Properties

Label 728.2.s.d
Level $728$
Weight $2$
Character orbit 728.s
Analytic conductor $5.813$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(113,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.113"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,2,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{12}^{3} + \zeta_{12}^{2} - \zeta_{12}) q^{3} + ( - \zeta_{12}^{3} + 2 \zeta_{12} + 2) q^{5} + (\zeta_{12}^{2} - 1) q^{7} + ( - 4 \zeta_{12}^{3} + \zeta_{12}^{2} + \cdots - 1) q^{9} + ( - \zeta_{12}^{3} - 3 \zeta_{12}^{2} - \zeta_{12}) q^{11}+ \cdots + (5 \zeta_{12}^{3} - 10 \zeta_{12} - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 8 q^{5} - 2 q^{7} - 2 q^{9} - 6 q^{11} - 2 q^{15} + 4 q^{17} - 8 q^{19} - 4 q^{21} + 14 q^{23} + 8 q^{25} - 16 q^{27} + 2 q^{29} + 4 q^{31} - 4 q^{35} - 6 q^{37} - 18 q^{39} - 8 q^{41} + 14 q^{43}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1 + \zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
113.1
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
0 −0.366025 + 0.633975i 0 3.73205 0 −0.500000 0.866025i 0 1.23205 + 2.13397i 0
113.2 0 1.36603 2.36603i 0 0.267949 0 −0.500000 0.866025i 0 −2.23205 3.86603i 0
393.1 0 −0.366025 0.633975i 0 3.73205 0 −0.500000 + 0.866025i 0 1.23205 2.13397i 0
393.2 0 1.36603 + 2.36603i 0 0.267949 0 −0.500000 + 0.866025i 0 −2.23205 + 3.86603i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 728.2.s.d 4
4.b odd 2 1 1456.2.s.j 4
13.c even 3 1 inner 728.2.s.d 4
13.c even 3 1 9464.2.a.p 2
13.e even 6 1 9464.2.a.l 2
52.j odd 6 1 1456.2.s.j 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
728.2.s.d 4 1.a even 1 1 trivial
728.2.s.d 4 13.c even 3 1 inner
1456.2.s.j 4 4.b odd 2 1
1456.2.s.j 4 52.j odd 6 1
9464.2.a.l 2 13.e even 6 1
9464.2.a.p 2 13.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(728, [\chi])\):

\( T_{3}^{4} - 2T_{3}^{3} + 6T_{3}^{2} + 4T_{3} + 4 \) Copy content Toggle raw display
\( T_{5}^{2} - 4T_{5} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$5$ \( (T^{2} - 4 T + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 6 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$13$ \( T^{4} + 23T^{2} + 169 \) Copy content Toggle raw display
$17$ \( T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{4} + 8 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$23$ \( T^{4} - 14 T^{3} + \cdots + 2116 \) Copy content Toggle raw display
$29$ \( T^{4} - 2 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$31$ \( (T^{2} - 2 T - 2)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 6 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$41$ \( T^{4} + 8 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$43$ \( T^{4} - 14 T^{3} + \cdots + 2116 \) Copy content Toggle raw display
$47$ \( (T^{2} - 16 T + 52)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 2 T - 11)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 6 T^{3} + \cdots + 4356 \) Copy content Toggle raw display
$61$ \( T^{4} + 8 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$67$ \( T^{4} + 18 T^{3} + \cdots + 2916 \) Copy content Toggle raw display
$71$ \( T^{4} + 24 T^{3} + \cdots + 17424 \) Copy content Toggle raw display
$73$ \( (T^{2} - 20 T + 73)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 14 T + 22)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 6 T - 18)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} - 4 T^{3} + \cdots + 1936 \) Copy content Toggle raw display
$97$ \( T^{4} + 8 T^{3} + \cdots + 8464 \) Copy content Toggle raw display
show more
show less