0.000909869\pi\)
−0.999996 + 0.00285843i \(0.999090\pi\)
\(812\) 0 0
\(813\) 37.2909 12.1599i 1.30785 0.426467i
\(814\) 5.57189 9.65080i 0.195295 0.338260i
\(815\) 10.4183 2.64430i 0.364936 0.0926259i
\(816\) −4.70621 4.22853i −0.164750 0.148028i
\(817\) −14.6459 + 25.3675i −0.512396 + 0.887496i
\(818\) 15.9051i 0.556108i
\(819\) 0 0
\(820\) −7.77222 2.19320i −0.271418 0.0765900i
\(821\) 43.3765 + 25.0434i 1.51385 + 0.874022i 0.999868 + 0.0162217i \(0.00516375\pi\)
0.513983 + 0.857801i \(0.328170\pi\)
\(822\) −14.8254 + 16.5002i −0.517096 + 0.575509i
\(823\) −33.1050 + 19.1132i −1.15397 + 0.666243i −0.949851 0.312704i \(-0.898765\pi\)
−0.204116 + 0.978947i \(0.565432\pi\)
\(824\) −11.3412 + 19.6435i −0.395090 + 0.684315i
\(825\) 34.1407 + 8.16890i 1.18863 + 0.284405i
\(826\) 0 0
\(827\) −7.13112 −0.247973 −0.123987 0.992284i \(-0.539568\pi\)
−0.123987 + 0.992284i \(0.539568\pi\)
\(828\) −0.326744 3.04708i −0.0113551 0.105894i
\(829\) −0.876338 + 0.505954i −0.0304365 + 0.0175725i −0.515141 0.857105i \(-0.672260\pi\)
0.484705 + 0.874678i \(0.338927\pi\)
\(830\) −7.37136 + 1.87096i −0.255864 + 0.0649418i
\(831\) −4.73399 + 22.3875i −0.164220 + 0.776612i
\(832\) 1.35578 0.0470032
\(833\) 0 0
\(834\) 0.242906 0.0792075i 0.00841115 0.00274273i
\(835\) 6.94372 + 7.12999i 0.240297 + 0.246743i
\(836\) 14.3717 + 24.8925i 0.497056 + 0.860927i
\(837\) 2.02418 + 0.206294i 0.0699658 + 0.00713056i
\(838\) 12.7225 22.0360i 0.439492 0.761222i
\(839\) 29.5215 1.01920 0.509598 0.860412i \(-0.329794\pi\)
0.509598 + 0.860412i \(0.329794\pi\)
\(840\) 0 0
\(841\) 27.6340 0.952897
\(842\) 9.97394 17.2754i 0.343725 0.595348i
\(843\) 42.3496 + 38.0512i 1.45860 + 1.31055i
\(844\) −14.5993 25.2868i −0.502530 0.870408i
\(845\) 7.61343 7.41454i 0.261910 0.255068i
\(846\) −8.89603 12.1903i −0.305852 0.419112i
\(847\) 0 0
\(848\) −12.0857 −0.415024
\(849\) −26.7938 5.66576i −0.919562 0.194448i
\(850\) 7.01494 + 0.185719i 0.240610 + 0.00637010i
\(851\) −2.38085 + 1.37459i −0.0816146 + 0.0471202i
\(852\) 4.61957 21.8463i 0.158264 0.748443i
\(853\) −22.0904 −0.756362 −0.378181 0.925732i \(-0.623450\pi\)
−0.378181 + 0.925732i \(0.623450\pi\)
\(854\) 0 0
\(855\) −10.4477 28.1497i −0.357303 0.962700i
\(856\) 21.7009 37.5871i 0.741722 1.28470i
\(857\) 12.4112 7.16559i 0.423957 0.244772i −0.272812 0.962067i \(-0.587954\pi\)
0.696769 + 0.717296i \(0.254620\pi\)
\(858\) −14.1885 12.7484i −0.484387 0.435223i
\(859\) −23.7901 13.7352i −0.811709 0.468640i 0.0358402 0.999358i \(-0.488589\pi\)
−0.847549 + 0.530717i \(0.821923\pi\)
\(860\) −6.29585 + 22.3111i −0.214687 + 0.760802i
\(861\) 0 0
\(862\) 19.8231i 0.675176i
\(863\) −8.11130 + 14.0492i −0.276112 + 0.478240i −0.970415 0.241443i \(-0.922379\pi\)
0.694303 + 0.719683i \(0.255713\pi\)
\(864\) 3.00528 29.4881i 0.102242 1.00321i
\(865\) 24.8252 6.30099i 0.844082 0.214240i
\(866\) 0.953847 1.65211i 0.0324131 0.0561411i
\(867\) −6.58451 20.1927i −0.223622 0.685782i
\(868\) 0 0
\(869\) 15.2115i 0.516014i
\(870\) 1.35667 2.58430i 0.0459955 0.0876159i
\(871\) 31.8819 18.4070i 1.08028 0.623698i
\(872\) 1.04695 + 1.81336i 0.0354541 + 0.0614083i
\(873\) 1.24736 + 11.6324i 0.0422167 + 0.393696i
\(874\) 1.86101i 0.0629496i
\(875\) 0 0
\(876\) 4.45486 + 13.6617i 0.150516 + 0.461587i
\(877\) 38.5317 + 22.2463i 1.30112 + 0.751204i 0.980597 0.196036i \(-0.0628068\pi\)
0.320527 + 0.947240i \(0.396140\pi\)
\(878\) 9.72189 5.61294i 0.328098 0.189427i
\(879\) −26.7722 24.0549i −0.903004 0.811351i
\(880\) 10.6127 + 10.8974i 0.357754 + 0.367351i
\(881\) 0.841670 0.0283566 0.0141783 0.999899i \(-0.495487\pi\)
0.0141783 + 0.999899i \(0.495487\pi\)
\(882\) 0 0
\(883\) 51.7706i 1.74222i 0.491088 + 0.871110i \(0.336600\pi\)
−0.491088 + 0.871110i \(0.663400\pi\)
\(884\) 12.5822 + 7.26434i 0.423185 + 0.244326i
\(885\) −37.0734 + 23.4387i −1.24621 + 0.787882i
\(886\) −10.2505 17.7543i −0.344371 0.596468i
\(887\) 48.4743 + 27.9867i 1.62761 + 0.939700i 0.984804 + 0.173669i \(0.0555623\pi\)
0.642804 + 0.766031i \(0.277771\pi\)
\(888\) −16.2262 + 5.29107i −0.544514 + 0.177557i
\(889\) 0 0
\(890\) 1.24160 + 0.350362i 0.0416186 + 0.0117441i
\(891\) −27.0081 + 24.5248i −0.904806 + 0.821611i
\(892\) 0.496986 + 0.860804i 0.0166403 + 0.0288219i
\(893\) −17.4596 30.2409i −0.584262 1.01197i
\(894\) −2.30097 + 10.8815i −0.0769560 + 0.363931i
\(895\) 6.34264 22.4769i 0.212011 0.751320i
\(896\) 0 0
\(897\) 1.45884 + 4.47383i 0.0487092 + 0.149377i
\(898\) 1.67224 + 0.965470i 0.0558035 + 0.0322182i
\(899\) 0.228825 + 0.396337i 0.00763175 + 0.0132186i
\(900\) −13.4953 19.5596i −0.449842 0.651985i
\(901\) 13.5747 + 7.83734i 0.452238 + 0.261100i
\(902\) 5.95854i 0.198398i
\(903\) 0 0
\(904\) −20.4062 −0.678701
\(905\) 18.6609 + 19.1615i 0.620310 + 0.636950i
\(906\) 3.78776 4.21564i 0.125840 0.140055i
\(907\) −31.4075 + 18.1332i −1.04287 + 0.602102i −0.920645 0.390401i \(-0.872336\pi\)
−0.122226 + 0.992502i \(0.539003\pi\)
\(908\) −7.44902 4.30070i −0.247205 0.142724i
\(909\) 15.9547 11.6431i 0.529183 0.386178i
\(910\) 0 0
\(911\) 5.35784i 0.177513i −0.996053 0.0887565i \(-0.971711\pi\)
0.996053 0.0887565i \(-0.0282893\pi\)
\(912\) 2.69169 12.7292i 0.0891308 0.421507i
\(913\) 10.6903 + 18.5162i 0.353798 + 0.612797i
\(914\) 4.91690 2.83877i 0.162637 0.0938983i
\(915\) 12.5856 23.9741i 0.416067 0.792559i
\(916\) 22.7716i 0.752396i
\(917\) 0 0
\(918\) −4.26790 + 5.91341i −0.140862 + 0.195172i
\(919\) −10.0571 + 17.4194i −0.331754 + 0.574615i −0.982856 0.184376i \(-0.940974\pi\)
0.651102 + 0.758990i \(0.274307\pi\)
\(920\) 0.819779 + 3.22984i 0.0270273 + 0.106485i
\(921\) −15.0325 + 16.7306i −0.495337 + 0.551292i
\(922\) −10.3075 + 17.8532i −0.339461 + 0.587963i
\(923\) 34.2872i 1.12858i
\(924\) 0 0
\(925\) −11.1438 + 18.1732i −0.366405 + 0.597532i
\(926\) 3.87818 + 2.23907i 0.127445 + 0.0735804i
\(927\) −26.9229 11.9190i −0.884264 0.391473i
\(928\) 5.77382 3.33351i 0.189535 0.109428i
\(929\) −3.39903 + 5.88728i −0.111518 + 0.193156i −0.916383 0.400303i \(-0.868905\pi\)
0.804864 + 0.593459i \(0.202238\pi\)
\(930\) −0.977090 + 0.0392781i −0.0320401 + 0.00128798i
\(931\) 0 0
\(932\) 13.3558 0.437483
\(933\) 0.775525 + 0.163991i 0.0253896 + 0.00536881i
\(934\) −13.6662 + 7.89021i −0.447173 + 0.258176i
\(935\) −4.85346 19.1221i −0.158725 0.625360i
\(936\) 3.11471 + 29.0466i 0.101808 + 0.949417i
\(937\) 44.1327 1.44175 0.720877 0.693063i \(-0.243739\pi\)
0.720877 + 0.693063i \(0.243739\pi\)
\(938\) 0 0
\(939\) −14.8965 45.6830i −0.486128 1.49081i
\(940\) −19.2812 19.7985i −0.628885 0.645755i
\(941\) 4.53288 + 7.85118i 0.147768 + 0.255941i 0.930402 0.366540i \(-0.119458\pi\)
−0.782634 + 0.622482i \(0.786125\pi\)
\(942\) −12.5801 + 14.0012i −0.409882 + 0.456184i
\(943\) −0.734986 + 1.27303i −0.0239344 + 0.0414557i
\(944\) −19.0057 −0.618584
\(945\) 0 0
\(946\) −17.1047 −0.556122
\(947\) 17.7437 30.7330i 0.576593 0.998689i −0.419273 0.907860i \(-0.637715\pi\)
0.995867 0.0908285i \(-0.0289515\pi\)
\(948\) 6.88211 7.65955i 0.223521 0.248771i
\(949\) −11.0325 19.1088i −0.358129 0.620297i
\(950\) 6.88212 + 12.6840i 0.223285 + 0.411524i
\(951\) 2.42891 + 7.44873i 0.0787627 + 0.241542i
\(952\) 0 0
\(953\) −10.8726 −0.352198 −0.176099 0.984373i \(-0.556348\pi\)
−0.176099 + 0.984373i \(0.556348\pi\)
\(954\) 1.48529 + 13.8513i 0.0480882 + 0.448451i
\(955\) 30.6629 7.78267i 0.992227 0.251841i
\(956\) −3.72976 + 2.15338i −0.120629 + 0.0696452i
\(957\) −8.02816 1.69761i −0.259514 0.0548761i
\(958\) 15.6625 0.506031
\(959\) 0 0
\(960\) 0.0500574 + 1.24524i 0.00161560 + 0.0401899i
\(961\) −15.4233 + 26.7140i −0.497527 + 0.861742i
\(962\) 10.0315 5.79167i 0.323428 0.186731i
\(963\) 51.5158 + 22.8066i 1.66007 + 0.734932i
\(964\) 2.09841 + 1.21152i 0.0675853 + 0.0390204i
\(965\) 3.75981 13.3239i 0.121032 0.428912i
\(966\) 0 0
\(967\) 21.3855i 0.687711i 0.939023 + 0.343855i \(0.111733\pi\)
−0.939023 + 0.343855i \(0.888267\pi\)
\(968\) −6.27575 + 10.8699i −0.201710 + 0.349373i
\(969\) −11.2780 + 12.5520i −0.362301 + 0.403228i
\(970\) −1.38325 5.44987i −0.0444136 0.174985i
\(971\) 4.43174 7.67600i 0.142221 0.246335i −0.786112 0.618085i \(-0.787909\pi\)
0.928333 + 0.371750i \(0.121242\pi\)
\(972\) 24.6953 0.129881i 0.792102 0.00416593i
\(973\) 0 0
\(974\) 6.29102i 0.201577i
\(975\) 26.4874 + 25.0972i 0.848275 + 0.803754i
\(976\) 10.1609 5.86639i 0.325242 0.187779i
\(977\) 0.365536 + 0.633128i 0.0116945 + 0.0202555i 0.871813 0.489838i \(-0.162944\pi\)
−0.860119 + 0.510094i \(0.829611\pi\)
\(978\) 1.11066 5.25241i 0.0355150 0.167953i
\(979\) 3.62691i 0.115916i
\(980\) 0 0
\(981\) −2.19555 + 1.60223i −0.0700986 + 0.0511553i
\(982\) −13.2171 7.63091i −0.421775 0.243512i
\(983\) 3.23213 1.86607i 0.103089 0.0595184i −0.447569 0.894249i \(-0.647710\pi\)
0.550658 + 0.834731i \(0.314377\pi\)
\(984\) −6.09913 + 6.78812i −0.194433 + 0.216397i
\(985\) −20.9453 + 20.3981i −0.667373 + 0.649939i
\(986\) −1.64032 −0.0522385
\(987\) 0 0
\(988\) 29.8772i 0.950520i
\(989\) 3.65439 + 2.10987i 0.116203 + 0.0670898i
\(990\) 11.1851 13.5023i 0.355486 0.429133i
\(991\) 2.74255 + 4.75024i 0.0871200 + 0.150896i 0.906293 0.422651i \(-0.138900\pi\)
−0.819173 + 0.573547i \(0.805567\pi\)
\(992\) −1.93442 1.11684i −0.0614178 0.0354596i
\(993\) 12.2946 + 37.7039i 0.390158 + 1.19650i
\(994\) 0 0
\(995\) −10.2945 + 36.4815i −0.326359 + 1.15654i
\(996\) 2.99428 14.1602i 0.0948774 0.448683i
\(997\) −2.53609 4.39264i −0.0803189 0.139116i 0.823068 0.567943i \(-0.192261\pi\)
−0.903387 + 0.428826i \(0.858927\pi\)
\(998\) 3.69818 + 6.40544i 0.117064 + 0.202761i
\(999\) −9.07472 20.2103i −0.287111 0.639425i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.p.f.509.6 24
3.2 odd 2 inner 735.2.p.f.509.8 24
5.4 even 2 inner 735.2.p.f.509.7 24
7.2 even 3 735.2.g.b.734.13 24
7.3 odd 6 inner 735.2.p.f.374.5 24
7.4 even 3 105.2.p.a.59.6 yes 24
7.5 odd 6 735.2.g.b.734.16 24
7.6 odd 2 105.2.p.a.89.5 yes 24
15.14 odd 2 inner 735.2.p.f.509.5 24
21.2 odd 6 735.2.g.b.734.10 24
21.5 even 6 735.2.g.b.734.11 24
21.11 odd 6 105.2.p.a.59.8 yes 24
21.17 even 6 inner 735.2.p.f.374.7 24
21.20 even 2 105.2.p.a.89.7 yes 24
35.4 even 6 105.2.p.a.59.7 yes 24
35.9 even 6 735.2.g.b.734.12 24
35.13 even 4 525.2.t.j.26.8 24
35.18 odd 12 525.2.t.j.101.6 24
35.19 odd 6 735.2.g.b.734.9 24
35.24 odd 6 inner 735.2.p.f.374.8 24
35.27 even 4 525.2.t.j.26.5 24
35.32 odd 12 525.2.t.j.101.7 24
35.34 odd 2 105.2.p.a.89.8 yes 24
105.32 even 12 525.2.t.j.101.5 24
105.44 odd 6 735.2.g.b.734.15 24
105.53 even 12 525.2.t.j.101.8 24
105.59 even 6 inner 735.2.p.f.374.6 24
105.62 odd 4 525.2.t.j.26.7 24
105.74 odd 6 105.2.p.a.59.5 24
105.83 odd 4 525.2.t.j.26.6 24
105.89 even 6 735.2.g.b.734.14 24
105.104 even 2 105.2.p.a.89.6 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.p.a.59.5 24 105.74 odd 6
105.2.p.a.59.6 yes 24 7.4 even 3
105.2.p.a.59.7 yes 24 35.4 even 6
105.2.p.a.59.8 yes 24 21.11 odd 6
105.2.p.a.89.5 yes 24 7.6 odd 2
105.2.p.a.89.6 yes 24 105.104 even 2
105.2.p.a.89.7 yes 24 21.20 even 2
105.2.p.a.89.8 yes 24 35.34 odd 2
525.2.t.j.26.5 24 35.27 even 4
525.2.t.j.26.6 24 105.83 odd 4
525.2.t.j.26.7 24 105.62 odd 4
525.2.t.j.26.8 24 35.13 even 4
525.2.t.j.101.5 24 105.32 even 12
525.2.t.j.101.6 24 35.18 odd 12
525.2.t.j.101.7 24 35.32 odd 12
525.2.t.j.101.8 24 105.53 even 12
735.2.g.b.734.9 24 35.19 odd 6
735.2.g.b.734.10 24 21.2 odd 6
735.2.g.b.734.11 24 21.5 even 6
735.2.g.b.734.12 24 35.9 even 6
735.2.g.b.734.13 24 7.2 even 3
735.2.g.b.734.14 24 105.89 even 6
735.2.g.b.734.15 24 105.44 odd 6
735.2.g.b.734.16 24 7.5 odd 6
735.2.p.f.374.5 24 7.3 odd 6 inner
735.2.p.f.374.6 24 105.59 even 6 inner
735.2.p.f.374.7 24 21.17 even 6 inner
735.2.p.f.374.8 24 35.24 odd 6 inner
735.2.p.f.509.5 24 15.14 odd 2 inner
735.2.p.f.509.6 24 1.1 even 1 trivial
735.2.p.f.509.7 24 5.4 even 2 inner
735.2.p.f.509.8 24 3.2 odd 2 inner