Properties

Label 735.2.p.a.509.4
Level $735$
Weight $2$
Character 735.509
Analytic conductor $5.869$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(374,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.374"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 509.4
Root \(0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 735.509
Dual form 735.2.p.a.374.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 1.50000i) q^{2} +(0.724745 - 1.57313i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.358719 + 2.20711i) q^{5} +(-1.73205 - 2.44949i) q^{6} +1.73205 q^{8} +(-1.94949 - 2.28024i) q^{9} +(3.62132 + 1.37333i) q^{10} +(2.44949 - 1.41421i) q^{11} +(-1.72474 + 0.158919i) q^{12} +4.00000 q^{13} +(3.73205 + 1.03528i) q^{15} +(2.50000 - 4.33013i) q^{16} +(-2.44949 + 1.41421i) q^{17} +(-5.10867 + 0.949490i) q^{18} +(1.73205 - 1.41421i) q^{20} -4.89898i q^{22} +(1.73205 - 3.00000i) q^{23} +(1.25529 - 2.72474i) q^{24} +(-4.74264 + 1.58346i) q^{25} +(3.46410 - 6.00000i) q^{26} +(-5.00000 + 1.41421i) q^{27} -5.65685i q^{29} +(4.78497 - 4.70150i) q^{30} +(-8.48528 + 4.89898i) q^{31} +(-2.59808 - 4.50000i) q^{32} +(-0.449490 - 4.87832i) q^{33} +4.89898i q^{34} +(-1.00000 + 2.82843i) q^{36} +(2.89898 - 6.29253i) q^{39} +(0.621320 + 3.82282i) q^{40} +3.46410 q^{41} +4.89898i q^{43} +(-2.44949 - 1.41421i) q^{44} +(4.33341 - 5.12070i) q^{45} +(-3.00000 - 5.19615i) q^{46} +(2.44949 + 1.41421i) q^{47} +(-5.00000 - 7.07107i) q^{48} +(-1.73205 + 8.48528i) q^{50} +(0.449490 + 4.87832i) q^{51} +(-2.00000 - 3.46410i) q^{52} +(-2.20881 + 8.72474i) q^{54} +(4.00000 + 4.89898i) q^{55} +(-8.48528 - 4.89898i) q^{58} +(3.46410 + 6.00000i) q^{59} +(-0.969450 - 3.74969i) q^{60} +(-8.48528 - 4.89898i) q^{61} +16.9706i q^{62} +1.00000 q^{64} +(1.43488 + 8.82843i) q^{65} +(-7.70674 - 3.55051i) q^{66} +(-4.24264 + 2.44949i) q^{67} +(2.44949 + 1.41421i) q^{68} +(-3.46410 - 4.89898i) q^{69} +2.82843i q^{71} +(-3.37662 - 3.94949i) q^{72} +(4.00000 + 6.92820i) q^{73} +(-0.946206 + 8.60841i) q^{75} +(-6.92820 - 9.79796i) q^{78} +(-4.00000 + 6.92820i) q^{79} +(10.4539 + 3.96447i) q^{80} +(-1.39898 + 8.89060i) q^{81} +(3.00000 - 5.19615i) q^{82} -2.82843i q^{83} +(-4.00000 - 4.89898i) q^{85} +(7.34847 + 4.24264i) q^{86} +(-8.89898 - 4.09978i) q^{87} +(4.24264 - 2.44949i) q^{88} +(5.19615 - 9.00000i) q^{89} +(-3.92820 - 10.9348i) q^{90} -3.46410 q^{92} +(1.55708 + 16.8990i) q^{93} +(4.24264 - 2.44949i) q^{94} +(-8.96204 + 0.825765i) q^{96} -8.00000 q^{97} +(-8.00000 - 2.82843i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} - 4 q^{4} + 4 q^{9} + 12 q^{10} - 4 q^{12} + 32 q^{13} + 16 q^{15} + 20 q^{16} - 4 q^{25} - 40 q^{27} + 12 q^{30} + 16 q^{33} - 8 q^{36} - 16 q^{39} - 12 q^{40} - 16 q^{45} - 24 q^{46} - 40 q^{48}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 1.50000i 0.612372 1.06066i −0.378467 0.925615i \(-0.623549\pi\)
0.990839 0.135045i \(-0.0431180\pi\)
\(3\) 0.724745 1.57313i 0.418432 0.908248i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0.358719 + 2.20711i 0.160424 + 0.987048i
\(6\) −1.73205 2.44949i −0.707107 1.00000i
\(7\) 0 0
\(8\) 1.73205 0.612372
\(9\) −1.94949 2.28024i −0.649830 0.760080i
\(10\) 3.62132 + 1.37333i 1.14516 + 0.434286i
\(11\) 2.44949 1.41421i 0.738549 0.426401i −0.0829925 0.996550i \(-0.526448\pi\)
0.821541 + 0.570149i \(0.193114\pi\)
\(12\) −1.72474 + 0.158919i −0.497891 + 0.0458759i
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 0 0
\(15\) 3.73205 + 1.03528i 0.963611 + 0.267307i
\(16\) 2.50000 4.33013i 0.625000 1.08253i
\(17\) −2.44949 + 1.41421i −0.594089 + 0.342997i −0.766712 0.641991i \(-0.778109\pi\)
0.172624 + 0.984988i \(0.444775\pi\)
\(18\) −5.10867 + 0.949490i −1.20412 + 0.223797i
\(19\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) 1.73205 1.41421i 0.387298 0.316228i
\(21\) 0 0
\(22\) 4.89898i 1.04447i
\(23\) 1.73205 3.00000i 0.361158 0.625543i −0.626994 0.779024i \(-0.715715\pi\)
0.988152 + 0.153481i \(0.0490483\pi\)
\(24\) 1.25529 2.72474i 0.256236 0.556186i
\(25\) −4.74264 + 1.58346i −0.948528 + 0.316693i
\(26\) 3.46410 6.00000i 0.679366 1.17670i
\(27\) −5.00000 + 1.41421i −0.962250 + 0.272166i
\(28\) 0 0
\(29\) 5.65685i 1.05045i −0.850963 0.525226i \(-0.823981\pi\)
0.850963 0.525226i \(-0.176019\pi\)
\(30\) 4.78497 4.70150i 0.873611 0.858373i
\(31\) −8.48528 + 4.89898i −1.52400 + 0.879883i −0.524405 + 0.851469i \(0.675712\pi\)
−0.999596 + 0.0284139i \(0.990954\pi\)
\(32\) −2.59808 4.50000i −0.459279 0.795495i
\(33\) −0.449490 4.87832i −0.0782461 0.849206i
\(34\) 4.89898i 0.840168i
\(35\) 0 0
\(36\) −1.00000 + 2.82843i −0.166667 + 0.471405i
\(37\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(38\) 0 0
\(39\) 2.89898 6.29253i 0.464208 1.00761i
\(40\) 0.621320 + 3.82282i 0.0982394 + 0.604441i
\(41\) 3.46410 0.541002 0.270501 0.962720i \(-0.412811\pi\)
0.270501 + 0.962720i \(0.412811\pi\)
\(42\) 0 0
\(43\) 4.89898i 0.747087i 0.927613 + 0.373544i \(0.121857\pi\)
−0.927613 + 0.373544i \(0.878143\pi\)
\(44\) −2.44949 1.41421i −0.369274 0.213201i
\(45\) 4.33341 5.12070i 0.645987 0.763349i
\(46\) −3.00000 5.19615i −0.442326 0.766131i
\(47\) 2.44949 + 1.41421i 0.357295 + 0.206284i 0.667893 0.744257i \(-0.267196\pi\)
−0.310599 + 0.950541i \(0.600530\pi\)
\(48\) −5.00000 7.07107i −0.721688 1.02062i
\(49\) 0 0
\(50\) −1.73205 + 8.48528i −0.244949 + 1.20000i
\(51\) 0.449490 + 4.87832i 0.0629412 + 0.683101i
\(52\) −2.00000 3.46410i −0.277350 0.480384i
\(53\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(54\) −2.20881 + 8.72474i −0.300581 + 1.18729i
\(55\) 4.00000 + 4.89898i 0.539360 + 0.660578i
\(56\) 0 0
\(57\) 0 0
\(58\) −8.48528 4.89898i −1.11417 0.643268i
\(59\) 3.46410 + 6.00000i 0.450988 + 0.781133i 0.998448 0.0556984i \(-0.0177385\pi\)
−0.547460 + 0.836832i \(0.684405\pi\)
\(60\) −0.969450 3.74969i −0.125155 0.484083i
\(61\) −8.48528 4.89898i −1.08643 0.627250i −0.153806 0.988101i \(-0.549153\pi\)
−0.932623 + 0.360851i \(0.882486\pi\)
\(62\) 16.9706i 2.15526i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 1.43488 + 8.82843i 0.177975 + 1.09503i
\(66\) −7.70674 3.55051i −0.948634 0.437038i
\(67\) −4.24264 + 2.44949i −0.518321 + 0.299253i −0.736247 0.676712i \(-0.763404\pi\)
0.217926 + 0.975965i \(0.430071\pi\)
\(68\) 2.44949 + 1.41421i 0.297044 + 0.171499i
\(69\) −3.46410 4.89898i −0.417029 0.589768i
\(70\) 0 0
\(71\) 2.82843i 0.335673i 0.985815 + 0.167836i \(0.0536780\pi\)
−0.985815 + 0.167836i \(0.946322\pi\)
\(72\) −3.37662 3.94949i −0.397938 0.465452i
\(73\) 4.00000 + 6.92820i 0.468165 + 0.810885i 0.999338 0.0363782i \(-0.0115821\pi\)
−0.531174 + 0.847263i \(0.678249\pi\)
\(74\) 0 0
\(75\) −0.946206 + 8.60841i −0.109258 + 0.994013i
\(76\) 0 0
\(77\) 0 0
\(78\) −6.92820 9.79796i −0.784465 1.10940i
\(79\) −4.00000 + 6.92820i −0.450035 + 0.779484i −0.998388 0.0567635i \(-0.981922\pi\)
0.548352 + 0.836247i \(0.315255\pi\)
\(80\) 10.4539 + 3.96447i 1.16878 + 0.443241i
\(81\) −1.39898 + 8.89060i −0.155442 + 0.987845i
\(82\) 3.00000 5.19615i 0.331295 0.573819i
\(83\) 2.82843i 0.310460i −0.987878 0.155230i \(-0.950388\pi\)
0.987878 0.155230i \(-0.0496119\pi\)
\(84\) 0 0
\(85\) −4.00000 4.89898i −0.433861 0.531369i
\(86\) 7.34847 + 4.24264i 0.792406 + 0.457496i
\(87\) −8.89898 4.09978i −0.954071 0.439542i
\(88\) 4.24264 2.44949i 0.452267 0.261116i
\(89\) 5.19615 9.00000i 0.550791 0.953998i −0.447427 0.894321i \(-0.647659\pi\)
0.998218 0.0596775i \(-0.0190072\pi\)
\(90\) −3.92820 10.9348i −0.414069 1.15263i
\(91\) 0 0
\(92\) −3.46410 −0.361158
\(93\) 1.55708 + 16.8990i 0.161461 + 1.75234i
\(94\) 4.24264 2.44949i 0.437595 0.252646i
\(95\) 0 0
\(96\) −8.96204 + 0.825765i −0.914684 + 0.0842793i
\(97\) −8.00000 −0.812277 −0.406138 0.913812i \(-0.633125\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(98\) 0 0
\(99\) −8.00000 2.82843i −0.804030 0.284268i
\(100\) 3.74264 + 3.31552i 0.374264 + 0.331552i
\(101\) −8.66025 15.0000i −0.861727 1.49256i −0.870260 0.492592i \(-0.836049\pi\)
0.00853278 0.999964i \(-0.497284\pi\)
\(102\) 7.70674 + 3.55051i 0.763081 + 0.351553i
\(103\) −5.00000 + 8.66025i −0.492665 + 0.853320i −0.999964 0.00844953i \(-0.997310\pi\)
0.507300 + 0.861770i \(0.330644\pi\)
\(104\) 6.92820 0.679366
\(105\) 0 0
\(106\) 0 0
\(107\) −5.19615 + 9.00000i −0.502331 + 0.870063i 0.497665 + 0.867369i \(0.334191\pi\)
−0.999996 + 0.00269372i \(0.999143\pi\)
\(108\) 3.72474 + 3.62302i 0.358414 + 0.348625i
\(109\) 5.00000 + 8.66025i 0.478913 + 0.829502i 0.999708 0.0241802i \(-0.00769755\pi\)
−0.520794 + 0.853682i \(0.674364\pi\)
\(110\) 10.8126 1.75736i 1.03094 0.167558i
\(111\) 0 0
\(112\) 0 0
\(113\) 6.92820 0.651751 0.325875 0.945413i \(-0.394341\pi\)
0.325875 + 0.945413i \(0.394341\pi\)
\(114\) 0 0
\(115\) 7.24264 + 2.74666i 0.675380 + 0.256128i
\(116\) −4.89898 + 2.82843i −0.454859 + 0.262613i
\(117\) −7.79796 9.12096i −0.720922 0.843233i
\(118\) 12.0000 1.10469
\(119\) 0 0
\(120\) 6.46410 + 1.79315i 0.590089 + 0.163692i
\(121\) −1.50000 + 2.59808i −0.136364 + 0.236189i
\(122\) −14.6969 + 8.48528i −1.33060 + 0.768221i
\(123\) 2.51059 5.44949i 0.226372 0.491364i
\(124\) 8.48528 + 4.89898i 0.762001 + 0.439941i
\(125\) −5.19615 9.89949i −0.464758 0.885438i
\(126\) 0 0
\(127\) 14.6969i 1.30414i 0.758158 + 0.652071i \(0.226100\pi\)
−0.758158 + 0.652071i \(0.773900\pi\)
\(128\) 6.06218 10.5000i 0.535826 0.928078i
\(129\) 7.70674 + 3.55051i 0.678541 + 0.312605i
\(130\) 14.4853 + 5.49333i 1.27044 + 0.481797i
\(131\) 3.46410 6.00000i 0.302660 0.524222i −0.674078 0.738661i \(-0.735459\pi\)
0.976738 + 0.214438i \(0.0687920\pi\)
\(132\) −4.00000 + 2.82843i −0.348155 + 0.246183i
\(133\) 0 0
\(134\) 8.48528i 0.733017i
\(135\) −4.91492 10.5282i −0.423009 0.906126i
\(136\) −4.24264 + 2.44949i −0.363803 + 0.210042i
\(137\) 3.46410 + 6.00000i 0.295958 + 0.512615i 0.975207 0.221293i \(-0.0710278\pi\)
−0.679249 + 0.733908i \(0.737694\pi\)
\(138\) −10.3485 + 0.953512i −0.880920 + 0.0811683i
\(139\) 9.79796i 0.831052i −0.909581 0.415526i \(-0.863598\pi\)
0.909581 0.415526i \(-0.136402\pi\)
\(140\) 0 0
\(141\) 4.00000 2.82843i 0.336861 0.238197i
\(142\) 4.24264 + 2.44949i 0.356034 + 0.205557i
\(143\) 9.79796 5.65685i 0.819346 0.473050i
\(144\) −14.7474 + 2.74094i −1.22895 + 0.228412i
\(145\) 12.4853 2.02922i 1.03685 0.168518i
\(146\) 13.8564 1.14676
\(147\) 0 0
\(148\) 0 0
\(149\) −9.79796 5.65685i −0.802680 0.463428i 0.0417274 0.999129i \(-0.486714\pi\)
−0.844407 + 0.535701i \(0.820047\pi\)
\(150\) 12.0932 + 8.87441i 0.987404 + 0.724592i
\(151\) −4.00000 6.92820i −0.325515 0.563809i 0.656101 0.754673i \(-0.272204\pi\)
−0.981617 + 0.190864i \(0.938871\pi\)
\(152\) 0 0
\(153\) 8.00000 + 2.82843i 0.646762 + 0.228665i
\(154\) 0 0
\(155\) −13.8564 16.9706i −1.11297 1.36311i
\(156\) −6.89898 + 0.635674i −0.552360 + 0.0508947i
\(157\) −2.00000 3.46410i −0.159617 0.276465i 0.775113 0.631822i \(-0.217693\pi\)
−0.934731 + 0.355357i \(0.884359\pi\)
\(158\) 6.92820 + 12.0000i 0.551178 + 0.954669i
\(159\) 0 0
\(160\) 9.00000 7.34847i 0.711512 0.580948i
\(161\) 0 0
\(162\) 12.1244 + 9.79796i 0.952579 + 0.769800i
\(163\) 12.7279 + 7.34847i 0.996928 + 0.575577i 0.907338 0.420402i \(-0.138111\pi\)
0.0895899 + 0.995979i \(0.471444\pi\)
\(164\) −1.73205 3.00000i −0.135250 0.234261i
\(165\) 10.6057 2.74202i 0.825654 0.213466i
\(166\) −4.24264 2.44949i −0.329293 0.190117i
\(167\) 14.1421i 1.09435i 0.837018 + 0.547176i \(0.184297\pi\)
−0.837018 + 0.547176i \(0.815703\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) −10.8126 + 1.75736i −0.829286 + 0.134783i
\(171\) 0 0
\(172\) 4.24264 2.44949i 0.323498 0.186772i
\(173\) 17.1464 + 9.89949i 1.30362 + 0.752645i 0.981023 0.193892i \(-0.0621112\pi\)
0.322596 + 0.946537i \(0.395445\pi\)
\(174\) −13.8564 + 9.79796i −1.05045 + 0.742781i
\(175\) 0 0
\(176\) 14.1421i 1.06600i
\(177\) 11.9494 1.10102i 0.898171 0.0827578i
\(178\) −9.00000 15.5885i −0.674579 1.16840i
\(179\) 2.44949 1.41421i 0.183083 0.105703i −0.405657 0.914025i \(-0.632957\pi\)
0.588741 + 0.808322i \(0.299624\pi\)
\(180\) −6.60136 1.19249i −0.492036 0.0888833i
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) −13.8564 + 9.79796i −1.02430 + 0.724286i
\(184\) 3.00000 5.19615i 0.221163 0.383065i
\(185\) 0 0
\(186\) 26.6969 + 12.2993i 1.95751 + 0.901831i
\(187\) −4.00000 + 6.92820i −0.292509 + 0.506640i
\(188\) 2.82843i 0.206284i
\(189\) 0 0
\(190\) 0 0
\(191\) −17.1464 9.89949i −1.24067 0.716302i −0.271441 0.962455i \(-0.587500\pi\)
−0.969231 + 0.246153i \(0.920834\pi\)
\(192\) 0.724745 1.57313i 0.0523040 0.113531i
\(193\) 8.48528 4.89898i 0.610784 0.352636i −0.162488 0.986710i \(-0.551952\pi\)
0.773272 + 0.634074i \(0.218619\pi\)
\(194\) −6.92820 + 12.0000i −0.497416 + 0.861550i
\(195\) 14.9282 + 4.14110i 1.06903 + 0.296551i
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) −11.1708 + 9.55051i −0.793877 + 0.678725i
\(199\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(200\) −8.21449 + 2.74264i −0.580852 + 0.193934i
\(201\) 0.778539 + 8.44949i 0.0549139 + 0.595981i
\(202\) −30.0000 −2.11079
\(203\) 0 0
\(204\) 4.00000 2.82843i 0.280056 0.198030i
\(205\) 1.24264 + 7.64564i 0.0867898 + 0.533995i
\(206\) 8.66025 + 15.0000i 0.603388 + 1.04510i
\(207\) −10.2173 + 1.89898i −0.710154 + 0.131988i
\(208\) 10.0000 17.3205i 0.693375 1.20096i
\(209\) 0 0
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 0 0
\(213\) 4.44949 + 2.04989i 0.304874 + 0.140456i
\(214\) 9.00000 + 15.5885i 0.615227 + 1.06561i
\(215\) −10.8126 + 1.75736i −0.737411 + 0.119851i
\(216\) −8.66025 + 2.44949i −0.589256 + 0.166667i
\(217\) 0 0
\(218\) 17.3205 1.17309
\(219\) 13.7980 1.27135i 0.932380 0.0859098i
\(220\) 2.24264 5.91359i 0.151199 0.398694i
\(221\) −9.79796 + 5.65685i −0.659082 + 0.380521i
\(222\) 0 0
\(223\) −26.0000 −1.74109 −0.870544 0.492090i \(-0.836233\pi\)
−0.870544 + 0.492090i \(0.836233\pi\)
\(224\) 0 0
\(225\) 12.8564 + 7.72741i 0.857094 + 0.515160i
\(226\) 6.00000 10.3923i 0.399114 0.691286i
\(227\) −2.44949 + 1.41421i −0.162578 + 0.0938647i −0.579082 0.815270i \(-0.696589\pi\)
0.416503 + 0.909134i \(0.363255\pi\)
\(228\) 0 0
\(229\) −16.9706 9.79796i −1.12145 0.647467i −0.179677 0.983726i \(-0.557505\pi\)
−0.941770 + 0.336258i \(0.890838\pi\)
\(230\) 10.3923 8.48528i 0.685248 0.559503i
\(231\) 0 0
\(232\) 9.79796i 0.643268i
\(233\) 10.3923 18.0000i 0.680823 1.17922i −0.293908 0.955834i \(-0.594956\pi\)
0.974730 0.223385i \(-0.0717108\pi\)
\(234\) −20.4347 + 3.79796i −1.33586 + 0.248280i
\(235\) −2.24264 + 5.91359i −0.146294 + 0.385760i
\(236\) 3.46410 6.00000i 0.225494 0.390567i
\(237\) 8.00000 + 11.3137i 0.519656 + 0.734904i
\(238\) 0 0
\(239\) 2.82843i 0.182956i 0.995807 + 0.0914779i \(0.0291591\pi\)
−0.995807 + 0.0914779i \(0.970841\pi\)
\(240\) 13.8130 13.5721i 0.891626 0.876073i
\(241\) 8.48528 4.89898i 0.546585 0.315571i −0.201158 0.979559i \(-0.564471\pi\)
0.747743 + 0.663988i \(0.231137\pi\)
\(242\) 2.59808 + 4.50000i 0.167011 + 0.289271i
\(243\) 12.9722 + 8.64420i 0.832167 + 0.554526i
\(244\) 9.79796i 0.627250i
\(245\) 0 0
\(246\) −6.00000 8.48528i −0.382546 0.541002i
\(247\) 0 0
\(248\) −14.6969 + 8.48528i −0.933257 + 0.538816i
\(249\) −4.44949 2.04989i −0.281975 0.129906i
\(250\) −19.3492 0.778985i −1.22375 0.0492674i
\(251\) −20.7846 −1.31191 −0.655956 0.754799i \(-0.727735\pi\)
−0.655956 + 0.754799i \(0.727735\pi\)
\(252\) 0 0
\(253\) 9.79796i 0.615992i
\(254\) 22.0454 + 12.7279i 1.38325 + 0.798621i
\(255\) −10.6057 + 2.74202i −0.664156 + 0.171712i
\(256\) −9.50000 16.4545i −0.593750 1.02841i
\(257\) −12.2474 7.07107i −0.763975 0.441081i 0.0667462 0.997770i \(-0.478738\pi\)
−0.830721 + 0.556689i \(0.812072\pi\)
\(258\) 12.0000 8.48528i 0.747087 0.528271i
\(259\) 0 0
\(260\) 6.92820 5.65685i 0.429669 0.350823i
\(261\) −12.8990 + 11.0280i −0.798427 + 0.682615i
\(262\) −6.00000 10.3923i −0.370681 0.642039i
\(263\) −1.73205 3.00000i −0.106803 0.184988i 0.807671 0.589634i \(-0.200728\pi\)
−0.914473 + 0.404646i \(0.867395\pi\)
\(264\) −0.778539 8.44949i −0.0479158 0.520030i
\(265\) 0 0
\(266\) 0 0
\(267\) −10.3923 14.6969i −0.635999 0.899438i
\(268\) 4.24264 + 2.44949i 0.259161 + 0.149626i
\(269\) −5.19615 9.00000i −0.316815 0.548740i 0.663007 0.748614i \(-0.269280\pi\)
−0.979822 + 0.199874i \(0.935947\pi\)
\(270\) −20.0488 1.74534i −1.22013 0.106218i
\(271\) 25.4558 + 14.6969i 1.54633 + 0.892775i 0.998417 + 0.0562416i \(0.0179117\pi\)
0.547915 + 0.836534i \(0.315422\pi\)
\(272\) 14.1421i 0.857493i
\(273\) 0 0
\(274\) 12.0000 0.724947
\(275\) −9.37769 + 10.5858i −0.565496 + 0.638347i
\(276\) −2.51059 + 5.44949i −0.151120 + 0.328021i
\(277\) 16.9706 9.79796i 1.01966 0.588702i 0.105656 0.994403i \(-0.466306\pi\)
0.914006 + 0.405700i \(0.132972\pi\)
\(278\) −14.6969 8.48528i −0.881464 0.508913i
\(279\) 27.7128 + 9.79796i 1.65912 + 0.586588i
\(280\) 0 0
\(281\) 28.2843i 1.68730i 0.536895 + 0.843649i \(0.319597\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) −0.778539 8.44949i −0.0463613 0.503160i
\(283\) 7.00000 + 12.1244i 0.416107 + 0.720718i 0.995544 0.0942988i \(-0.0300609\pi\)
−0.579437 + 0.815017i \(0.696728\pi\)
\(284\) 2.44949 1.41421i 0.145350 0.0839181i
\(285\) 0 0
\(286\) 19.5959i 1.15873i
\(287\) 0 0
\(288\) −5.19615 + 14.6969i −0.306186 + 0.866025i
\(289\) −4.50000 + 7.79423i −0.264706 + 0.458484i
\(290\) 7.76874 20.4853i 0.456196 1.20294i
\(291\) −5.79796 + 12.5851i −0.339882 + 0.737749i
\(292\) 4.00000 6.92820i 0.234082 0.405442i
\(293\) 2.82843i 0.165238i −0.996581 0.0826192i \(-0.973671\pi\)
0.996581 0.0826192i \(-0.0263285\pi\)
\(294\) 0 0
\(295\) −12.0000 + 9.79796i −0.698667 + 0.570459i
\(296\) 0 0
\(297\) −10.2474 + 10.5352i −0.594617 + 0.611313i
\(298\) −16.9706 + 9.79796i −0.983078 + 0.567581i
\(299\) 6.92820 12.0000i 0.400668 0.693978i
\(300\) 7.92820 3.48477i 0.457735 0.201193i
\(301\) 0 0
\(302\) −13.8564 −0.797347
\(303\) −29.8735 + 2.75255i −1.71619 + 0.158130i
\(304\) 0 0
\(305\) 7.76874 20.4853i 0.444836 1.17298i
\(306\) 11.1708 9.55051i 0.638595 0.545966i
\(307\) 10.0000 0.570730 0.285365 0.958419i \(-0.407885\pi\)
0.285365 + 0.958419i \(0.407885\pi\)
\(308\) 0 0
\(309\) 10.0000 + 14.1421i 0.568880 + 0.804518i
\(310\) −37.4558 + 6.08767i −2.12735 + 0.345756i
\(311\) 13.8564 + 24.0000i 0.785725 + 1.36092i 0.928565 + 0.371169i \(0.121043\pi\)
−0.142840 + 0.989746i \(0.545624\pi\)
\(312\) 5.02118 10.8990i 0.284268 0.617033i
\(313\) −8.00000 + 13.8564i −0.452187 + 0.783210i −0.998522 0.0543564i \(-0.982689\pi\)
0.546335 + 0.837567i \(0.316023\pi\)
\(314\) −6.92820 −0.390981
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) −6.92820 + 12.0000i −0.389127 + 0.673987i −0.992332 0.123599i \(-0.960556\pi\)
0.603206 + 0.797586i \(0.293890\pi\)
\(318\) 0 0
\(319\) −8.00000 13.8564i −0.447914 0.775810i
\(320\) 0.358719 + 2.20711i 0.0200530 + 0.123381i
\(321\) 10.3923 + 14.6969i 0.580042 + 0.820303i
\(322\) 0 0
\(323\) 0 0
\(324\) 8.39898 3.23375i 0.466610 0.179653i
\(325\) −18.9706 + 6.33386i −1.05230 + 0.351339i
\(326\) 22.0454 12.7279i 1.22098 0.704934i
\(327\) 17.2474 1.58919i 0.953786 0.0878822i
\(328\) 6.00000 0.331295
\(329\) 0 0
\(330\) 5.07180 18.2832i 0.279193 1.00646i
\(331\) 14.0000 24.2487i 0.769510 1.33283i −0.168320 0.985732i \(-0.553834\pi\)
0.937829 0.347097i \(-0.112833\pi\)
\(332\) −2.44949 + 1.41421i −0.134433 + 0.0776151i
\(333\) 0 0
\(334\) 21.2132 + 12.2474i 1.16073 + 0.670151i
\(335\) −6.92820 8.48528i −0.378528 0.463600i
\(336\) 0 0
\(337\) 19.5959i 1.06746i −0.845656 0.533729i \(-0.820790\pi\)
0.845656 0.533729i \(-0.179210\pi\)
\(338\) 2.59808 4.50000i 0.141317 0.244768i
\(339\) 5.02118 10.8990i 0.272713 0.591951i
\(340\) −2.24264 + 5.91359i −0.121624 + 0.320710i
\(341\) −13.8564 + 24.0000i −0.750366 + 1.29967i
\(342\) 0 0
\(343\) 0 0
\(344\) 8.48528i 0.457496i
\(345\) 9.56993 9.40300i 0.515228 0.506241i
\(346\) 29.6985 17.1464i 1.59660 0.921798i
\(347\) −8.66025 15.0000i −0.464907 0.805242i 0.534291 0.845301i \(-0.320579\pi\)
−0.999197 + 0.0400587i \(0.987246\pi\)
\(348\) 0.898979 + 9.75663i 0.0481904 + 0.523010i
\(349\) 19.5959i 1.04895i −0.851427 0.524473i \(-0.824262\pi\)
0.851427 0.524473i \(-0.175738\pi\)
\(350\) 0 0
\(351\) −20.0000 + 5.65685i −1.06752 + 0.301941i
\(352\) −12.7279 7.34847i −0.678401 0.391675i
\(353\) 26.9444 15.5563i 1.43411 0.827981i 0.436674 0.899620i \(-0.356156\pi\)
0.997431 + 0.0716387i \(0.0228229\pi\)
\(354\) 8.69694 18.8776i 0.462237 1.00333i
\(355\) −6.24264 + 1.01461i −0.331325 + 0.0538500i
\(356\) −10.3923 −0.550791
\(357\) 0 0
\(358\) 4.89898i 0.258919i
\(359\) 26.9444 + 15.5563i 1.42207 + 0.821033i 0.996476 0.0838812i \(-0.0267316\pi\)
0.425595 + 0.904914i \(0.360065\pi\)
\(360\) 7.50569 8.86931i 0.395584 0.467454i
\(361\) −9.50000 16.4545i −0.500000 0.866025i
\(362\) 0 0
\(363\) 3.00000 + 4.24264i 0.157459 + 0.222681i
\(364\) 0 0
\(365\) −13.8564 + 11.3137i −0.725277 + 0.592187i
\(366\) 2.69694 + 29.2699i 0.140971 + 1.52996i
\(367\) −5.00000 8.66025i −0.260998 0.452062i 0.705509 0.708700i \(-0.250718\pi\)
−0.966507 + 0.256639i \(0.917385\pi\)
\(368\) −8.66025 15.0000i −0.451447 0.781929i
\(369\) −6.75323 7.89898i −0.351559 0.411204i
\(370\) 0 0
\(371\) 0 0
\(372\) 13.8564 9.79796i 0.718421 0.508001i
\(373\) −8.48528 4.89898i −0.439351 0.253660i 0.263971 0.964531i \(-0.414968\pi\)
−0.703322 + 0.710871i \(0.748301\pi\)
\(374\) 6.92820 + 12.0000i 0.358249 + 0.620505i
\(375\) −19.3391 + 0.999626i −0.998667 + 0.0516205i
\(376\) 4.24264 + 2.44949i 0.218797 + 0.126323i
\(377\) 22.6274i 1.16537i
\(378\) 0 0
\(379\) −28.0000 −1.43826 −0.719132 0.694874i \(-0.755460\pi\)
−0.719132 + 0.694874i \(0.755460\pi\)
\(380\) 0 0
\(381\) 23.1202 + 10.6515i 1.18449 + 0.545694i
\(382\) −29.6985 + 17.1464i −1.51951 + 0.877288i
\(383\) −12.2474 7.07107i −0.625815 0.361315i 0.153314 0.988177i \(-0.451005\pi\)
−0.779130 + 0.626863i \(0.784339\pi\)
\(384\) −12.1244 17.1464i −0.618718 0.875000i
\(385\) 0 0
\(386\) 16.9706i 0.863779i
\(387\) 11.1708 9.55051i 0.567846 0.485480i
\(388\) 4.00000 + 6.92820i 0.203069 + 0.351726i
\(389\) −19.5959 + 11.3137i −0.993552 + 0.573628i −0.906334 0.422561i \(-0.861131\pi\)
−0.0872182 + 0.996189i \(0.527798\pi\)
\(390\) 19.1399 18.8060i 0.969185 0.952279i
\(391\) 9.79796i 0.495504i
\(392\) 0 0
\(393\) −6.92820 9.79796i −0.349482 0.494242i
\(394\) 0 0
\(395\) −16.7262 6.34315i −0.841585 0.319158i
\(396\) 1.55051 + 8.34242i 0.0779161 + 0.419222i
\(397\) 10.0000 17.3205i 0.501886 0.869291i −0.498112 0.867113i \(-0.665973\pi\)
0.999998 0.00217869i \(-0.000693499\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −5.00000 + 24.4949i −0.250000 + 1.22474i
\(401\) 19.5959 + 11.3137i 0.978573 + 0.564980i 0.901839 0.432072i \(-0.142217\pi\)
0.0767343 + 0.997052i \(0.475551\pi\)
\(402\) 13.3485 + 6.14966i 0.665761 + 0.306717i
\(403\) −33.9411 + 19.5959i −1.69073 + 0.976142i
\(404\) −8.66025 + 15.0000i −0.430864 + 0.746278i
\(405\) −20.1244 + 0.101536i −0.999987 + 0.00504536i
\(406\) 0 0
\(407\) 0 0
\(408\) 0.778539 + 8.44949i 0.0385434 + 0.418312i
\(409\) −8.48528 + 4.89898i −0.419570 + 0.242239i −0.694893 0.719113i \(-0.744548\pi\)
0.275323 + 0.961352i \(0.411215\pi\)
\(410\) 12.5446 + 4.75736i 0.619535 + 0.234949i
\(411\) 11.9494 1.10102i 0.589420 0.0543093i
\(412\) 10.0000 0.492665
\(413\) 0 0
\(414\) −6.00000 + 16.9706i −0.294884 + 0.834058i
\(415\) 6.24264 1.01461i 0.306439 0.0498053i
\(416\) −10.3923 18.0000i −0.509525 0.882523i
\(417\) −15.4135 7.10102i −0.754802 0.347738i
\(418\) 0 0
\(419\) −6.92820 −0.338465 −0.169232 0.985576i \(-0.554129\pi\)
−0.169232 + 0.985576i \(0.554129\pi\)
\(420\) 0 0
\(421\) 26.0000 1.26716 0.633581 0.773676i \(-0.281584\pi\)
0.633581 + 0.773676i \(0.281584\pi\)
\(422\) −3.46410 + 6.00000i −0.168630 + 0.292075i
\(423\) −1.55051 8.34242i −0.0753884 0.405622i
\(424\) 0 0
\(425\) 9.37769 10.5858i 0.454885 0.513486i
\(426\) 6.92820 4.89898i 0.335673 0.237356i
\(427\) 0 0
\(428\) 10.3923 0.502331
\(429\) −1.79796 19.5133i −0.0868063 0.942109i
\(430\) −6.72792 + 17.7408i −0.324449 + 0.855536i
\(431\) 2.44949 1.41421i 0.117988 0.0681203i −0.439845 0.898074i \(-0.644967\pi\)
0.557832 + 0.829954i \(0.311633\pi\)
\(432\) −6.37628 + 25.1862i −0.306779 + 1.21177i
\(433\) 16.0000 0.768911 0.384455 0.923144i \(-0.374389\pi\)
0.384455 + 0.923144i \(0.374389\pi\)
\(434\) 0 0
\(435\) 5.85641 21.1117i 0.280793 1.01223i
\(436\) 5.00000 8.66025i 0.239457 0.414751i
\(437\) 0 0
\(438\) 10.0424 21.7980i 0.479842 1.04155i
\(439\) −33.9411 19.5959i −1.61992 0.935262i −0.986939 0.161096i \(-0.948497\pi\)
−0.632983 0.774166i \(-0.718170\pi\)
\(440\) 6.92820 + 8.48528i 0.330289 + 0.404520i
\(441\) 0 0
\(442\) 19.5959i 0.932083i
\(443\) 8.66025 15.0000i 0.411461 0.712672i −0.583589 0.812049i \(-0.698352\pi\)
0.995050 + 0.0993779i \(0.0316853\pi\)
\(444\) 0 0
\(445\) 21.7279 + 8.23999i 1.03000 + 0.390613i
\(446\) −22.5167 + 39.0000i −1.06619 + 1.84670i
\(447\) −16.0000 + 11.3137i −0.756774 + 0.535120i
\(448\) 0 0
\(449\) 5.65685i 0.266963i −0.991051 0.133482i \(-0.957384\pi\)
0.991051 0.133482i \(-0.0426157\pi\)
\(450\) 22.7251 12.5925i 1.07127 0.593615i
\(451\) 8.48528 4.89898i 0.399556 0.230684i
\(452\) −3.46410 6.00000i −0.162938 0.282216i
\(453\) −13.7980 + 1.27135i −0.648285 + 0.0597332i
\(454\) 4.89898i 0.229920i
\(455\) 0 0
\(456\) 0 0
\(457\) −16.9706 9.79796i −0.793849 0.458329i 0.0474665 0.998873i \(-0.484885\pi\)
−0.841316 + 0.540544i \(0.818219\pi\)
\(458\) −29.3939 + 16.9706i −1.37349 + 0.792982i
\(459\) 10.2474 10.5352i 0.478310 0.491740i
\(460\) −1.24264 7.64564i −0.0579384 0.356480i
\(461\) −3.46410 −0.161339 −0.0806696 0.996741i \(-0.525706\pi\)
−0.0806696 + 0.996741i \(0.525706\pi\)
\(462\) 0 0
\(463\) 4.89898i 0.227675i −0.993499 0.113837i \(-0.963686\pi\)
0.993499 0.113837i \(-0.0363143\pi\)
\(464\) −24.4949 14.1421i −1.13715 0.656532i
\(465\) −36.7393 + 9.49863i −1.70374 + 0.440488i
\(466\) −18.0000 31.1769i −0.833834 1.44424i
\(467\) 2.44949 + 1.41421i 0.113349 + 0.0654420i 0.555603 0.831448i \(-0.312488\pi\)
−0.442254 + 0.896890i \(0.645821\pi\)
\(468\) −4.00000 + 11.3137i −0.184900 + 0.522976i
\(469\) 0 0
\(470\) 6.92820 + 8.48528i 0.319574 + 0.391397i
\(471\) −6.89898 + 0.635674i −0.317888 + 0.0292903i
\(472\) 6.00000 + 10.3923i 0.276172 + 0.478345i
\(473\) 6.92820 + 12.0000i 0.318559 + 0.551761i
\(474\) 23.8988 2.20204i 1.09771 0.101143i
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 4.24264 + 2.44949i 0.194054 + 0.112037i
\(479\) −13.8564 24.0000i −0.633115 1.09659i −0.986911 0.161265i \(-0.948443\pi\)
0.353796 0.935323i \(-0.384891\pi\)
\(480\) −5.03741 19.4840i −0.229925 0.889317i
\(481\) 0 0
\(482\) 16.9706i 0.772988i
\(483\) 0 0
\(484\) 3.00000 0.136364
\(485\) −2.86976 17.6569i −0.130309 0.801756i
\(486\) 24.2005 11.9722i 1.09776 0.543070i
\(487\) 12.7279 7.34847i 0.576757 0.332991i −0.183086 0.983097i \(-0.558609\pi\)
0.759844 + 0.650106i \(0.225275\pi\)
\(488\) −14.6969 8.48528i −0.665299 0.384111i
\(489\) 20.7846 14.6969i 0.939913 0.664619i
\(490\) 0 0
\(491\) 14.1421i 0.638226i −0.947717 0.319113i \(-0.896615\pi\)
0.947717 0.319113i \(-0.103385\pi\)
\(492\) −5.97469 + 0.550510i −0.269360 + 0.0248189i
\(493\) 8.00000 + 13.8564i 0.360302 + 0.624061i
\(494\) 0 0
\(495\) 3.37288 18.6715i 0.151600 0.839220i
\(496\) 48.9898i 2.19971i
\(497\) 0 0
\(498\) −6.92820 + 4.89898i −0.310460 + 0.219529i
\(499\) 2.00000 3.46410i 0.0895323 0.155074i −0.817781 0.575529i \(-0.804796\pi\)
0.907314 + 0.420455i \(0.138129\pi\)
\(500\) −5.97514 + 9.44975i −0.267216 + 0.422606i
\(501\) 22.2474 + 10.2494i 0.993943 + 0.457911i
\(502\) −18.0000 + 31.1769i −0.803379 + 1.39149i
\(503\) 19.7990i 0.882793i −0.897312 0.441397i \(-0.854483\pi\)
0.897312 0.441397i \(-0.145517\pi\)
\(504\) 0 0
\(505\) 30.0000 24.4949i 1.33498 1.09001i
\(506\) −14.6969 8.48528i −0.653359 0.377217i
\(507\) 2.17423 4.71940i 0.0965611 0.209596i
\(508\) 12.7279 7.34847i 0.564710 0.326036i
\(509\) −1.73205 + 3.00000i −0.0767718 + 0.132973i −0.901855 0.432038i \(-0.857795\pi\)
0.825084 + 0.565011i \(0.191128\pi\)
\(510\) −5.07180 + 18.2832i −0.224583 + 0.809595i
\(511\) 0 0
\(512\) −8.66025 −0.382733
\(513\) 0 0
\(514\) −21.2132 + 12.2474i −0.935674 + 0.540212i
\(515\) −20.9077 7.92893i −0.921303 0.349390i
\(516\) −0.778539 8.44949i −0.0342733 0.371968i
\(517\) 8.00000 0.351840
\(518\) 0 0
\(519\) 28.0000 19.7990i 1.22906 0.869079i
\(520\) 2.48528 + 15.2913i 0.108987 + 0.670567i
\(521\) −5.19615 9.00000i −0.227648 0.394297i 0.729463 0.684020i \(-0.239770\pi\)
−0.957110 + 0.289723i \(0.906437\pi\)
\(522\) 5.37113 + 28.8990i 0.235088 + 1.26487i
\(523\) 13.0000 22.5167i 0.568450 0.984585i −0.428269 0.903651i \(-0.640876\pi\)
0.996719 0.0809336i \(-0.0257902\pi\)
\(524\) −6.92820 −0.302660
\(525\) 0 0
\(526\) −6.00000 −0.261612
\(527\) 13.8564 24.0000i 0.603595 1.04546i
\(528\) −22.2474 10.2494i −0.968196 0.446050i
\(529\) 5.50000 + 9.52628i 0.239130 + 0.414186i
\(530\) 0 0
\(531\) 6.92820 19.5959i 0.300658 0.850390i
\(532\) 0 0
\(533\) 13.8564 0.600188
\(534\) −31.0454 + 2.86054i −1.34347 + 0.123787i
\(535\) −21.7279 8.23999i −0.939380 0.356246i
\(536\) −7.34847 + 4.24264i −0.317406 + 0.183254i
\(537\) −0.449490 4.87832i −0.0193969 0.210515i
\(538\) −18.0000 −0.776035
\(539\) 0 0
\(540\) −6.66025 + 9.52056i −0.286612 + 0.409700i
\(541\) 5.00000 8.66025i 0.214967 0.372333i −0.738296 0.674477i \(-0.764369\pi\)
0.953262 + 0.302144i \(0.0977023\pi\)
\(542\) 44.0908 25.4558i 1.89386 1.09342i
\(543\) 0 0
\(544\) 12.7279 + 7.34847i 0.545705 + 0.315063i
\(545\) −17.3205 + 14.1421i −0.741929 + 0.605783i
\(546\) 0 0
\(547\) 34.2929i 1.46626i 0.680090 + 0.733128i \(0.261941\pi\)
−0.680090 + 0.733128i \(0.738059\pi\)
\(548\) 3.46410 6.00000i 0.147979 0.256307i
\(549\) 5.37113 + 28.8990i 0.229234 + 1.23338i
\(550\) 7.75736 + 23.2341i 0.330775 + 0.990705i
\(551\) 0 0
\(552\) −6.00000 8.48528i −0.255377 0.361158i
\(553\) 0 0
\(554\) 33.9411i 1.44202i
\(555\) 0 0
\(556\) −8.48528 + 4.89898i −0.359856 + 0.207763i
\(557\) 20.7846 + 36.0000i 0.880672 + 1.52537i 0.850595 + 0.525821i \(0.176242\pi\)
0.0300772 + 0.999548i \(0.490425\pi\)
\(558\) 38.6969 33.0839i 1.63817 1.40055i
\(559\) 19.5959i 0.828819i
\(560\) 0 0
\(561\) 8.00000 + 11.3137i 0.337760 + 0.477665i
\(562\) 42.4264 + 24.4949i 1.78965 + 1.03325i
\(563\) 12.2474 7.07107i 0.516168 0.298010i −0.219197 0.975681i \(-0.570344\pi\)
0.735366 + 0.677671i \(0.237010\pi\)
\(564\) −4.44949 2.04989i −0.187357 0.0863159i
\(565\) 2.48528 + 15.2913i 0.104557 + 0.643309i
\(566\) 24.2487 1.01925
\(567\) 0 0
\(568\) 4.89898i 0.205557i
\(569\) −24.4949 14.1421i −1.02688 0.592869i −0.110790 0.993844i \(-0.535338\pi\)
−0.916089 + 0.400975i \(0.868672\pi\)
\(570\) 0 0
\(571\) 2.00000 + 3.46410i 0.0836974 + 0.144968i 0.904835 0.425762i \(-0.139994\pi\)
−0.821138 + 0.570730i \(0.806660\pi\)
\(572\) −9.79796 5.65685i −0.409673 0.236525i
\(573\) −28.0000 + 19.7990i −1.16972 + 0.827115i
\(574\) 0 0
\(575\) −3.46410 + 16.9706i −0.144463 + 0.707721i
\(576\) −1.94949 2.28024i −0.0812287 0.0950100i
\(577\) 4.00000 + 6.92820i 0.166522 + 0.288425i 0.937195 0.348806i \(-0.113413\pi\)
−0.770673 + 0.637231i \(0.780080\pi\)
\(578\) 7.79423 + 13.5000i 0.324197 + 0.561526i
\(579\) −1.55708 16.8990i −0.0647100 0.702298i
\(580\) −8.00000 9.79796i −0.332182 0.406838i
\(581\) 0 0
\(582\) 13.8564 + 19.5959i 0.574367 + 0.812277i
\(583\) 0 0
\(584\) 6.92820 + 12.0000i 0.286691 + 0.496564i
\(585\) 17.3336 20.4828i 0.716658 0.846859i
\(586\) −4.24264 2.44949i −0.175262 0.101187i
\(587\) 19.7990i 0.817192i −0.912715 0.408596i \(-0.866019\pi\)
0.912715 0.408596i \(-0.133981\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 4.30463 + 26.4853i 0.177219 + 1.09038i
\(591\) 0 0
\(592\) 0 0
\(593\) 17.1464 + 9.89949i 0.704119 + 0.406524i 0.808880 0.587974i \(-0.200074\pi\)
−0.104760 + 0.994497i \(0.533408\pi\)
\(594\) 6.92820 + 24.4949i 0.284268 + 1.00504i
\(595\) 0 0
\(596\) 11.3137i 0.463428i
\(597\) 0 0
\(598\) −12.0000 20.7846i −0.490716 0.849946i
\(599\) 31.8434 18.3848i 1.30108 0.751182i 0.320495 0.947250i \(-0.396151\pi\)
0.980590 + 0.196069i \(0.0628176\pi\)
\(600\) −1.63888 + 14.9102i −0.0669069 + 0.608706i
\(601\) 9.79796i 0.399667i 0.979830 + 0.199834i \(0.0640401\pi\)
−0.979830 + 0.199834i \(0.935960\pi\)
\(602\) 0 0
\(603\) 13.8564 + 4.89898i 0.564276 + 0.199502i
\(604\) −4.00000 + 6.92820i −0.162758 + 0.281905i
\(605\) −6.27231 2.37868i −0.255006 0.0967071i
\(606\) −21.7423 + 47.1940i −0.883222 + 1.91712i
\(607\) −5.00000 + 8.66025i −0.202944 + 0.351509i −0.949476 0.313841i \(-0.898384\pi\)
0.746532 + 0.665350i \(0.231718\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −24.0000 29.3939i −0.971732 1.19012i
\(611\) 9.79796 + 5.65685i 0.396383 + 0.228852i
\(612\) −1.55051 8.34242i −0.0626757 0.337222i
\(613\) 25.4558 14.6969i 1.02815 0.593604i 0.111697 0.993742i \(-0.464371\pi\)
0.916455 + 0.400139i \(0.131038\pi\)
\(614\) 8.66025 15.0000i 0.349499 0.605351i
\(615\) 12.9282 + 3.58630i 0.521315 + 0.144614i
\(616\) 0 0
\(617\) 48.4974 1.95243 0.976216 0.216799i \(-0.0695615\pi\)
0.976216 + 0.216799i \(0.0695615\pi\)
\(618\) 29.8735 2.75255i 1.20169 0.110724i
\(619\) 8.48528 4.89898i 0.341052 0.196907i −0.319685 0.947524i \(-0.603577\pi\)
0.660737 + 0.750617i \(0.270244\pi\)
\(620\) −7.76874 + 20.4853i −0.312000 + 0.822709i
\(621\) −4.41761 + 17.4495i −0.177273 + 0.700224i
\(622\) 48.0000 1.92462
\(623\) 0 0
\(624\) −20.0000 28.2843i −0.800641 1.13228i
\(625\) 19.9853 15.0196i 0.799411 0.600784i
\(626\) 13.8564 + 24.0000i 0.553813 + 0.959233i
\(627\) 0 0
\(628\) −2.00000 + 3.46410i −0.0798087 + 0.138233i
\(629\) 0 0
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) −6.92820 + 12.0000i −0.275589 + 0.477334i
\(633\) −2.89898 + 6.29253i −0.115224 + 0.250106i
\(634\) 12.0000 + 20.7846i 0.476581 + 0.825462i
\(635\) −32.4377 + 5.27208i −1.28725 + 0.209216i
\(636\) 0 0
\(637\) 0 0
\(638\) −27.7128 −1.09716
\(639\) 6.44949 5.51399i 0.255138 0.218130i
\(640\) 25.3492 + 9.61332i 1.00202 + 0.380000i
\(641\) −4.89898 + 2.82843i −0.193498 + 0.111716i −0.593619 0.804746i \(-0.702301\pi\)
0.400121 + 0.916462i \(0.368968\pi\)
\(642\) 31.0454 2.86054i 1.22526 0.112896i
\(643\) 22.0000 0.867595 0.433798 0.901010i \(-0.357173\pi\)
0.433798 + 0.901010i \(0.357173\pi\)
\(644\) 0 0
\(645\) −5.07180 + 18.2832i −0.199702 + 0.719902i
\(646\) 0 0
\(647\) −17.1464 + 9.89949i −0.674096 + 0.389189i −0.797627 0.603151i \(-0.793911\pi\)
0.123531 + 0.992341i \(0.460578\pi\)
\(648\) −2.42310 + 15.3990i −0.0951885 + 0.604929i
\(649\) 16.9706 + 9.79796i 0.666153 + 0.384604i
\(650\) −6.92820 + 33.9411i −0.271746 + 1.33128i
\(651\) 0 0
\(652\) 14.6969i 0.575577i
\(653\) −13.8564 + 24.0000i −0.542243 + 0.939193i 0.456532 + 0.889707i \(0.349091\pi\)
−0.998775 + 0.0494855i \(0.984242\pi\)
\(654\) 12.5529 27.2474i 0.490859 1.06546i
\(655\) 14.4853 + 5.49333i 0.565987 + 0.214642i
\(656\) 8.66025 15.0000i 0.338126 0.585652i
\(657\) 8.00000 22.6274i 0.312110 0.882780i
\(658\) 0 0
\(659\) 2.82843i 0.110180i 0.998481 + 0.0550899i \(0.0175446\pi\)
−0.998481 + 0.0550899i \(0.982455\pi\)
\(660\) −7.67752 7.81382i −0.298847 0.304152i
\(661\) −8.48528 + 4.89898i −0.330039 + 0.190548i −0.655859 0.754884i \(-0.727693\pi\)
0.325819 + 0.945432i \(0.394360\pi\)
\(662\) −24.2487 42.0000i −0.942453 1.63238i
\(663\) 1.79796 + 19.5133i 0.0698269 + 0.757832i
\(664\) 4.89898i 0.190117i
\(665\) 0 0
\(666\) 0 0
\(667\) −16.9706 9.79796i −0.657103 0.379378i
\(668\) 12.2474 7.07107i 0.473868 0.273588i
\(669\) −18.8434 + 40.9014i −0.728527 + 1.58134i
\(670\) −18.7279 + 3.04384i −0.723523 + 0.117594i
\(671\) −27.7128 −1.06984
\(672\) 0 0
\(673\) 9.79796i 0.377684i −0.982008 0.188842i \(-0.939527\pi\)
0.982008 0.188842i \(-0.0604733\pi\)
\(674\) −29.3939 16.9706i −1.13221 0.653682i
\(675\) 21.4738 14.6244i 0.826529 0.562895i
\(676\) −1.50000 2.59808i −0.0576923 0.0999260i
\(677\) 2.44949 + 1.41421i 0.0941415 + 0.0543526i 0.546332 0.837569i \(-0.316024\pi\)
−0.452190 + 0.891922i \(0.649357\pi\)
\(678\) −12.0000 16.9706i −0.460857 0.651751i
\(679\) 0 0
\(680\) −6.92820 8.48528i −0.265684 0.325396i
\(681\) 0.449490 + 4.87832i 0.0172245 + 0.186937i
\(682\) 24.0000 + 41.5692i 0.919007 + 1.59177i
\(683\) −5.19615 9.00000i −0.198825 0.344375i 0.749323 0.662205i \(-0.230379\pi\)
−0.948148 + 0.317830i \(0.897046\pi\)
\(684\) 0 0
\(685\) −12.0000 + 9.79796i −0.458496 + 0.374361i
\(686\) 0 0
\(687\) −27.7128 + 19.5959i −1.05731 + 0.747631i
\(688\) 21.2132 + 12.2474i 0.808746 + 0.466930i
\(689\) 0 0
\(690\) −5.81670 22.4981i −0.221438 0.856489i
\(691\) −8.48528 4.89898i −0.322795 0.186366i 0.329843 0.944036i \(-0.393004\pi\)
−0.652638 + 0.757670i \(0.726338\pi\)
\(692\) 19.7990i 0.752645i
\(693\) 0 0
\(694\) −30.0000 −1.13878
\(695\) 21.6251 3.51472i 0.820288 0.133321i
\(696\) −15.4135 7.10102i −0.584247 0.269163i
\(697\) −8.48528 + 4.89898i −0.321403 + 0.185562i
\(698\) −29.3939 16.9706i −1.11257 0.642345i
\(699\) −20.7846 29.3939i −0.786146 1.11178i
\(700\) 0 0
\(701\) 22.6274i 0.854626i −0.904104 0.427313i \(-0.859460\pi\)
0.904104 0.427313i \(-0.140540\pi\)
\(702\) −8.83523 + 34.8990i −0.333464 + 1.31718i
\(703\) 0 0
\(704\) 2.44949 1.41421i 0.0923186 0.0533002i
\(705\) 7.67752 + 7.81382i 0.289152 + 0.294285i
\(706\) 53.8888i 2.02813i
\(707\) 0 0
\(708\) −6.92820 9.79796i −0.260378 0.368230i
\(709\) −19.0000 + 32.9090i −0.713560 + 1.23592i 0.249952 + 0.968258i \(0.419585\pi\)
−0.963512 + 0.267664i \(0.913748\pi\)
\(710\) −3.88437 + 10.2426i −0.145778 + 0.384399i
\(711\) 23.5959 4.38551i 0.884916 0.164469i
\(712\) 9.00000 15.5885i 0.337289 0.584202i
\(713\) 33.9411i 1.27111i
\(714\) 0 0
\(715\) 16.0000 + 19.5959i 0.598366 + 0.732846i
\(716\) −2.44949 1.41421i −0.0915417 0.0528516i
\(717\) 4.44949 + 2.04989i 0.166169 + 0.0765545i
\(718\) 46.6690 26.9444i 1.74167 1.00556i
\(719\) −20.7846 + 36.0000i −0.775135 + 1.34257i 0.159583 + 0.987184i \(0.448985\pi\)
−0.934718 + 0.355389i \(0.884348\pi\)
\(720\) −11.3397 31.5660i −0.422607 1.17639i
\(721\) 0 0
\(722\) −32.9090 −1.22474
\(723\) −1.55708 16.8990i −0.0579084 0.628480i
\(724\) 0 0
\(725\) 8.95743 + 26.8284i 0.332670 + 0.996383i
\(726\) 8.96204 0.825765i 0.332612 0.0306470i
\(727\) 10.0000 0.370879 0.185440 0.982656i \(-0.440629\pi\)
0.185440 + 0.982656i \(0.440629\pi\)
\(728\) 0 0
\(729\) 23.0000 14.1421i 0.851852 0.523783i
\(730\) 4.97056 + 30.5826i 0.183969 + 1.13191i
\(731\) −6.92820 12.0000i −0.256249 0.443836i
\(732\) 15.4135 + 7.10102i 0.569699 + 0.262461i
\(733\) −14.0000 + 24.2487i −0.517102 + 0.895647i 0.482701 + 0.875785i \(0.339656\pi\)
−0.999803 + 0.0198613i \(0.993678\pi\)
\(734\) −17.3205 −0.639312
\(735\) 0 0
\(736\) −18.0000 −0.663489
\(737\) −6.92820 + 12.0000i −0.255204 + 0.442026i
\(738\) −17.6969 + 3.28913i −0.651433 + 0.121075i
\(739\) −10.0000 17.3205i −0.367856 0.637145i 0.621374 0.783514i \(-0.286575\pi\)
−0.989230 + 0.146369i \(0.953241\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −24.2487 −0.889599 −0.444799 0.895630i \(-0.646725\pi\)
−0.444799 + 0.895630i \(0.646725\pi\)
\(744\) 2.69694 + 29.2699i 0.0988746 + 1.07309i
\(745\) 8.97056 23.6544i 0.328656 0.866629i
\(746\) −14.6969 + 8.48528i −0.538093 + 0.310668i
\(747\) −6.44949 + 5.51399i −0.235974 + 0.201746i
\(748\) 8.00000 0.292509
\(749\) 0 0
\(750\) −15.2487 + 29.8744i −0.556804 + 1.09086i
\(751\) −4.00000 + 6.92820i −0.145962 + 0.252814i −0.929731 0.368238i \(-0.879961\pi\)
0.783769 + 0.621052i \(0.213294\pi\)
\(752\) 12.2474 7.07107i 0.446619 0.257855i
\(753\) −15.0635 + 32.6969i −0.548946 + 1.19154i
\(754\) −33.9411 19.5959i −1.23606 0.713641i
\(755\) 13.8564 11.3137i 0.504286 0.411748i
\(756\) 0 0
\(757\) 29.3939i 1.06834i −0.845378 0.534169i \(-0.820624\pi\)
0.845378 0.534169i \(-0.179376\pi\)
\(758\) −24.2487 + 42.0000i −0.880753 + 1.52551i
\(759\) −15.4135 7.10102i −0.559474 0.257751i
\(760\) 0 0
\(761\) 19.0526 33.0000i 0.690655 1.19625i −0.280969 0.959717i \(-0.590656\pi\)
0.971624 0.236532i \(-0.0760109\pi\)
\(762\) 36.0000 25.4558i 1.30414 0.922168i
\(763\) 0 0
\(764\) 19.7990i 0.716302i
\(765\) −3.37288 + 18.6715i −0.121947 + 0.675068i
\(766\) −21.2132 + 12.2474i −0.766464 + 0.442518i
\(767\) 13.8564 + 24.0000i 0.500326 + 0.866590i
\(768\) −32.7702 + 3.01945i −1.18249 + 0.108955i
\(769\) 19.5959i 0.706647i 0.935501 + 0.353323i \(0.114948\pi\)
−0.935501 + 0.353323i \(0.885052\pi\)
\(770\) 0 0
\(771\) −20.0000 + 14.1421i −0.720282 + 0.509317i
\(772\) −8.48528 4.89898i −0.305392 0.176318i
\(773\) −2.44949 + 1.41421i −0.0881020 + 0.0508657i −0.543404 0.839471i \(-0.682865\pi\)
0.455302 + 0.890337i \(0.349531\pi\)
\(774\) −4.65153 25.0273i −0.167196 0.899586i
\(775\) 32.4853 36.6702i 1.16691 1.31723i
\(776\) −13.8564 −0.497416
\(777\) 0 0
\(778\) 39.1918i 1.40510i
\(779\) 0 0
\(780\) −3.87780 14.9988i −0.138848 0.537042i
\(781\) 4.00000 + 6.92820i 0.143131 + 0.247911i
\(782\) 14.6969 + 8.48528i 0.525561 + 0.303433i
\(783\) 8.00000 + 28.2843i 0.285897 + 1.01080i
\(784\) 0 0
\(785\) 6.92820 5.65685i 0.247278 0.201902i
\(786\) −20.6969 + 1.90702i −0.738235 + 0.0680213i
\(787\) 7.00000 + 12.1244i 0.249523 + 0.432187i 0.963394 0.268091i \(-0.0863928\pi\)
−0.713871 + 0.700278i \(0.753059\pi\)
\(788\) 0 0
\(789\) −5.97469 + 0.550510i −0.212705 + 0.0195987i
\(790\) −24.0000 + 19.5959i −0.853882 + 0.697191i
\(791\) 0 0
\(792\) −13.8564 4.89898i −0.492366 0.174078i
\(793\) −33.9411 19.5959i −1.20528 0.695871i
\(794\) −17.3205 30.0000i −0.614682 1.06466i
\(795\) 0 0
\(796\) 0 0
\(797\) 36.7696i 1.30244i −0.758887 0.651222i \(-0.774257\pi\)
0.758887 0.651222i \(-0.225743\pi\)
\(798\) 0 0
\(799\) −8.00000 −0.283020
\(800\) 19.4473 + 17.2279i 0.687567 + 0.609099i
\(801\) −30.6520 + 5.69694i −1.08304 + 0.201291i
\(802\) 33.9411 19.5959i 1.19850 0.691956i
\(803\) 19.5959 + 11.3137i 0.691525 + 0.399252i
\(804\) 6.92820 4.89898i 0.244339 0.172774i
\(805\) 0 0
\(806\) 67.8823i 2.39105i
\(807\) −17.9241 + 1.65153i −0.630957 + 0.0581366i
\(808\) −15.0000 25.9808i −0.527698 0.914000i
\(809\) −19.5959 + 11.3137i −0.688956 + 0.397769i −0.803221 0.595682i \(-0.796882\pi\)
0.114265 + 0.993450i \(0.463549\pi\)
\(810\) −17.2759 + 30.2745i −0.607013 + 1.06374i
\(811\) 29.3939i 1.03216i −0.856541 0.516079i \(-0.827391\pi\)
0.856541 0.516079i \(-0.172609\pi\)
\(812\) 0 0
\(813\) 41.5692 29.3939i 1.45790 1.03089i
\(814\) 0 0
\(815\) −11.6531 + 30.7279i −0.408190 + 1.07635i
\(816\) 22.2474 + 10.2494i 0.778816 + 0.358802i
\(817\) 0 0
\(818\) 16.9706i 0.593362i
\(819\) 0 0
\(820\) 6.00000 4.89898i 0.209529 0.171080i
\(821\) 19.5959 + 11.3137i 0.683902 + 0.394851i 0.801324 0.598231i \(-0.204129\pi\)
−0.117421 + 0.993082i \(0.537463\pi\)
\(822\) 8.69694 18.8776i 0.303341 0.658431i
\(823\) −4.24264 + 2.44949i −0.147889 + 0.0853838i −0.572119 0.820171i \(-0.693878\pi\)
0.424229 + 0.905555i \(0.360545\pi\)
\(824\) −8.66025 + 15.0000i −0.301694 + 0.522550i
\(825\) 9.85641 + 22.4243i 0.343156 + 0.780715i
\(826\) 0 0
\(827\) 10.3923 0.361376 0.180688 0.983540i \(-0.442168\pi\)
0.180688 + 0.983540i \(0.442168\pi\)
\(828\) 6.75323 + 7.89898i 0.234691 + 0.274509i
\(829\) 25.4558 14.6969i 0.884118 0.510446i 0.0121040 0.999927i \(-0.496147\pi\)
0.872014 + 0.489481i \(0.162814\pi\)
\(830\) 3.88437 10.2426i 0.134828 0.355527i
\(831\) −3.11416 33.7980i −0.108029 1.17244i
\(832\) 4.00000 0.138675
\(833\) 0 0
\(834\) −24.0000 + 16.9706i −0.831052 + 0.587643i
\(835\) −31.2132 + 5.07306i −1.08018 + 0.175560i
\(836\) 0 0
\(837\) 35.4982 36.4949i 1.22700 1.26145i
\(838\) −6.00000 + 10.3923i −0.207267 + 0.358996i
\(839\) 27.7128 0.956753 0.478376 0.878155i \(-0.341226\pi\)
0.478376 + 0.878155i \(0.341226\pi\)
\(840\) 0 0
\(841\) −3.00000 −0.103448
\(842\) 22.5167 39.0000i 0.775975 1.34403i
\(843\) 44.4949 + 20.4989i 1.53249 + 0.706019i
\(844\) 2.00000 + 3.46410i 0.0688428 + 0.119239i
\(845\) 1.07616 + 6.62132i 0.0370210 + 0.227780i
\(846\) −13.8564 4.89898i −0.476393 0.168430i
\(847\) 0 0
\(848\) 0 0
\(849\) 24.1464 2.22486i 0.828703 0.0763570i
\(850\) −7.75736 23.2341i −0.266075 0.796923i
\(851\) 0 0
\(852\) −0.449490 4.87832i −0.0153993 0.167128i
\(853\) −20.0000 −0.684787 −0.342393 0.939557i \(-0.611238\pi\)
−0.342393 + 0.939557i \(0.611238\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −9.00000 + 15.5885i −0.307614 + 0.532803i
\(857\) 41.6413 24.0416i 1.42244 0.821246i 0.425933 0.904754i \(-0.359946\pi\)
0.996507 + 0.0835080i \(0.0266124\pi\)
\(858\) −30.8270 14.2020i −1.05242 0.484850i
\(859\) 33.9411 + 19.5959i 1.15806 + 0.668604i 0.950837 0.309691i \(-0.100225\pi\)
0.207219 + 0.978295i \(0.433559\pi\)
\(860\) 6.92820 + 8.48528i 0.236250 + 0.289346i
\(861\) 0 0
\(862\) 4.89898i 0.166860i
\(863\) −5.19615 + 9.00000i −0.176879 + 0.306364i −0.940810 0.338935i \(-0.889933\pi\)
0.763931 + 0.645298i \(0.223267\pi\)
\(864\) 19.3543 + 18.8258i 0.658448 + 0.640466i
\(865\) −15.6985 + 41.3951i −0.533764 + 1.40748i
\(866\) 13.8564 24.0000i 0.470860 0.815553i
\(867\) 9.00000 + 12.7279i 0.305656 + 0.432263i
\(868\) 0 0
\(869\) 22.6274i 0.767583i
\(870\) −26.5957 27.0679i −0.901679 0.917686i
\(871\) −16.9706 + 9.79796i −0.575026 + 0.331991i
\(872\) 8.66025 + 15.0000i 0.293273 + 0.507964i
\(873\) 15.5959 + 18.2419i 0.527842 + 0.617395i
\(874\) 0 0
\(875\) 0 0
\(876\) −8.00000 11.3137i −0.270295 0.382255i
\(877\) 42.4264 + 24.4949i 1.43264 + 0.827134i 0.997321 0.0731435i \(-0.0233031\pi\)
0.435317 + 0.900277i \(0.356636\pi\)
\(878\) −58.7878 + 33.9411i −1.98399 + 1.14546i
\(879\) −4.44949 2.04989i −0.150078 0.0691410i
\(880\) 31.2132 5.07306i 1.05220 0.171013i
\(881\) 10.3923 0.350126 0.175063 0.984557i \(-0.443987\pi\)
0.175063 + 0.984557i \(0.443987\pi\)
\(882\) 0 0
\(883\) 14.6969i 0.494591i 0.968940 + 0.247296i \(0.0795419\pi\)
−0.968940 + 0.247296i \(0.920458\pi\)
\(884\) 9.79796 + 5.65685i 0.329541 + 0.190261i
\(885\) 6.71655 + 25.9786i 0.225774 + 0.873261i
\(886\) −15.0000 25.9808i −0.503935 0.872841i
\(887\) 2.44949 + 1.41421i 0.0822458 + 0.0474846i 0.540559 0.841306i \(-0.318213\pi\)
−0.458313 + 0.888791i \(0.651546\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 31.1769 25.4558i 1.04505 0.853282i
\(891\) 9.14643 + 23.7559i 0.306417 + 0.795853i
\(892\) 13.0000 + 22.5167i 0.435272 + 0.753914i
\(893\) 0 0
\(894\) 3.11416 + 33.7980i 0.104153 + 1.13037i
\(895\) 4.00000 + 4.89898i 0.133705 + 0.163755i
\(896\) 0 0
\(897\) −13.8564 19.5959i −0.462652 0.654289i
\(898\) −8.48528 4.89898i −0.283158 0.163481i
\(899\) 27.7128 + 48.0000i 0.924274 + 1.60089i
\(900\) 0.263927 14.9977i 0.00879757 0.499923i
\(901\) 0 0
\(902\) 16.9706i 0.565058i
\(903\) 0 0
\(904\) 12.0000 0.399114
\(905\) 0 0
\(906\) −10.0424 + 21.7980i −0.333635 + 0.724189i
\(907\) −21.2132 + 12.2474i −0.704373 + 0.406670i −0.808974 0.587844i \(-0.799977\pi\)
0.104601 + 0.994514i \(0.466643\pi\)
\(908\) 2.44949 + 1.41421i 0.0812892 + 0.0469323i
\(909\) −17.3205 + 48.9898i −0.574485 + 1.62489i
\(910\) 0 0
\(911\) 48.0833i 1.59307i −0.604593 0.796535i \(-0.706664\pi\)
0.604593 0.796535i \(-0.293336\pi\)
\(912\) 0 0
\(913\) −4.00000 6.92820i −0.132381 0.229290i
\(914\) −29.3939 + 16.9706i −0.972263 + 0.561336i
\(915\) −26.5957 27.0679i −0.879227 0.894836i
\(916\) 19.5959i 0.647467i
\(917\) 0 0
\(918\) −6.92820 24.4949i −0.228665 0.808452i
\(919\) 8.00000 13.8564i 0.263896 0.457081i −0.703378 0.710816i \(-0.748326\pi\)
0.967274 + 0.253735i \(0.0816592\pi\)
\(920\) 12.5446 + 4.75736i 0.413584 + 0.156845i
\(921\) 7.24745 15.7313i 0.238812 0.518365i
\(922\) −3.00000 + 5.19615i −0.0987997 + 0.171126i
\(923\) 11.3137i 0.372395i
\(924\) 0 0
\(925\) 0 0
\(926\) −7.34847 4.24264i −0.241486 0.139422i
\(927\) 29.4949 5.48188i 0.968740 0.180049i
\(928\) −25.4558 + 14.6969i −0.835629 + 0.482451i
\(929\) 22.5167 39.0000i 0.738748 1.27955i −0.214312 0.976765i \(-0.568751\pi\)
0.953059 0.302783i \(-0.0979158\pi\)
\(930\) −17.5692 + 63.3350i −0.576117 + 2.07684i
\(931\) 0 0
\(932\) −20.7846 −0.680823
\(933\) 47.7975 4.40408i 1.56482 0.144183i
\(934\) 4.24264 2.44949i 0.138823 0.0801498i
\(935\) −16.7262 6.34315i −0.547004 0.207443i
\(936\) −13.5065 15.7980i −0.441472 0.516372i
\(937\) −8.00000 −0.261349 −0.130674 0.991425i \(-0.541714\pi\)
−0.130674 + 0.991425i \(0.541714\pi\)
\(938\) 0 0
\(939\) 16.0000 + 22.6274i 0.522140 + 0.738418i
\(940\) 6.24264 1.01461i 0.203612 0.0330930i
\(941\) −12.1244 21.0000i −0.395243 0.684580i 0.597889 0.801579i \(-0.296006\pi\)
−0.993132 + 0.116998i \(0.962673\pi\)
\(942\) −5.02118 + 10.8990i −0.163599 + 0.355108i
\(943\) 6.00000 10.3923i 0.195387 0.338420i
\(944\) 34.6410 1.12747
\(945\) 0 0
\(946\) 24.0000 0.780307
\(947\) −1.73205 + 3.00000i −0.0562841 + 0.0974869i −0.892795 0.450464i \(-0.851259\pi\)
0.836511 + 0.547951i \(0.184592\pi\)
\(948\) 5.79796 12.5851i 0.188309 0.408744i
\(949\) 16.0000 + 27.7128i 0.519382 + 0.899596i
\(950\) 0 0
\(951\) 13.8564 + 19.5959i 0.449325 + 0.635441i
\(952\) 0 0
\(953\) −20.7846 −0.673280 −0.336640 0.941634i \(-0.609290\pi\)
−0.336640 + 0.941634i \(0.609290\pi\)
\(954\) 0 0
\(955\) 15.6985 41.3951i 0.507991 1.33952i
\(956\) 2.44949 1.41421i 0.0792222 0.0457389i
\(957\) −27.5959 + 2.54270i −0.892049 + 0.0821938i
\(958\) −48.0000 −1.55081
\(959\) 0 0
\(960\) 3.73205 + 1.03528i 0.120451 + 0.0334134i
\(961\) 32.5000 56.2917i 1.04839 1.81586i
\(962\) 0 0
\(963\) 30.6520 5.69694i 0.987747 0.183581i
\(964\) −8.48528 4.89898i −0.273293 0.157786i
\(965\) 13.8564 + 16.9706i 0.446054 + 0.546302i
\(966\) 0 0
\(967\) 34.2929i 1.10278i −0.834246 0.551392i \(-0.814097\pi\)
0.834246 0.551392i \(-0.185903\pi\)
\(968\) −2.59808 + 4.50000i −0.0835053 + 0.144635i
\(969\) 0 0
\(970\) −28.9706 10.9867i −0.930189 0.352760i
\(971\) −10.3923 + 18.0000i −0.333505 + 0.577647i −0.983196 0.182550i \(-0.941565\pi\)
0.649692 + 0.760198i \(0.274898\pi\)
\(972\) 1.00000 15.5563i 0.0320750 0.498970i
\(973\) 0 0
\(974\) 25.4558i 0.815658i
\(975\) −3.78482 + 34.4336i −0.121211 + 1.10276i
\(976\) −42.4264 + 24.4949i −1.35804 + 0.784063i
\(977\) −24.2487 42.0000i −0.775785 1.34370i −0.934352 0.356351i \(-0.884021\pi\)
0.158567 0.987348i \(-0.449313\pi\)
\(978\) −4.04541 43.9048i −0.129358 1.40392i
\(979\) 29.3939i 0.939432i
\(980\) 0 0
\(981\) 10.0000 28.2843i 0.319275 0.903047i
\(982\) −21.2132 12.2474i −0.676941 0.390832i
\(983\) −2.44949 + 1.41421i −0.0781266 + 0.0451064i −0.538554 0.842591i \(-0.681029\pi\)
0.460428 + 0.887697i \(0.347696\pi\)
\(984\) 4.34847 9.43879i 0.138624 0.300898i
\(985\) 0 0
\(986\) 27.7128 0.882556
\(987\) 0 0
\(988\) 0 0
\(989\) 14.6969 + 8.48528i 0.467335 + 0.269816i
\(990\) −25.0862 21.2293i −0.797292 0.674711i
\(991\) −4.00000 6.92820i −0.127064 0.220082i 0.795474 0.605988i \(-0.207222\pi\)
−0.922538 + 0.385906i \(0.873889\pi\)
\(992\) 44.0908 + 25.4558i 1.39988 + 0.808224i
\(993\) −28.0000 39.5980i −0.888553 1.25660i
\(994\) 0 0
\(995\) 0 0
\(996\) 0.449490 + 4.87832i 0.0142426 + 0.154575i
\(997\) −26.0000 45.0333i −0.823428 1.42622i −0.903115 0.429400i \(-0.858725\pi\)
0.0796863 0.996820i \(-0.474608\pi\)
\(998\) −3.46410 6.00000i −0.109654 0.189927i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.p.a.509.4 8
3.2 odd 2 inner 735.2.p.a.509.1 8
5.4 even 2 735.2.p.c.509.1 8
7.2 even 3 105.2.g.c.104.2 yes 4
7.3 odd 6 735.2.p.c.374.4 8
7.4 even 3 inner 735.2.p.a.374.3 8
7.5 odd 6 105.2.g.a.104.1 4
7.6 odd 2 735.2.p.c.509.3 8
15.14 odd 2 735.2.p.c.509.4 8
21.2 odd 6 105.2.g.c.104.3 yes 4
21.5 even 6 105.2.g.a.104.4 yes 4
21.11 odd 6 inner 735.2.p.a.374.2 8
21.17 even 6 735.2.p.c.374.1 8
21.20 even 2 735.2.p.c.509.2 8
28.19 even 6 1680.2.k.c.209.3 4
28.23 odd 6 1680.2.k.a.209.2 4
35.2 odd 12 525.2.b.j.251.3 8
35.4 even 6 735.2.p.c.374.2 8
35.9 even 6 105.2.g.a.104.3 yes 4
35.12 even 12 525.2.b.j.251.2 8
35.19 odd 6 105.2.g.c.104.4 yes 4
35.23 odd 12 525.2.b.j.251.6 8
35.24 odd 6 inner 735.2.p.a.374.1 8
35.33 even 12 525.2.b.j.251.7 8
35.34 odd 2 inner 735.2.p.a.509.2 8
84.23 even 6 1680.2.k.a.209.3 4
84.47 odd 6 1680.2.k.c.209.2 4
105.2 even 12 525.2.b.j.251.5 8
105.23 even 12 525.2.b.j.251.4 8
105.44 odd 6 105.2.g.a.104.2 yes 4
105.47 odd 12 525.2.b.j.251.8 8
105.59 even 6 inner 735.2.p.a.374.4 8
105.68 odd 12 525.2.b.j.251.1 8
105.74 odd 6 735.2.p.c.374.3 8
105.89 even 6 105.2.g.c.104.1 yes 4
105.104 even 2 inner 735.2.p.a.509.3 8
140.19 even 6 1680.2.k.a.209.1 4
140.79 odd 6 1680.2.k.c.209.4 4
420.299 odd 6 1680.2.k.a.209.4 4
420.359 even 6 1680.2.k.c.209.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.g.a.104.1 4 7.5 odd 6
105.2.g.a.104.2 yes 4 105.44 odd 6
105.2.g.a.104.3 yes 4 35.9 even 6
105.2.g.a.104.4 yes 4 21.5 even 6
105.2.g.c.104.1 yes 4 105.89 even 6
105.2.g.c.104.2 yes 4 7.2 even 3
105.2.g.c.104.3 yes 4 21.2 odd 6
105.2.g.c.104.4 yes 4 35.19 odd 6
525.2.b.j.251.1 8 105.68 odd 12
525.2.b.j.251.2 8 35.12 even 12
525.2.b.j.251.3 8 35.2 odd 12
525.2.b.j.251.4 8 105.23 even 12
525.2.b.j.251.5 8 105.2 even 12
525.2.b.j.251.6 8 35.23 odd 12
525.2.b.j.251.7 8 35.33 even 12
525.2.b.j.251.8 8 105.47 odd 12
735.2.p.a.374.1 8 35.24 odd 6 inner
735.2.p.a.374.2 8 21.11 odd 6 inner
735.2.p.a.374.3 8 7.4 even 3 inner
735.2.p.a.374.4 8 105.59 even 6 inner
735.2.p.a.509.1 8 3.2 odd 2 inner
735.2.p.a.509.2 8 35.34 odd 2 inner
735.2.p.a.509.3 8 105.104 even 2 inner
735.2.p.a.509.4 8 1.1 even 1 trivial
735.2.p.c.374.1 8 21.17 even 6
735.2.p.c.374.2 8 35.4 even 6
735.2.p.c.374.3 8 105.74 odd 6
735.2.p.c.374.4 8 7.3 odd 6
735.2.p.c.509.1 8 5.4 even 2
735.2.p.c.509.2 8 21.20 even 2
735.2.p.c.509.3 8 7.6 odd 2
735.2.p.c.509.4 8 15.14 odd 2
1680.2.k.a.209.1 4 140.19 even 6
1680.2.k.a.209.2 4 28.23 odd 6
1680.2.k.a.209.3 4 84.23 even 6
1680.2.k.a.209.4 4 420.299 odd 6
1680.2.k.c.209.1 4 420.359 even 6
1680.2.k.c.209.2 4 84.47 odd 6
1680.2.k.c.209.3 4 28.19 even 6
1680.2.k.c.209.4 4 140.79 odd 6