Properties

Label 728.2.h.b.27.9
Level $728$
Weight $2$
Character 728.27
Analytic conductor $5.813$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(27,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.27"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,1,0,1,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 27.9
Character \(\chi\) \(=\) 728.27
Dual form 728.2.h.b.27.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.25982 - 0.642544i) q^{2} +2.44281i q^{3} +(1.17427 + 1.61897i) q^{4} -3.85137 q^{5} +(1.56961 - 3.07749i) q^{6} +(-2.49284 + 0.886436i) q^{7} +(-0.439107 - 2.79413i) q^{8} -2.96733 q^{9} +(4.85202 + 2.47467i) q^{10} -1.81225 q^{11} +(-3.95485 + 2.86853i) q^{12} +1.00000 q^{13} +(3.71009 + 0.485010i) q^{14} -9.40816i q^{15} +(-1.24216 + 3.80224i) q^{16} -3.46118i q^{17} +(3.73828 + 1.90664i) q^{18} +4.50271i q^{19} +(-4.52256 - 6.23527i) q^{20} +(-2.16540 - 6.08953i) q^{21} +(2.28311 + 1.16445i) q^{22} -0.813440i q^{23} +(6.82554 - 1.07266i) q^{24} +9.83303 q^{25} +(-1.25982 - 0.642544i) q^{26} +0.0798187i q^{27} +(-4.36239 - 2.99492i) q^{28} -2.95921i q^{29} +(-6.04516 + 11.8526i) q^{30} -7.74273 q^{31} +(4.00800 - 3.99198i) q^{32} -4.42699i q^{33} +(-2.22396 + 4.36046i) q^{34} +(9.60083 - 3.41399i) q^{35} +(-3.48445 - 4.80402i) q^{36} -0.986953i q^{37} +(2.89319 - 5.67259i) q^{38} +2.44281i q^{39} +(1.69116 + 10.7612i) q^{40} -3.45219i q^{41} +(-1.18479 + 9.06305i) q^{42} +5.13822 q^{43} +(-2.12808 - 2.93399i) q^{44} +11.4283 q^{45} +(-0.522671 + 1.02479i) q^{46} +12.5979 q^{47} +(-9.28816 - 3.03436i) q^{48} +(5.42846 - 4.41948i) q^{49} +(-12.3878 - 6.31816i) q^{50} +8.45502 q^{51} +(1.17427 + 1.61897i) q^{52} +1.21088i q^{53} +(0.0512870 - 0.100557i) q^{54} +6.97966 q^{55} +(3.57144 + 6.57608i) q^{56} -10.9993 q^{57} +(-1.90142 + 3.72806i) q^{58} +12.8822i q^{59} +(15.2316 - 11.0478i) q^{60} +4.69520 q^{61} +(9.75441 + 4.97504i) q^{62} +(7.39705 - 2.63034i) q^{63} +(-7.61437 + 2.45385i) q^{64} -3.85137 q^{65} +(-2.84454 + 5.57720i) q^{66} -2.12856 q^{67} +(5.60357 - 4.06438i) q^{68} +1.98708 q^{69} +(-14.2889 - 1.86795i) q^{70} -3.99821i q^{71} +(1.30297 + 8.29110i) q^{72} -9.25114i q^{73} +(-0.634161 + 1.24338i) q^{74} +24.0202i q^{75} +(-7.28978 + 5.28742i) q^{76} +(4.51765 - 1.60645i) q^{77} +(1.56961 - 3.07749i) q^{78} -11.8410i q^{79} +(4.78401 - 14.6438i) q^{80} -9.09696 q^{81} +(-2.21819 + 4.34913i) q^{82} -17.6272i q^{83} +(7.31602 - 10.6565i) q^{84} +13.3303i q^{85} +(-6.47322 - 3.30154i) q^{86} +7.22879 q^{87} +(0.795774 + 5.06368i) q^{88} -0.651173i q^{89} +(-14.3975 - 7.34316i) q^{90} +(-2.49284 + 0.886436i) q^{91} +(1.31694 - 0.955202i) q^{92} -18.9140i q^{93} +(-15.8711 - 8.09472i) q^{94} -17.3416i q^{95} +(9.75166 + 9.79079i) q^{96} -10.3289i q^{97} +(-9.67857 + 2.07971i) q^{98} +5.37755 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + q^{2} + q^{4} + 10 q^{6} - 5 q^{8} - 48 q^{9} - 4 q^{11} - 10 q^{12} + 48 q^{13} - 6 q^{14} + 5 q^{16} - 15 q^{18} + 22 q^{20} - 6 q^{22} + 48 q^{25} + q^{26} - 26 q^{28} - 26 q^{30} - 19 q^{32}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.25982 0.642544i −0.890825 0.454347i
\(3\) 2.44281i 1.41036i 0.709030 + 0.705179i \(0.249133\pi\)
−0.709030 + 0.705179i \(0.750867\pi\)
\(4\) 1.17427 + 1.61897i 0.587137 + 0.809487i
\(5\) −3.85137 −1.72238 −0.861192 0.508280i \(-0.830282\pi\)
−0.861192 + 0.508280i \(0.830282\pi\)
\(6\) 1.56961 3.07749i 0.640792 1.25638i
\(7\) −2.49284 + 0.886436i −0.942203 + 0.335041i
\(8\) −0.439107 2.79413i −0.155248 0.987876i
\(9\) −2.96733 −0.989108
\(10\) 4.85202 + 2.47467i 1.53434 + 0.782560i
\(11\) −1.81225 −0.546415 −0.273208 0.961955i \(-0.588085\pi\)
−0.273208 + 0.961955i \(0.588085\pi\)
\(12\) −3.95485 + 2.86853i −1.14167 + 0.828073i
\(13\) 1.00000 0.277350
\(14\) 3.71009 + 0.485010i 0.991563 + 0.129624i
\(15\) 9.40816i 2.42918i
\(16\) −1.24216 + 3.80224i −0.310540 + 0.950560i
\(17\) 3.46118i 0.839461i −0.907649 0.419730i \(-0.862125\pi\)
0.907649 0.419730i \(-0.137875\pi\)
\(18\) 3.73828 + 1.90664i 0.881122 + 0.449399i
\(19\) 4.50271i 1.03299i 0.856289 + 0.516496i \(0.172764\pi\)
−0.856289 + 0.516496i \(0.827236\pi\)
\(20\) −4.52256 6.23527i −1.01128 1.39425i
\(21\) −2.16540 6.08953i −0.472528 1.32884i
\(22\) 2.28311 + 1.16445i 0.486760 + 0.248262i
\(23\) 0.813440i 0.169614i −0.996397 0.0848070i \(-0.972973\pi\)
0.996397 0.0848070i \(-0.0270274\pi\)
\(24\) 6.82554 1.07266i 1.39326 0.218955i
\(25\) 9.83303 1.96661
\(26\) −1.25982 0.642544i −0.247070 0.126013i
\(27\) 0.0798187i 0.0153611i
\(28\) −4.36239 2.99492i −0.824414 0.565987i
\(29\) 2.95921i 0.549511i −0.961514 0.274756i \(-0.911403\pi\)
0.961514 0.274756i \(-0.0885970\pi\)
\(30\) −6.04516 + 11.8526i −1.10369 + 2.16397i
\(31\) −7.74273 −1.39063 −0.695317 0.718703i \(-0.744736\pi\)
−0.695317 + 0.718703i \(0.744736\pi\)
\(32\) 4.00800 3.99198i 0.708521 0.705690i
\(33\) 4.42699i 0.770641i
\(34\) −2.22396 + 4.36046i −0.381407 + 0.747812i
\(35\) 9.60083 3.41399i 1.62284 0.577070i
\(36\) −3.48445 4.80402i −0.580742 0.800671i
\(37\) 0.986953i 0.162254i −0.996704 0.0811271i \(-0.974148\pi\)
0.996704 0.0811271i \(-0.0258520\pi\)
\(38\) 2.89319 5.67259i 0.469337 0.920215i
\(39\) 2.44281i 0.391163i
\(40\) 1.69116 + 10.7612i 0.267396 + 1.70150i
\(41\) 3.45219i 0.539142i −0.962981 0.269571i \(-0.913118\pi\)
0.962981 0.269571i \(-0.0868819\pi\)
\(42\) −1.18479 + 9.06305i −0.182817 + 1.39846i
\(43\) 5.13822 0.783572 0.391786 0.920056i \(-0.371857\pi\)
0.391786 + 0.920056i \(0.371857\pi\)
\(44\) −2.12808 2.93399i −0.320821 0.442316i
\(45\) 11.4283 1.70362
\(46\) −0.522671 + 1.02479i −0.0770637 + 0.151096i
\(47\) 12.5979 1.83759 0.918797 0.394729i \(-0.129162\pi\)
0.918797 + 0.394729i \(0.129162\pi\)
\(48\) −9.28816 3.03436i −1.34063 0.437972i
\(49\) 5.42846 4.41948i 0.775494 0.631354i
\(50\) −12.3878 6.31816i −1.75190 0.893522i
\(51\) 8.45502 1.18394
\(52\) 1.17427 + 1.61897i 0.162843 + 0.224511i
\(53\) 1.21088i 0.166328i 0.996536 + 0.0831639i \(0.0265025\pi\)
−0.996536 + 0.0831639i \(0.973498\pi\)
\(54\) 0.0512870 0.100557i 0.00697928 0.0136841i
\(55\) 6.97966 0.941137
\(56\) 3.57144 + 6.57608i 0.477254 + 0.878765i
\(57\) −10.9993 −1.45689
\(58\) −1.90142 + 3.72806i −0.249669 + 0.489518i
\(59\) 12.8822i 1.67712i 0.544807 + 0.838561i \(0.316603\pi\)
−0.544807 + 0.838561i \(0.683397\pi\)
\(60\) 15.2316 11.0478i 1.96639 1.42626i
\(61\) 4.69520 0.601159 0.300579 0.953757i \(-0.402820\pi\)
0.300579 + 0.953757i \(0.402820\pi\)
\(62\) 9.75441 + 4.97504i 1.23881 + 0.631831i
\(63\) 7.39705 2.63034i 0.931941 0.331392i
\(64\) −7.61437 + 2.45385i −0.951796 + 0.306731i
\(65\) −3.85137 −0.477703
\(66\) −2.84454 + 5.57720i −0.350138 + 0.686506i
\(67\) −2.12856 −0.260045 −0.130023 0.991511i \(-0.541505\pi\)
−0.130023 + 0.991511i \(0.541505\pi\)
\(68\) 5.60357 4.06438i 0.679533 0.492879i
\(69\) 1.98708 0.239216
\(70\) −14.2889 1.86795i −1.70785 0.223263i
\(71\) 3.99821i 0.474500i −0.971449 0.237250i \(-0.923754\pi\)
0.971449 0.237250i \(-0.0762460\pi\)
\(72\) 1.30297 + 8.29110i 0.153557 + 0.977116i
\(73\) 9.25114i 1.08276i −0.840777 0.541382i \(-0.817901\pi\)
0.840777 0.541382i \(-0.182099\pi\)
\(74\) −0.634161 + 1.24338i −0.0737197 + 0.144540i
\(75\) 24.0202i 2.77362i
\(76\) −7.28978 + 5.28742i −0.836195 + 0.606508i
\(77\) 4.51765 1.60645i 0.514834 0.183072i
\(78\) 1.56961 3.07749i 0.177724 0.348457i
\(79\) 11.8410i 1.33222i −0.745854 0.666110i \(-0.767958\pi\)
0.745854 0.666110i \(-0.232042\pi\)
\(80\) 4.78401 14.6438i 0.534869 1.63723i
\(81\) −9.09696 −1.01077
\(82\) −2.21819 + 4.34913i −0.244958 + 0.480281i
\(83\) 17.6272i 1.93484i −0.253182 0.967419i \(-0.581477\pi\)
0.253182 0.967419i \(-0.418523\pi\)
\(84\) 7.31602 10.6565i 0.798243 1.16272i
\(85\) 13.3303i 1.44587i
\(86\) −6.47322 3.30154i −0.698025 0.356014i
\(87\) 7.22879 0.775007
\(88\) 0.795774 + 5.06368i 0.0848298 + 0.539790i
\(89\) 0.651173i 0.0690242i −0.999404 0.0345121i \(-0.989012\pi\)
0.999404 0.0345121i \(-0.0109877\pi\)
\(90\) −14.3975 7.34316i −1.51763 0.774037i
\(91\) −2.49284 + 0.886436i −0.261320 + 0.0929238i
\(92\) 1.31694 0.955202i 0.137300 0.0995867i
\(93\) 18.9140i 1.96129i
\(94\) −15.8711 8.09472i −1.63697 0.834906i
\(95\) 17.3416i 1.77921i
\(96\) 9.75166 + 9.79079i 0.995275 + 0.999268i
\(97\) 10.3289i 1.04874i −0.851490 0.524371i \(-0.824301\pi\)
0.851490 0.524371i \(-0.175699\pi\)
\(98\) −9.67857 + 2.07971i −0.977684 + 0.210082i
\(99\) 5.37755 0.540464
\(100\) 11.5467 + 15.9194i 1.15467 + 1.59194i
\(101\) −18.0120 −1.79226 −0.896132 0.443788i \(-0.853634\pi\)
−0.896132 + 0.443788i \(0.853634\pi\)
\(102\) −10.6518 5.43272i −1.05468 0.537920i
\(103\) −3.56069 −0.350845 −0.175422 0.984493i \(-0.556129\pi\)
−0.175422 + 0.984493i \(0.556129\pi\)
\(104\) −0.439107 2.79413i −0.0430580 0.273987i
\(105\) 8.33974 + 23.4530i 0.813875 + 2.28878i
\(106\) 0.778046 1.52549i 0.0755705 0.148169i
\(107\) −14.4988 −1.40165 −0.700824 0.713334i \(-0.747184\pi\)
−0.700824 + 0.713334i \(0.747184\pi\)
\(108\) −0.129224 + 0.0937290i −0.0124346 + 0.00901908i
\(109\) 17.5262i 1.67870i 0.543589 + 0.839351i \(0.317065\pi\)
−0.543589 + 0.839351i \(0.682935\pi\)
\(110\) −8.79308 4.48474i −0.838388 0.427603i
\(111\) 2.41094 0.228836
\(112\) −0.273945 10.5795i −0.0258854 0.999665i
\(113\) −9.73680 −0.915962 −0.457981 0.888962i \(-0.651427\pi\)
−0.457981 + 0.888962i \(0.651427\pi\)
\(114\) 13.8571 + 7.06752i 1.29783 + 0.661934i
\(115\) 3.13286i 0.292141i
\(116\) 4.79089 3.47492i 0.444823 0.322639i
\(117\) −2.96733 −0.274329
\(118\) 8.27740 16.2292i 0.761996 1.49402i
\(119\) 3.06812 + 8.62817i 0.281254 + 0.790943i
\(120\) −26.2877 + 4.13119i −2.39972 + 0.377125i
\(121\) −7.71574 −0.701431
\(122\) −5.91509 3.01687i −0.535527 0.273135i
\(123\) 8.43305 0.760383
\(124\) −9.09209 12.5353i −0.816493 1.12570i
\(125\) −18.6138 −1.66487
\(126\) −11.0090 1.43918i −0.980763 0.128213i
\(127\) 0.775751i 0.0688368i 0.999408 + 0.0344184i \(0.0109579\pi\)
−0.999408 + 0.0344184i \(0.989042\pi\)
\(128\) 11.1694 + 1.80117i 0.987246 + 0.159202i
\(129\) 12.5517i 1.10512i
\(130\) 4.85202 + 2.47467i 0.425550 + 0.217043i
\(131\) 5.40650i 0.472368i −0.971708 0.236184i \(-0.924103\pi\)
0.971708 0.236184i \(-0.0758969\pi\)
\(132\) 7.16719 5.19850i 0.623824 0.452472i
\(133\) −3.99137 11.2245i −0.346095 0.973289i
\(134\) 2.68160 + 1.36770i 0.231655 + 0.118151i
\(135\) 0.307411i 0.0264577i
\(136\) −9.67101 + 1.51983i −0.829283 + 0.130324i
\(137\) 5.29585 0.452455 0.226227 0.974075i \(-0.427361\pi\)
0.226227 + 0.974075i \(0.427361\pi\)
\(138\) −2.50336 1.27679i −0.213100 0.108687i
\(139\) 15.7618i 1.33690i −0.743758 0.668449i \(-0.766959\pi\)
0.743758 0.668449i \(-0.233041\pi\)
\(140\) 16.8012 + 11.5345i 1.41996 + 0.974846i
\(141\) 30.7743i 2.59167i
\(142\) −2.56902 + 5.03700i −0.215588 + 0.422696i
\(143\) −1.81225 −0.151548
\(144\) 3.68589 11.2825i 0.307158 0.940207i
\(145\) 11.3970i 0.946470i
\(146\) −5.94427 + 11.6547i −0.491951 + 0.964553i
\(147\) 10.7960 + 13.2607i 0.890435 + 1.09372i
\(148\) 1.59785 1.15895i 0.131343 0.0952654i
\(149\) 20.2534i 1.65923i −0.558339 0.829613i \(-0.688561\pi\)
0.558339 0.829613i \(-0.311439\pi\)
\(150\) 15.4341 30.2611i 1.26019 2.47081i
\(151\) 10.6491i 0.866609i 0.901248 + 0.433304i \(0.142652\pi\)
−0.901248 + 0.433304i \(0.857348\pi\)
\(152\) 12.5812 1.97717i 1.02047 0.160370i
\(153\) 10.2705i 0.830318i
\(154\) −6.72362 0.878961i −0.541805 0.0708287i
\(155\) 29.8201 2.39521
\(156\) −3.95485 + 2.86853i −0.316641 + 0.229666i
\(157\) 12.8972 1.02931 0.514653 0.857398i \(-0.327921\pi\)
0.514653 + 0.857398i \(0.327921\pi\)
\(158\) −7.60838 + 14.9175i −0.605290 + 1.18677i
\(159\) −2.95796 −0.234582
\(160\) −15.4363 + 15.3746i −1.22035 + 1.21547i
\(161\) 0.721063 + 2.02777i 0.0568277 + 0.159811i
\(162\) 11.4605 + 5.84520i 0.900422 + 0.459242i
\(163\) 17.2917 1.35439 0.677195 0.735804i \(-0.263195\pi\)
0.677195 + 0.735804i \(0.263195\pi\)
\(164\) 5.58901 4.05382i 0.436429 0.316550i
\(165\) 17.0500i 1.32734i
\(166\) −11.3263 + 22.2070i −0.879088 + 1.72360i
\(167\) 9.67383 0.748583 0.374292 0.927311i \(-0.377886\pi\)
0.374292 + 0.927311i \(0.377886\pi\)
\(168\) −16.0641 + 8.72436i −1.23937 + 0.673099i
\(169\) 1.00000 0.0769231
\(170\) 8.56530 16.7937i 0.656929 1.28802i
\(171\) 13.3610i 1.02174i
\(172\) 6.03369 + 8.31866i 0.460064 + 0.634292i
\(173\) 7.65616 0.582087 0.291043 0.956710i \(-0.405998\pi\)
0.291043 + 0.956710i \(0.405998\pi\)
\(174\) −9.10695 4.64481i −0.690396 0.352123i
\(175\) −24.5121 + 8.71636i −1.85294 + 0.658895i
\(176\) 2.25111 6.89063i 0.169684 0.519400i
\(177\) −31.4688 −2.36534
\(178\) −0.418407 + 0.820358i −0.0313610 + 0.0614885i
\(179\) −22.6980 −1.69652 −0.848262 0.529576i \(-0.822351\pi\)
−0.848262 + 0.529576i \(0.822351\pi\)
\(180\) 13.4199 + 18.5021i 1.00026 + 1.37906i
\(181\) −16.7233 −1.24303 −0.621517 0.783400i \(-0.713483\pi\)
−0.621517 + 0.783400i \(0.713483\pi\)
\(182\) 3.71009 + 0.485010i 0.275010 + 0.0359513i
\(183\) 11.4695i 0.847849i
\(184\) −2.27286 + 0.357188i −0.167558 + 0.0263322i
\(185\) 3.80112i 0.279464i
\(186\) −12.1531 + 23.8282i −0.891108 + 1.74717i
\(187\) 6.27255i 0.458694i
\(188\) 14.7934 + 20.3957i 1.07892 + 1.48751i
\(189\) −0.0707542 0.198975i −0.00514661 0.0144733i
\(190\) −11.1427 + 21.8472i −0.808379 + 1.58496i
\(191\) 8.61903i 0.623651i 0.950139 + 0.311826i \(0.100940\pi\)
−0.950139 + 0.311826i \(0.899060\pi\)
\(192\) −5.99429 18.6005i −0.432601 1.34237i
\(193\) −18.9038 −1.36072 −0.680361 0.732877i \(-0.738177\pi\)
−0.680361 + 0.732877i \(0.738177\pi\)
\(194\) −6.63678 + 13.0125i −0.476493 + 0.934245i
\(195\) 9.40816i 0.673733i
\(196\) 13.5295 + 3.59886i 0.966395 + 0.257061i
\(197\) 4.49011i 0.319907i −0.987125 0.159954i \(-0.948865\pi\)
0.987125 0.159954i \(-0.0511345\pi\)
\(198\) −6.77472 3.45531i −0.481458 0.245558i
\(199\) 9.15280 0.648825 0.324413 0.945916i \(-0.394833\pi\)
0.324413 + 0.945916i \(0.394833\pi\)
\(200\) −4.31776 27.4748i −0.305311 1.94276i
\(201\) 5.19968i 0.366757i
\(202\) 22.6919 + 11.5735i 1.59659 + 0.814310i
\(203\) 2.62315 + 7.37682i 0.184109 + 0.517751i
\(204\) 9.92851 + 13.6885i 0.695135 + 0.958384i
\(205\) 13.2957i 0.928609i
\(206\) 4.48581 + 2.28790i 0.312541 + 0.159405i
\(207\) 2.41374i 0.167767i
\(208\) −1.24216 + 3.80224i −0.0861283 + 0.263638i
\(209\) 8.16005i 0.564443i
\(210\) 4.56305 34.9051i 0.314880 2.40868i
\(211\) 8.77366 0.604004 0.302002 0.953307i \(-0.402345\pi\)
0.302002 + 0.953307i \(0.402345\pi\)
\(212\) −1.96039 + 1.42191i −0.134640 + 0.0976572i
\(213\) 9.76686 0.669214
\(214\) 18.2658 + 9.31609i 1.24862 + 0.636835i
\(215\) −19.7892 −1.34961
\(216\) 0.223024 0.0350490i 0.0151749 0.00238478i
\(217\) 19.3013 6.86343i 1.31026 0.465920i
\(218\) 11.2613 22.0798i 0.762714 1.49543i
\(219\) 22.5988 1.52708
\(220\) 8.19603 + 11.2999i 0.552576 + 0.761838i
\(221\) 3.46118i 0.232824i
\(222\) −3.03734 1.54914i −0.203853 0.103971i
\(223\) 1.21343 0.0812571 0.0406286 0.999174i \(-0.487064\pi\)
0.0406286 + 0.999174i \(0.487064\pi\)
\(224\) −6.45265 + 13.5042i −0.431136 + 0.902287i
\(225\) −29.1778 −1.94519
\(226\) 12.2666 + 6.25633i 0.815961 + 0.416165i
\(227\) 27.1333i 1.80090i −0.434958 0.900451i \(-0.643237\pi\)
0.434958 0.900451i \(-0.356763\pi\)
\(228\) −12.9162 17.8075i −0.855394 1.17933i
\(229\) 0.338616 0.0223764 0.0111882 0.999937i \(-0.496439\pi\)
0.0111882 + 0.999937i \(0.496439\pi\)
\(230\) 2.01300 3.94683i 0.132733 0.260246i
\(231\) 3.92425 + 11.0358i 0.258197 + 0.726100i
\(232\) −8.26843 + 1.29941i −0.542849 + 0.0853105i
\(233\) −2.38874 −0.156492 −0.0782459 0.996934i \(-0.524932\pi\)
−0.0782459 + 0.996934i \(0.524932\pi\)
\(234\) 3.73828 + 1.90664i 0.244379 + 0.124641i
\(235\) −48.5192 −3.16504
\(236\) −20.8560 + 15.1273i −1.35761 + 0.984701i
\(237\) 28.9254 1.87891
\(238\) 1.67871 12.8413i 0.108815 0.832378i
\(239\) 22.6748i 1.46671i 0.679846 + 0.733355i \(0.262047\pi\)
−0.679846 + 0.733355i \(0.737953\pi\)
\(240\) 35.7721 + 11.6864i 2.30908 + 0.754356i
\(241\) 24.4172i 1.57285i −0.617685 0.786426i \(-0.711929\pi\)
0.617685 0.786426i \(-0.288071\pi\)
\(242\) 9.72041 + 4.95770i 0.624852 + 0.318693i
\(243\) 21.9827i 1.41019i
\(244\) 5.51345 + 7.60141i 0.352963 + 0.486631i
\(245\) −20.9070 + 17.0210i −1.33570 + 1.08743i
\(246\) −10.6241 5.41861i −0.677368 0.345478i
\(247\) 4.50271i 0.286501i
\(248\) 3.39989 + 21.6342i 0.215893 + 1.37377i
\(249\) 43.0599 2.72881
\(250\) 23.4500 + 11.9602i 1.48311 + 0.756428i
\(251\) 10.9009i 0.688057i 0.938959 + 0.344029i \(0.111792\pi\)
−0.938959 + 0.344029i \(0.888208\pi\)
\(252\) 12.9446 + 8.88690i 0.815435 + 0.559822i
\(253\) 1.47416i 0.0926797i
\(254\) 0.498454 0.977304i 0.0312758 0.0613215i
\(255\) −32.5634 −2.03920
\(256\) −12.9141 9.44598i −0.807130 0.590374i
\(257\) 27.1459i 1.69331i 0.532140 + 0.846657i \(0.321388\pi\)
−0.532140 + 0.846657i \(0.678612\pi\)
\(258\) 8.06503 15.8129i 0.502107 0.984465i
\(259\) 0.874871 + 2.46031i 0.0543619 + 0.152876i
\(260\) −4.52256 6.23527i −0.280477 0.386695i
\(261\) 8.78094i 0.543526i
\(262\) −3.47392 + 6.81120i −0.214619 + 0.420797i
\(263\) 27.3617i 1.68720i −0.536975 0.843598i \(-0.680433\pi\)
0.536975 0.843598i \(-0.319567\pi\)
\(264\) −12.3696 + 1.94393i −0.761297 + 0.119640i
\(265\) 4.66356i 0.286480i
\(266\) −2.18386 + 16.7055i −0.133901 + 1.02428i
\(267\) 1.59069 0.0973488
\(268\) −2.49952 3.44609i −0.152682 0.210503i
\(269\) −29.3298 −1.78827 −0.894134 0.447799i \(-0.852208\pi\)
−0.894134 + 0.447799i \(0.852208\pi\)
\(270\) −0.197525 + 0.387281i −0.0120210 + 0.0235692i
\(271\) −4.63752 −0.281709 −0.140855 0.990030i \(-0.544985\pi\)
−0.140855 + 0.990030i \(0.544985\pi\)
\(272\) 13.1603 + 4.29934i 0.797958 + 0.260686i
\(273\) −2.16540 6.08953i −0.131056 0.368555i
\(274\) −6.67180 3.40282i −0.403058 0.205572i
\(275\) −17.8200 −1.07458
\(276\) 2.33338 + 3.21703i 0.140453 + 0.193643i
\(277\) 2.25309i 0.135375i 0.997707 + 0.0676876i \(0.0215621\pi\)
−0.997707 + 0.0676876i \(0.978438\pi\)
\(278\) −10.1276 + 19.8570i −0.607416 + 1.19094i
\(279\) 22.9752 1.37549
\(280\) −13.7549 25.3269i −0.822015 1.51357i
\(281\) −7.46920 −0.445575 −0.222788 0.974867i \(-0.571516\pi\)
−0.222788 + 0.974867i \(0.571516\pi\)
\(282\) 19.7739 38.7700i 1.17752 2.30872i
\(283\) 0.265875i 0.0158047i −0.999969 0.00790233i \(-0.997485\pi\)
0.999969 0.00790233i \(-0.00251541\pi\)
\(284\) 6.47299 4.69499i 0.384102 0.278596i
\(285\) 42.3622 2.50932
\(286\) 2.28311 + 1.16445i 0.135003 + 0.0688555i
\(287\) 3.06015 + 8.60575i 0.180635 + 0.507981i
\(288\) −11.8930 + 11.8455i −0.700804 + 0.698004i
\(289\) 5.02020 0.295306
\(290\) 7.32308 14.3581i 0.430026 0.843138i
\(291\) 25.2316 1.47910
\(292\) 14.9774 10.8634i 0.876484 0.635731i
\(293\) −4.28179 −0.250145 −0.125072 0.992148i \(-0.539916\pi\)
−0.125072 + 0.992148i \(0.539916\pi\)
\(294\) −5.08033 23.6429i −0.296291 1.37888i
\(295\) 49.6142i 2.88865i
\(296\) −2.75768 + 0.433378i −0.160287 + 0.0251896i
\(297\) 0.144652i 0.00839354i
\(298\) −13.0137 + 25.5156i −0.753865 + 1.47808i
\(299\) 0.813440i 0.0470425i
\(300\) −38.8882 + 28.2064i −2.24521 + 1.62849i
\(301\) −12.8088 + 4.55471i −0.738284 + 0.262529i
\(302\) 6.84249 13.4159i 0.393741 0.771996i
\(303\) 44.0000i 2.52773i
\(304\) −17.1204 5.59309i −0.981922 0.320785i
\(305\) −18.0829 −1.03543
\(306\) 6.59922 12.9389i 0.377252 0.739667i
\(307\) 2.40502i 0.137262i −0.997642 0.0686309i \(-0.978137\pi\)
0.997642 0.0686309i \(-0.0218631\pi\)
\(308\) 7.90576 + 5.42755i 0.450472 + 0.309264i
\(309\) 8.69808i 0.494817i
\(310\) −37.5678 19.1607i −2.13371 1.08826i
\(311\) 18.9445 1.07424 0.537121 0.843505i \(-0.319512\pi\)
0.537121 + 0.843505i \(0.319512\pi\)
\(312\) 6.82554 1.07266i 0.386420 0.0607272i
\(313\) 2.60232i 0.147092i −0.997292 0.0735460i \(-0.976568\pi\)
0.997292 0.0735460i \(-0.0234316\pi\)
\(314\) −16.2481 8.28700i −0.916931 0.467662i
\(315\) −28.4888 + 10.1304i −1.60516 + 0.570785i
\(316\) 19.1703 13.9046i 1.07841 0.782195i
\(317\) 2.67627i 0.150314i 0.997172 + 0.0751571i \(0.0239458\pi\)
−0.997172 + 0.0751571i \(0.976054\pi\)
\(318\) 3.72649 + 1.90062i 0.208971 + 0.106581i
\(319\) 5.36284i 0.300261i
\(320\) 29.3257 9.45068i 1.63936 0.528309i
\(321\) 35.4177i 1.97682i
\(322\) 0.394527 3.01794i 0.0219861 0.168183i
\(323\) 15.5847 0.867157
\(324\) −10.6823 14.7277i −0.593462 0.818208i
\(325\) 9.83303 0.545439
\(326\) −21.7844 11.1107i −1.20652 0.615363i
\(327\) −42.8131 −2.36757
\(328\) −9.64589 + 1.51588i −0.532605 + 0.0837006i
\(329\) −31.4045 + 11.1672i −1.73139 + 0.615670i
\(330\) 10.9554 21.4798i 0.603073 1.18243i
\(331\) 15.6728 0.861453 0.430726 0.902483i \(-0.358257\pi\)
0.430726 + 0.902483i \(0.358257\pi\)
\(332\) 28.5380 20.6992i 1.56623 1.13602i
\(333\) 2.92861i 0.160487i
\(334\) −12.1872 6.21586i −0.666856 0.340117i
\(335\) 8.19788 0.447898
\(336\) 25.8436 0.669196i 1.40988 0.0365076i
\(337\) 27.0995 1.47620 0.738102 0.674690i \(-0.235723\pi\)
0.738102 + 0.674690i \(0.235723\pi\)
\(338\) −1.25982 0.642544i −0.0685250 0.0349498i
\(339\) 23.7852i 1.29183i
\(340\) −21.5814 + 15.6534i −1.17042 + 0.848926i
\(341\) 14.0318 0.759864
\(342\) −8.58504 + 16.8324i −0.464226 + 0.910193i
\(343\) −9.61467 + 15.8290i −0.519144 + 0.854687i
\(344\) −2.25623 14.3569i −0.121648 0.774072i
\(345\) −7.65298 −0.412023
\(346\) −9.64535 4.91942i −0.518537 0.264469i
\(347\) −2.59125 −0.139106 −0.0695528 0.997578i \(-0.522157\pi\)
−0.0695528 + 0.997578i \(0.522157\pi\)
\(348\) 8.48858 + 11.7032i 0.455036 + 0.627359i
\(349\) 12.4308 0.665408 0.332704 0.943031i \(-0.392039\pi\)
0.332704 + 0.943031i \(0.392039\pi\)
\(350\) 36.4814 + 4.76912i 1.95001 + 0.254920i
\(351\) 0.0798187i 0.00426041i
\(352\) −7.26351 + 7.23449i −0.387147 + 0.385599i
\(353\) 12.9113i 0.687198i −0.939116 0.343599i \(-0.888354\pi\)
0.939116 0.343599i \(-0.111646\pi\)
\(354\) 39.6450 + 20.2201i 2.10711 + 1.07469i
\(355\) 15.3986i 0.817271i
\(356\) 1.05423 0.764656i 0.0558742 0.0405267i
\(357\) −21.0770 + 7.49484i −1.11551 + 0.396669i
\(358\) 28.5953 + 14.5844i 1.51131 + 0.770811i
\(359\) 15.4518i 0.815517i 0.913090 + 0.407759i \(0.133690\pi\)
−0.913090 + 0.407759i \(0.866310\pi\)
\(360\) −5.01823 31.9321i −0.264484 1.68297i
\(361\) −1.27441 −0.0670740
\(362\) 21.0683 + 10.7455i 1.10733 + 0.564769i
\(363\) 18.8481i 0.989268i
\(364\) −4.36239 2.99492i −0.228651 0.156976i
\(365\) 35.6295i 1.86494i
\(366\) 7.36965 14.4494i 0.385218 0.755285i
\(367\) −31.0339 −1.61995 −0.809977 0.586461i \(-0.800521\pi\)
−0.809977 + 0.586461i \(0.800521\pi\)
\(368\) 3.09290 + 1.01042i 0.161228 + 0.0526719i
\(369\) 10.2438i 0.533270i
\(370\) 2.44239 4.78871i 0.126974 0.248953i
\(371\) −1.07337 3.01854i −0.0557267 0.156715i
\(372\) 30.6213 22.2102i 1.58764 1.15155i
\(373\) 23.1844i 1.20044i −0.799835 0.600220i \(-0.795080\pi\)
0.799835 0.600220i \(-0.204920\pi\)
\(374\) 4.03039 7.90225i 0.208406 0.408616i
\(375\) 45.4700i 2.34806i
\(376\) −5.53184 35.2003i −0.285283 1.81531i
\(377\) 2.95921i 0.152407i
\(378\) −0.0387128 + 0.296134i −0.00199117 + 0.0152315i
\(379\) −9.21018 −0.473095 −0.236547 0.971620i \(-0.576016\pi\)
−0.236547 + 0.971620i \(0.576016\pi\)
\(380\) 28.0756 20.3638i 1.44025 1.04464i
\(381\) −1.89501 −0.0970845
\(382\) 5.53811 10.8584i 0.283354 0.555564i
\(383\) −1.04939 −0.0536214 −0.0268107 0.999641i \(-0.508535\pi\)
−0.0268107 + 0.999641i \(0.508535\pi\)
\(384\) −4.39991 + 27.2848i −0.224532 + 1.39237i
\(385\) −17.3991 + 6.18702i −0.886742 + 0.315320i
\(386\) 23.8153 + 12.1465i 1.21216 + 0.618240i
\(387\) −15.2468 −0.775038
\(388\) 16.7222 12.1290i 0.848944 0.615755i
\(389\) 33.8614i 1.71684i −0.512948 0.858419i \(-0.671447\pi\)
0.512948 0.858419i \(-0.328553\pi\)
\(390\) −6.04516 + 11.8526i −0.306109 + 0.600178i
\(391\) −2.81547 −0.142384
\(392\) −14.7323 13.2272i −0.744093 0.668076i
\(393\) 13.2071 0.666208
\(394\) −2.88510 + 5.65672i −0.145349 + 0.284981i
\(395\) 45.6041i 2.29459i
\(396\) 6.31471 + 8.70611i 0.317326 + 0.437499i
\(397\) 15.8664 0.796314 0.398157 0.917317i \(-0.369650\pi\)
0.398157 + 0.917317i \(0.369650\pi\)
\(398\) −11.5309 5.88108i −0.577989 0.294792i
\(399\) 27.4194 9.75015i 1.37269 0.488118i
\(400\) −12.2142 + 37.3876i −0.610710 + 1.86938i
\(401\) −2.08850 −0.104295 −0.0521473 0.998639i \(-0.516607\pi\)
−0.0521473 + 0.998639i \(0.516607\pi\)
\(402\) −3.34102 + 6.55064i −0.166635 + 0.326716i
\(403\) −7.74273 −0.385693
\(404\) −21.1511 29.1610i −1.05230 1.45082i
\(405\) 35.0357 1.74094
\(406\) 1.43525 10.9789i 0.0712300 0.544875i
\(407\) 1.78861i 0.0886581i
\(408\) −3.71266 23.6245i −0.183804 1.16958i
\(409\) 1.03994i 0.0514215i −0.999669 0.0257107i \(-0.991815\pi\)
0.999669 0.0257107i \(-0.00818488\pi\)
\(410\) 8.54305 16.7501i 0.421911 0.827228i
\(411\) 12.9368i 0.638123i
\(412\) −4.18122 5.76466i −0.205994 0.284004i
\(413\) −11.4193 32.1133i −0.561906 1.58019i
\(414\) 1.55094 3.04087i 0.0762243 0.149451i
\(415\) 67.8889i 3.33253i
\(416\) 4.00800 3.99198i 0.196508 0.195723i
\(417\) 38.5031 1.88550
\(418\) −5.24319 + 10.2802i −0.256453 + 0.502820i
\(419\) 17.2962i 0.844973i 0.906369 + 0.422486i \(0.138843\pi\)
−0.906369 + 0.422486i \(0.861157\pi\)
\(420\) −28.1767 + 41.0421i −1.37488 + 2.00265i
\(421\) 21.9062i 1.06764i −0.845597 0.533821i \(-0.820755\pi\)
0.845597 0.533821i \(-0.179245\pi\)
\(422\) −11.0532 5.63746i −0.538061 0.274427i
\(423\) −37.3821 −1.81758
\(424\) 3.38337 0.531708i 0.164311 0.0258220i
\(425\) 34.0339i 1.65089i
\(426\) −12.3045 6.27564i −0.596153 0.304056i
\(427\) −11.7044 + 4.16200i −0.566414 + 0.201413i
\(428\) −17.0255 23.4731i −0.822960 1.13462i
\(429\) 4.42699i 0.213737i
\(430\) 24.9307 + 12.7154i 1.20227 + 0.613192i
\(431\) 23.8919i 1.15083i 0.817860 + 0.575417i \(0.195160\pi\)
−0.817860 + 0.575417i \(0.804840\pi\)
\(432\) −0.303490 0.0991475i −0.0146017 0.00477024i
\(433\) 2.82638i 0.135827i −0.997691 0.0679135i \(-0.978366\pi\)
0.997691 0.0679135i \(-0.0216342\pi\)
\(434\) −28.7262 3.75530i −1.37890 0.180260i
\(435\) −27.8407 −1.33486
\(436\) −28.3744 + 20.5805i −1.35889 + 0.985629i
\(437\) 3.66269 0.175210
\(438\) −28.4703 14.5207i −1.36036 0.693827i
\(439\) 1.33988 0.0639489 0.0319745 0.999489i \(-0.489820\pi\)
0.0319745 + 0.999489i \(0.489820\pi\)
\(440\) −3.06482 19.5021i −0.146109 0.929726i
\(441\) −16.1080 + 13.1140i −0.767048 + 0.624478i
\(442\) −2.22396 + 4.36046i −0.105783 + 0.207406i
\(443\) −7.54624 −0.358533 −0.179266 0.983801i \(-0.557372\pi\)
−0.179266 + 0.983801i \(0.557372\pi\)
\(444\) 2.83111 + 3.90325i 0.134358 + 0.185240i
\(445\) 2.50791i 0.118886i
\(446\) −1.52870 0.779681i −0.0723859 0.0369190i
\(447\) 49.4753 2.34010
\(448\) 16.8062 12.8667i 0.794018 0.607894i
\(449\) 17.7511 0.837725 0.418862 0.908050i \(-0.362429\pi\)
0.418862 + 0.908050i \(0.362429\pi\)
\(450\) 36.7587 + 18.7480i 1.73282 + 0.883790i
\(451\) 6.25625i 0.294595i
\(452\) −11.4337 15.7636i −0.537795 0.741459i
\(453\) −26.0137 −1.22223
\(454\) −17.4344 + 34.1830i −0.818235 + 1.60429i
\(455\) 9.60083 3.41399i 0.450094 0.160050i
\(456\) 4.82986 + 30.7334i 0.226179 + 1.43923i
\(457\) 1.09635 0.0512851 0.0256425 0.999671i \(-0.491837\pi\)
0.0256425 + 0.999671i \(0.491837\pi\)
\(458\) −0.426594 0.217576i −0.0199334 0.0101667i
\(459\) 0.276267 0.0128950
\(460\) −5.07202 + 3.67884i −0.236484 + 0.171527i
\(461\) −3.61769 −0.168493 −0.0842463 0.996445i \(-0.526848\pi\)
−0.0842463 + 0.996445i \(0.526848\pi\)
\(462\) 2.14714 16.4245i 0.0998938 0.764139i
\(463\) 3.14597i 0.146206i 0.997324 + 0.0731029i \(0.0232901\pi\)
−0.997324 + 0.0731029i \(0.976710\pi\)
\(464\) 11.2516 + 3.67581i 0.522344 + 0.170645i
\(465\) 72.8448i 3.37810i
\(466\) 3.00938 + 1.53487i 0.139407 + 0.0711016i
\(467\) 22.1648i 1.02567i 0.858488 + 0.512833i \(0.171404\pi\)
−0.858488 + 0.512833i \(0.828596\pi\)
\(468\) −3.48445 4.80402i −0.161069 0.222066i
\(469\) 5.30616 1.88684i 0.245016 0.0871260i
\(470\) 61.1253 + 31.1757i 2.81950 + 1.43803i
\(471\) 31.5054i 1.45169i
\(472\) 35.9947 5.65668i 1.65679 0.260370i
\(473\) −9.31177 −0.428155
\(474\) −36.4407 18.5858i −1.67378 0.853676i
\(475\) 44.2753i 2.03149i
\(476\) −10.3660 + 15.0990i −0.475123 + 0.692063i
\(477\) 3.59309i 0.164516i
\(478\) 14.5695 28.5661i 0.666396 1.30658i
\(479\) 22.6530 1.03504 0.517521 0.855671i \(-0.326855\pi\)
0.517521 + 0.855671i \(0.326855\pi\)
\(480\) −37.5572 37.7079i −1.71425 1.72112i
\(481\) 0.986953i 0.0450012i
\(482\) −15.6891 + 30.7612i −0.714621 + 1.40114i
\(483\) −4.95347 + 1.76142i −0.225391 + 0.0801474i
\(484\) −9.06039 12.4916i −0.411836 0.567799i
\(485\) 39.7804i 1.80634i
\(486\) −14.1248 + 27.6942i −0.640716 + 1.25623i
\(487\) 0.888954i 0.0402824i −0.999797 0.0201412i \(-0.993588\pi\)
0.999797 0.0201412i \(-0.00641157\pi\)
\(488\) −2.06170 13.1190i −0.0933286 0.593870i
\(489\) 42.2403i 1.91017i
\(490\) 37.2758 8.00972i 1.68395 0.361842i
\(491\) 1.30699 0.0589837 0.0294918 0.999565i \(-0.490611\pi\)
0.0294918 + 0.999565i \(0.490611\pi\)
\(492\) 9.90272 + 13.6529i 0.446449 + 0.615520i
\(493\) −10.2424 −0.461293
\(494\) 2.89319 5.67259i 0.130171 0.255222i
\(495\) −20.7109 −0.930886
\(496\) 9.61770 29.4397i 0.431848 1.32188i
\(497\) 3.54415 + 9.96687i 0.158977 + 0.447075i
\(498\) −54.2476 27.6679i −2.43089 1.23983i
\(499\) −28.7592 −1.28744 −0.643720 0.765262i \(-0.722610\pi\)
−0.643720 + 0.765262i \(0.722610\pi\)
\(500\) −21.8577 30.1353i −0.977506 1.34769i
\(501\) 23.6313i 1.05577i
\(502\) 7.00429 13.7331i 0.312617 0.612938i
\(503\) 11.8526 0.528479 0.264240 0.964457i \(-0.414879\pi\)
0.264240 + 0.964457i \(0.414879\pi\)
\(504\) −10.5976 19.5134i −0.472056 0.869194i
\(505\) 69.3710 3.08697
\(506\) 0.947213 1.85717i 0.0421088 0.0825613i
\(507\) 2.44281i 0.108489i
\(508\) −1.25592 + 0.910945i −0.0557225 + 0.0404166i
\(509\) −15.4601 −0.685259 −0.342629 0.939471i \(-0.611318\pi\)
−0.342629 + 0.939471i \(0.611318\pi\)
\(510\) 41.0239 + 20.9234i 1.81657 + 0.926504i
\(511\) 8.20055 + 23.0616i 0.362771 + 1.02018i
\(512\) 10.1999 + 20.1981i 0.450777 + 0.892637i
\(513\) −0.359400 −0.0158679
\(514\) 17.4424 34.1988i 0.769352 1.50845i
\(515\) 13.7135 0.604289
\(516\) −20.3209 + 14.7392i −0.894578 + 0.648855i
\(517\) −22.8306 −1.00409
\(518\) 0.478682 3.66169i 0.0210321 0.160885i
\(519\) 18.7025i 0.820950i
\(520\) 1.69116 + 10.7612i 0.0741624 + 0.471911i
\(521\) 34.6336i 1.51733i −0.651484 0.758663i \(-0.725853\pi\)
0.651484 0.758663i \(-0.274147\pi\)
\(522\) 5.64214 11.0624i 0.246950 0.484187i
\(523\) 25.9793i 1.13600i −0.823030 0.567998i \(-0.807718\pi\)
0.823030 0.567998i \(-0.192282\pi\)
\(524\) 8.75299 6.34872i 0.382376 0.277345i
\(525\) −21.2924 59.8785i −0.929277 2.61331i
\(526\) −17.5811 + 34.4707i −0.766573 + 1.50300i
\(527\) 26.7990i 1.16738i
\(528\) 16.8325 + 5.49903i 0.732540 + 0.239315i
\(529\) 22.3383 0.971231
\(530\) −2.99654 + 5.87523i −0.130161 + 0.255204i
\(531\) 38.2258i 1.65886i
\(532\) 13.4853 19.6426i 0.584660 0.851614i
\(533\) 3.45219i 0.149531i
\(534\) −2.00398 1.02209i −0.0867207 0.0442302i
\(535\) 55.8401 2.41418
\(536\) 0.934668 + 5.94749i 0.0403715 + 0.256892i
\(537\) 55.4468i 2.39271i
\(538\) 36.9501 + 18.8457i 1.59303 + 0.812495i
\(539\) −9.83775 + 8.00922i −0.423742 + 0.344982i
\(540\) 0.497691 0.360985i 0.0214172 0.0155343i
\(541\) 12.5538i 0.539732i −0.962898 0.269866i \(-0.913021\pi\)
0.962898 0.269866i \(-0.0869794\pi\)
\(542\) 5.84242 + 2.97981i 0.250954 + 0.127994i
\(543\) 40.8519i 1.75312i
\(544\) −13.8170 13.8724i −0.592399 0.594776i
\(545\) 67.4997i 2.89137i
\(546\) −1.18479 + 9.06305i −0.0507042 + 0.387863i
\(547\) −19.8173 −0.847327 −0.423663 0.905820i \(-0.639256\pi\)
−0.423663 + 0.905820i \(0.639256\pi\)
\(548\) 6.21878 + 8.57385i 0.265653 + 0.366257i
\(549\) −13.9322 −0.594611
\(550\) 22.4499 + 11.4501i 0.957265 + 0.488234i
\(551\) 13.3245 0.567641
\(552\) −0.872542 5.55217i −0.0371378 0.236316i
\(553\) 10.4963 + 29.5177i 0.446349 + 1.25522i
\(554\) 1.44771 2.83848i 0.0615074 0.120596i
\(555\) −9.28542 −0.394144
\(556\) 25.5179 18.5087i 1.08220 0.784942i
\(557\) 22.7061i 0.962089i 0.876696 + 0.481044i \(0.159742\pi\)
−0.876696 + 0.481044i \(0.840258\pi\)
\(558\) −28.9445 14.7626i −1.22532 0.624949i
\(559\) 5.13822 0.217324
\(560\) 1.05506 + 40.7454i 0.0445845 + 1.72181i
\(561\) −15.3226 −0.646922
\(562\) 9.40982 + 4.79929i 0.396929 + 0.202446i
\(563\) 6.86719i 0.289417i 0.989474 + 0.144709i \(0.0462245\pi\)
−0.989474 + 0.144709i \(0.953775\pi\)
\(564\) −49.8229 + 36.1375i −2.09792 + 1.52166i
\(565\) 37.5000 1.57764
\(566\) −0.170837 + 0.334954i −0.00718080 + 0.0140792i
\(567\) 22.6772 8.06387i 0.952354 0.338651i
\(568\) −11.1715 + 1.75564i −0.468747 + 0.0736651i
\(569\) 0.587660 0.0246360 0.0123180 0.999924i \(-0.496079\pi\)
0.0123180 + 0.999924i \(0.496079\pi\)
\(570\) −53.3686 27.2196i −2.23537 1.14010i
\(571\) −11.7541 −0.491894 −0.245947 0.969283i \(-0.579099\pi\)
−0.245947 + 0.969283i \(0.579099\pi\)
\(572\) −2.12808 2.93399i −0.0889796 0.122676i
\(573\) −21.0547 −0.879571
\(574\) 1.67435 12.8079i 0.0698859 0.534593i
\(575\) 7.99859i 0.333564i
\(576\) 22.5943 7.28137i 0.941430 0.303390i
\(577\) 19.3871i 0.807095i −0.914959 0.403547i \(-0.867777\pi\)
0.914959 0.403547i \(-0.132223\pi\)
\(578\) −6.32453 3.22570i −0.263066 0.134171i
\(579\) 46.1783i 1.91910i
\(580\) −18.4515 + 13.3832i −0.766155 + 0.555707i
\(581\) 15.6254 + 43.9417i 0.648251 + 1.82301i
\(582\) −31.7872 16.2124i −1.31762 0.672026i
\(583\) 2.19443i 0.0908840i
\(584\) −25.8489 + 4.06224i −1.06964 + 0.168097i
\(585\) 11.4283 0.472500
\(586\) 5.39427 + 2.75124i 0.222835 + 0.113653i
\(587\) 41.4962i 1.71273i −0.516368 0.856367i \(-0.672716\pi\)
0.516368 0.856367i \(-0.327284\pi\)
\(588\) −8.79133 + 33.0501i −0.362549 + 1.36296i
\(589\) 34.8633i 1.43652i
\(590\) −31.8793 + 62.5048i −1.31245 + 2.57328i
\(591\) 10.9685 0.451184
\(592\) 3.75264 + 1.22595i 0.154232 + 0.0503864i
\(593\) 23.4256i 0.961976i 0.876727 + 0.480988i \(0.159722\pi\)
−0.876727 + 0.480988i \(0.840278\pi\)
\(594\) −0.0929451 + 0.182235i −0.00381358 + 0.00747717i
\(595\) −11.8165 33.2302i −0.484428 1.36231i
\(596\) 32.7898 23.7831i 1.34312 0.974193i
\(597\) 22.3586i 0.915075i
\(598\) −0.522671 + 1.02479i −0.0213736 + 0.0419066i
\(599\) 16.8992i 0.690485i −0.938514 0.345242i \(-0.887797\pi\)
0.938514 0.345242i \(-0.112203\pi\)
\(600\) 67.1158 10.5475i 2.73999 0.430598i
\(601\) 41.1108i 1.67695i 0.544943 + 0.838473i \(0.316551\pi\)
−0.544943 + 0.838473i \(0.683449\pi\)
\(602\) 19.0633 + 2.49209i 0.776961 + 0.101570i
\(603\) 6.31614 0.257213
\(604\) −17.2406 + 12.5049i −0.701509 + 0.508818i
\(605\) 29.7161 1.20813
\(606\) −28.2719 + 55.4319i −1.14847 + 2.25177i
\(607\) 35.6288 1.44613 0.723064 0.690781i \(-0.242733\pi\)
0.723064 + 0.690781i \(0.242733\pi\)
\(608\) 17.9747 + 18.0469i 0.728972 + 0.731897i
\(609\) −18.0202 + 6.40786i −0.730215 + 0.259660i
\(610\) 22.7812 + 11.6191i 0.922383 + 0.470443i
\(611\) 12.5979 0.509657
\(612\) −16.6276 + 12.0603i −0.672132 + 0.487510i
\(613\) 15.0402i 0.607466i −0.952757 0.303733i \(-0.901767\pi\)
0.952757 0.303733i \(-0.0982331\pi\)
\(614\) −1.54533 + 3.02989i −0.0623646 + 0.122276i
\(615\) −32.4788 −1.30967
\(616\) −6.47236 11.9175i −0.260779 0.480171i
\(617\) −20.9019 −0.841479 −0.420739 0.907182i \(-0.638229\pi\)
−0.420739 + 0.907182i \(0.638229\pi\)
\(618\) −5.58890 + 10.9580i −0.224819 + 0.440795i
\(619\) 32.1484i 1.29215i 0.763272 + 0.646077i \(0.223591\pi\)
−0.763272 + 0.646077i \(0.776409\pi\)
\(620\) 35.0170 + 48.2780i 1.40632 + 1.93889i
\(621\) 0.0649277 0.00260546
\(622\) −23.8666 12.1727i −0.956962 0.488079i
\(623\) 0.577223 + 1.62327i 0.0231260 + 0.0650348i
\(624\) −9.28816 3.03436i −0.371824 0.121472i
\(625\) 22.5234 0.900935
\(626\) −1.67211 + 3.27845i −0.0668308 + 0.131033i
\(627\) 19.9335 0.796066
\(628\) 15.1448 + 20.8802i 0.604344 + 0.833211i
\(629\) −3.41603 −0.136206
\(630\) 42.3999 + 5.54282i 1.68925 + 0.220831i
\(631\) 20.4474i 0.813998i −0.913429 0.406999i \(-0.866575\pi\)
0.913429 0.406999i \(-0.133425\pi\)
\(632\) −33.0854 + 5.19948i −1.31607 + 0.206824i
\(633\) 21.4324i 0.851861i
\(634\) 1.71962 3.37160i 0.0682948 0.133904i
\(635\) 2.98770i 0.118563i
\(636\) −3.47346 4.78886i −0.137732 0.189891i
\(637\) 5.42846 4.41948i 0.215083 0.175106i
\(638\) 3.44586 6.75619i 0.136423 0.267480i
\(639\) 11.8640i 0.469332i
\(640\) −43.0175 6.93696i −1.70042 0.274207i
\(641\) 19.9013 0.786056 0.393028 0.919527i \(-0.371428\pi\)
0.393028 + 0.919527i \(0.371428\pi\)
\(642\) −22.7574 + 44.6198i −0.898165 + 1.76100i
\(643\) 36.6222i 1.44424i −0.691768 0.722120i \(-0.743168\pi\)
0.691768 0.722120i \(-0.256832\pi\)
\(644\) −2.43619 + 3.54855i −0.0959993 + 0.139832i
\(645\) 48.3413i 1.90343i
\(646\) −19.6339 10.0139i −0.772485 0.393990i
\(647\) −33.4255 −1.31409 −0.657045 0.753851i \(-0.728194\pi\)
−0.657045 + 0.753851i \(0.728194\pi\)
\(648\) 3.99454 + 25.4181i 0.156920 + 0.998518i
\(649\) 23.3459i 0.916405i
\(650\) −12.3878 6.31816i −0.485890 0.247818i
\(651\) 16.7661 + 47.1495i 0.657114 + 1.84794i
\(652\) 20.3052 + 27.9948i 0.795213 + 1.09636i
\(653\) 15.8386i 0.619811i 0.950767 + 0.309905i \(0.100297\pi\)
−0.950767 + 0.309905i \(0.899703\pi\)
\(654\) 53.9367 + 27.5093i 2.10909 + 1.07570i
\(655\) 20.8224i 0.813600i
\(656\) 13.1261 + 4.28817i 0.512487 + 0.167425i
\(657\) 27.4511i 1.07097i
\(658\) 46.7394 + 6.11011i 1.82209 + 0.238197i
\(659\) −35.1659 −1.36987 −0.684935 0.728604i \(-0.740169\pi\)
−0.684935 + 0.728604i \(0.740169\pi\)
\(660\) −27.6035 + 20.0214i −1.07446 + 0.779330i
\(661\) −48.9746 −1.90489 −0.952446 0.304707i \(-0.901441\pi\)
−0.952446 + 0.304707i \(0.901441\pi\)
\(662\) −19.7448 10.0704i −0.767404 0.391399i
\(663\) 8.45502 0.328366
\(664\) −49.2528 + 7.74024i −1.91138 + 0.300379i
\(665\) 15.3722 + 43.2298i 0.596109 + 1.67638i
\(666\) 1.88176 3.68951i 0.0729168 0.142966i
\(667\) −2.40714 −0.0932049
\(668\) 11.3597 + 15.6617i 0.439521 + 0.605969i
\(669\) 2.96417i 0.114602i
\(670\) −10.3278 5.26750i −0.398999 0.203501i
\(671\) −8.50890 −0.328482
\(672\) −32.9882 15.7626i −1.27255 0.608055i
\(673\) −12.2361 −0.471666 −0.235833 0.971794i \(-0.575782\pi\)
−0.235833 + 0.971794i \(0.575782\pi\)
\(674\) −34.1404 17.4126i −1.31504 0.670709i
\(675\) 0.784860i 0.0302093i
\(676\) 1.17427 + 1.61897i 0.0451644 + 0.0622683i
\(677\) −12.6987 −0.488051 −0.244025 0.969769i \(-0.578468\pi\)
−0.244025 + 0.969769i \(0.578468\pi\)
\(678\) −15.2830 + 29.9649i −0.586941 + 1.15080i
\(679\) 9.15592 + 25.7483i 0.351372 + 0.988128i
\(680\) 37.2466 5.85343i 1.42834 0.224469i
\(681\) 66.2816 2.53992
\(682\) −17.6775 9.01604i −0.676905 0.345242i
\(683\) −14.5785 −0.557831 −0.278916 0.960316i \(-0.589975\pi\)
−0.278916 + 0.960316i \(0.589975\pi\)
\(684\) 21.6311 15.6895i 0.827087 0.599903i
\(685\) −20.3963 −0.779301
\(686\) 22.2836 13.7638i 0.850791 0.525505i
\(687\) 0.827175i 0.0315587i
\(688\) −6.38249 + 19.5368i −0.243330 + 0.744832i
\(689\) 1.21088i 0.0461310i
\(690\) 9.64135 + 4.91738i 0.367040 + 0.187201i
\(691\) 23.6667i 0.900323i 0.892947 + 0.450162i \(0.148634\pi\)
−0.892947 + 0.450162i \(0.851366\pi\)
\(692\) 8.99043 + 12.3951i 0.341765 + 0.471192i
\(693\) −13.4053 + 4.76685i −0.509227 + 0.181078i
\(694\) 3.26450 + 1.66499i 0.123919 + 0.0632023i
\(695\) 60.7045i 2.30265i
\(696\) −3.17421 20.1982i −0.120318 0.765611i
\(697\) −11.9487 −0.452588
\(698\) −15.6606 7.98736i −0.592762 0.302326i
\(699\) 5.83525i 0.220709i
\(700\) −42.8955 29.4491i −1.62130 1.11307i
\(701\) 7.44505i 0.281196i 0.990067 + 0.140598i \(0.0449025\pi\)
−0.990067 + 0.140598i \(0.955098\pi\)
\(702\) 0.0512870 0.100557i 0.00193570 0.00379527i
\(703\) 4.44397 0.167607
\(704\) 13.7992 4.44700i 0.520076 0.167603i
\(705\) 118.523i 4.46384i
\(706\) −8.29606 + 16.2658i −0.312226 + 0.612173i
\(707\) 44.9010 15.9665i 1.68868 0.600483i
\(708\) −36.9531 50.9473i −1.38878 1.91472i
\(709\) 44.0918i 1.65590i −0.560800 0.827951i \(-0.689506\pi\)
0.560800 0.827951i \(-0.310494\pi\)
\(710\) 9.89425 19.3994i 0.371325 0.728045i
\(711\) 35.1362i 1.31771i
\(712\) −1.81946 + 0.285935i −0.0681873 + 0.0107159i
\(713\) 6.29825i 0.235871i
\(714\) 31.3689 + 4.10077i 1.17395 + 0.153467i
\(715\) 6.97966 0.261024
\(716\) −26.6536 36.7474i −0.996093 1.37332i
\(717\) −55.3902 −2.06859
\(718\) 9.92849 19.4665i 0.370528 0.726483i
\(719\) −24.0504 −0.896929 −0.448464 0.893801i \(-0.648029\pi\)
−0.448464 + 0.893801i \(0.648029\pi\)
\(720\) −14.1957 + 43.4530i −0.529043 + 1.61940i
\(721\) 8.87621 3.15632i 0.330567 0.117548i
\(722\) 1.60552 + 0.818862i 0.0597512 + 0.0304749i
\(723\) 59.6467 2.21828
\(724\) −19.6378 27.0746i −0.729832 1.00622i
\(725\) 29.0980i 1.08067i
\(726\) −12.1107 + 23.7451i −0.449471 + 0.881264i
\(727\) −36.9514 −1.37045 −0.685226 0.728330i \(-0.740297\pi\)
−0.685226 + 0.728330i \(0.740297\pi\)
\(728\) 3.57144 + 6.57608i 0.132367 + 0.243726i
\(729\) 26.4087 0.978099
\(730\) 22.8936 44.8867i 0.847328 1.66133i
\(731\) 17.7843i 0.657778i
\(732\) −18.5688 + 13.4683i −0.686323 + 0.497804i
\(733\) 22.0569 0.814692 0.407346 0.913274i \(-0.366454\pi\)
0.407346 + 0.913274i \(0.366454\pi\)
\(734\) 39.0970 + 19.9406i 1.44310 + 0.736022i
\(735\) −41.5792 51.0718i −1.53367 1.88381i
\(736\) −3.24724 3.26027i −0.119695 0.120175i
\(737\) 3.85750 0.142093
\(738\) 6.58208 12.9053i 0.242290 0.475050i
\(739\) 36.0166 1.32489 0.662445 0.749110i \(-0.269519\pi\)
0.662445 + 0.749110i \(0.269519\pi\)
\(740\) −6.15392 + 4.46356i −0.226223 + 0.164084i
\(741\) −10.9993 −0.404068
\(742\) −0.587291 + 4.49249i −0.0215601 + 0.164924i
\(743\) 10.2860i 0.377358i 0.982039 + 0.188679i \(0.0604206\pi\)
−0.982039 + 0.188679i \(0.939579\pi\)
\(744\) −52.8483 + 8.30528i −1.93751 + 0.304486i
\(745\) 78.0034i 2.85782i
\(746\) −14.8970 + 29.2080i −0.545417 + 1.06938i
\(747\) 52.3057i 1.91376i
\(748\) −10.1551 + 7.36569i −0.371307 + 0.269316i
\(749\) 36.1430 12.8522i 1.32064 0.469610i
\(750\) −29.2165 + 57.2838i −1.06683 + 2.09171i
\(751\) 34.8371i 1.27122i −0.772009 0.635612i \(-0.780748\pi\)
0.772009 0.635612i \(-0.219252\pi\)
\(752\) −15.6486 + 47.9003i −0.570646 + 1.74674i
\(753\) −26.6288 −0.970407
\(754\) −1.90142 + 3.72806i −0.0692457 + 0.135768i
\(755\) 41.0135i 1.49263i
\(756\) 0.239050 0.348200i 0.00869418 0.0126639i
\(757\) 6.93156i 0.251932i 0.992035 + 0.125966i \(0.0402030\pi\)
−0.992035 + 0.125966i \(0.959797\pi\)
\(758\) 11.6031 + 5.91794i 0.421445 + 0.214949i
\(759\) −3.60110 −0.130711
\(760\) −48.4547 + 7.61482i −1.75764 + 0.276219i
\(761\) 32.8554i 1.19101i −0.803352 0.595504i \(-0.796952\pi\)
0.803352 0.595504i \(-0.203048\pi\)
\(762\) 2.38737 + 1.21763i 0.0864853 + 0.0441101i
\(763\) −15.5358 43.6899i −0.562435 1.58168i
\(764\) −13.9540 + 10.1211i −0.504838 + 0.366169i
\(765\) 39.5553i 1.43013i
\(766\) 1.32204 + 0.674281i 0.0477673 + 0.0243627i
\(767\) 12.8822i 0.465150i
\(768\) 23.0747 31.5467i 0.832638 1.13834i
\(769\) 29.5660i 1.06618i 0.846059 + 0.533089i \(0.178969\pi\)
−0.846059 + 0.533089i \(0.821031\pi\)
\(770\) 25.8951 + 3.38520i 0.933196 + 0.121994i
\(771\) −66.3122 −2.38818
\(772\) −22.1982 30.6047i −0.798930 1.10149i
\(773\) 28.4754 1.02419 0.512094 0.858929i \(-0.328870\pi\)
0.512094 + 0.858929i \(0.328870\pi\)
\(774\) 19.2081 + 9.79673i 0.690423 + 0.352136i
\(775\) −76.1345 −2.73483
\(776\) −28.8604 + 4.53550i −1.03603 + 0.162815i
\(777\) −6.01008 + 2.13715i −0.215610 + 0.0766697i
\(778\) −21.7574 + 42.6591i −0.780041 + 1.52940i
\(779\) 15.5442 0.556930
\(780\) 15.2316 11.0478i 0.545378 0.395573i
\(781\) 7.24576i 0.259274i
\(782\) 3.54697 + 1.80906i 0.126839 + 0.0646919i
\(783\) 0.236200 0.00844110
\(784\) 10.0609 + 26.1300i 0.359318 + 0.933215i
\(785\) −49.6717 −1.77286
\(786\) −16.6385 8.48612i −0.593475 0.302690i
\(787\) 39.7645i 1.41745i 0.705484 + 0.708726i \(0.250730\pi\)
−0.705484 + 0.708726i \(0.749270\pi\)
\(788\) 7.26938 5.27263i 0.258961 0.187830i
\(789\) 66.8395 2.37955
\(790\) 29.3027 57.4528i 1.04254 2.04408i
\(791\) 24.2723 8.63106i 0.863022 0.306885i
\(792\) −2.36132 15.0256i −0.0839058 0.533911i
\(793\) 4.69520 0.166731
\(794\) −19.9888 10.1949i −0.709376 0.361803i
\(795\) 11.3922 0.404039
\(796\) 10.7479 + 14.8182i 0.380949 + 0.525216i
\(797\) −1.40341 −0.0497114 −0.0248557 0.999691i \(-0.507913\pi\)
−0.0248557 + 0.999691i \(0.507913\pi\)
\(798\) −40.8083 5.33475i −1.44460 0.188848i
\(799\) 43.6037i 1.54259i
\(800\) 39.4108 39.2533i 1.39338 1.38781i
\(801\) 1.93224i 0.0682724i
\(802\) 2.63112 + 1.34195i 0.0929082 + 0.0473860i
\(803\) 16.7654i 0.591639i
\(804\) 8.41815 6.10585i 0.296885 0.215337i
\(805\) −2.77708 7.80970i −0.0978792 0.275256i
\(806\) 9.75441 + 4.97504i 0.343585 + 0.175238i
\(807\) 71.6471i 2.52210i
\(808\) 7.90921 + 50.3280i 0.278245 + 1.77053i
\(809\) 14.9618 0.526027 0.263014 0.964792i \(-0.415284\pi\)
0.263014 + 0.964792i \(0.415284\pi\)
\(810\) −44.1386 22.5120i −1.55087 0.790991i
\(811\) 3.70960i 0.130262i −0.997877 0.0651308i \(-0.979254\pi\)
0.997877 0.0651308i \(-0.0207464\pi\)
\(812\) −8.86259 + 12.9092i −0.311016 + 0.453025i
\(813\) 11.3286i 0.397311i
\(814\) 1.14926 2.25332i 0.0402816 0.0789788i
\(815\) −66.5967 −2.33278
\(816\) −10.5025 + 32.1480i −0.367660 + 1.12541i
\(817\) 23.1359i 0.809424i
\(818\) −0.668204 + 1.31013i −0.0233632 + 0.0458075i
\(819\) 7.39705 2.63034i 0.258474 0.0919117i
\(820\) −21.5253 + 15.6128i −0.751698 + 0.545221i
\(821\) 36.0973i 1.25981i 0.776674 + 0.629903i \(0.216905\pi\)
−0.776674 + 0.629903i \(0.783095\pi\)
\(822\) 8.31244 16.2979i 0.289929 0.568456i
\(823\) 7.14831i 0.249175i 0.992209 + 0.124587i \(0.0397607\pi\)
−0.992209 + 0.124587i \(0.960239\pi\)
\(824\) 1.56352 + 9.94903i 0.0544679 + 0.346591i
\(825\) 43.5308i 1.51555i
\(826\) −6.24801 + 47.7942i −0.217396 + 1.66297i
\(827\) −45.0128 −1.56525 −0.782625 0.622493i \(-0.786120\pi\)
−0.782625 + 0.622493i \(0.786120\pi\)
\(828\) −3.90779 + 2.83440i −0.135805 + 0.0985021i
\(829\) 1.70523 0.0592250 0.0296125 0.999561i \(-0.490573\pi\)
0.0296125 + 0.999561i \(0.490573\pi\)
\(830\) 43.6216 85.5275i 1.51413 2.96870i
\(831\) −5.50388 −0.190927
\(832\) −7.61437 + 2.45385i −0.263981 + 0.0850719i
\(833\) −15.2966 18.7889i −0.529997 0.650997i
\(834\) −48.5068 24.7399i −1.67965 0.856673i
\(835\) −37.2575 −1.28935
\(836\) 13.2109 9.58214i 0.456909 0.331405i
\(837\) 0.618014i 0.0213617i
\(838\) 11.1135 21.7900i 0.383911 0.752723i
\(839\) 9.92632 0.342694 0.171347 0.985211i \(-0.445188\pi\)
0.171347 + 0.985211i \(0.445188\pi\)
\(840\) 61.8688 33.6007i 2.13468 1.15934i
\(841\) 20.2431 0.698037
\(842\) −14.0757 + 27.5978i −0.485080 + 0.951082i
\(843\) 18.2458i 0.628420i
\(844\) 10.3027 + 14.2043i 0.354633 + 0.488933i
\(845\) −3.85137 −0.132491
\(846\) 47.0946 + 24.0197i 1.61915 + 0.825813i
\(847\) 19.2341 6.83951i 0.660890 0.235008i
\(848\) −4.60407 1.50411i −0.158105 0.0516514i
\(849\) 0.649483 0.0222902
\(850\) −21.8683 + 42.8765i −0.750077 + 1.47065i
\(851\) −0.802828 −0.0275206
\(852\) 11.4690 + 15.8123i 0.392921 + 0.541721i
\(853\) −7.29950 −0.249930 −0.124965 0.992161i \(-0.539882\pi\)
−0.124965 + 0.992161i \(0.539882\pi\)
\(854\) 17.4196 + 2.27722i 0.596087 + 0.0779248i
\(855\) 51.4582i 1.75983i
\(856\) 6.36651 + 40.5115i 0.217603 + 1.38465i
\(857\) 42.5363i 1.45301i −0.687160 0.726506i \(-0.741143\pi\)
0.687160 0.726506i \(-0.258857\pi\)
\(858\) −2.84454 + 5.57720i −0.0971109 + 0.190402i
\(859\) 18.3243i 0.625217i 0.949882 + 0.312609i \(0.101203\pi\)
−0.949882 + 0.312609i \(0.898797\pi\)
\(860\) −23.2379 32.0382i −0.792407 1.09249i
\(861\) −21.0222 + 7.47536i −0.716435 + 0.254760i
\(862\) 15.3516 30.0995i 0.522878 1.02519i
\(863\) 31.0819i 1.05804i −0.848610 0.529019i \(-0.822560\pi\)
0.848610 0.529019i \(-0.177440\pi\)
\(864\) 0.318635 + 0.319913i 0.0108402 + 0.0108837i
\(865\) −29.4867 −1.00258
\(866\) −1.81607 + 3.56072i −0.0617127 + 0.120998i
\(867\) 12.2634i 0.416487i
\(868\) 33.7768 + 23.1888i 1.14646 + 0.787081i
\(869\) 21.4589i 0.727945i
\(870\) 35.0742 + 17.8889i 1.18913 + 0.606490i
\(871\) −2.12856 −0.0721236
\(872\) 48.9705 7.69587i 1.65835 0.260615i
\(873\) 30.6492i 1.03732i
\(874\) −4.61431 2.35344i −0.156081 0.0796062i
\(875\) 46.4011 16.4999i 1.56864 0.557800i
\(876\) 26.5372 + 36.5869i 0.896608 + 1.23616i
\(877\) 50.5638i 1.70742i −0.520752 0.853708i \(-0.674348\pi\)
0.520752 0.853708i \(-0.325652\pi\)
\(878\) −1.68800 0.860931i −0.0569673 0.0290550i
\(879\) 10.4596i 0.352794i
\(880\) −8.66985 + 26.5383i −0.292260 + 0.894607i
\(881\) 0.189942i 0.00639930i 0.999995 + 0.00319965i \(0.00101848\pi\)
−0.999995 + 0.00319965i \(0.998982\pi\)
\(882\) 28.7195 6.17117i 0.967035 0.207794i
\(883\) −32.9338 −1.10831 −0.554156 0.832413i \(-0.686959\pi\)
−0.554156 + 0.832413i \(0.686959\pi\)
\(884\) 5.60357 4.06438i 0.188468 0.136700i
\(885\) 121.198 4.07403
\(886\) 9.50688 + 4.84879i 0.319390 + 0.162898i
\(887\) −36.6972 −1.23217 −0.616086 0.787679i \(-0.711283\pi\)
−0.616086 + 0.787679i \(0.711283\pi\)
\(888\) −1.05866 6.73649i −0.0355264 0.226062i
\(889\) −0.687654 1.93382i −0.0230632 0.0648583i
\(890\) 1.61144 3.15950i 0.0540156 0.105907i
\(891\) 16.4860 0.552302
\(892\) 1.42490 + 1.96451i 0.0477091 + 0.0657766i
\(893\) 56.7248i 1.89822i
\(894\) −62.3298 31.7901i −2.08462 1.06322i
\(895\) 87.4182 2.92207
\(896\) −29.4401 + 5.41096i −0.983526 + 0.180767i
\(897\) 1.98708 0.0663467
\(898\) −22.3631 11.4058i −0.746266 0.380618i
\(899\) 22.9123i 0.764170i
\(900\) −34.2627 47.2381i −1.14209 1.57460i
\(901\) 4.19109 0.139626
\(902\) 4.01992 7.88172i 0.133849 0.262433i
\(903\) −11.1263 31.2894i −0.370260 1.04124i
\(904\) 4.27550 + 27.2059i 0.142201 + 0.904856i
\(905\) 64.4077 2.14098
\(906\) 32.7724 + 16.7149i 1.08879 + 0.555316i
\(907\) −30.6366 −1.01727 −0.508636 0.860982i \(-0.669850\pi\)
−0.508636 + 0.860982i \(0.669850\pi\)
\(908\) 43.9282 31.8620i 1.45781 1.05738i
\(909\) 53.4476 1.77274
\(910\) −14.2889 1.86795i −0.473673 0.0619220i
\(911\) 32.3852i 1.07297i −0.843910 0.536484i \(-0.819752\pi\)
0.843910 0.536484i \(-0.180248\pi\)
\(912\) 13.6629 41.8219i 0.452422 1.38486i
\(913\) 31.9450i 1.05722i
\(914\) −1.38120 0.704453i −0.0456860 0.0233012i
\(915\) 44.1732i 1.46032i
\(916\) 0.397628 + 0.548211i 0.0131380 + 0.0181134i
\(917\) 4.79252 + 13.4775i 0.158263 + 0.445067i
\(918\) −0.348046 0.177514i −0.0114872 0.00585883i
\(919\) 34.3537i 1.13322i −0.823985 0.566612i \(-0.808254\pi\)
0.823985 0.566612i \(-0.191746\pi\)
\(920\) 8.75363 1.37566i 0.288599 0.0453542i
\(921\) 5.87502 0.193588
\(922\) 4.55762 + 2.32452i 0.150097 + 0.0765541i
\(923\) 3.99821i 0.131603i
\(924\) −13.2585 + 19.3123i −0.436172 + 0.635327i
\(925\) 9.70475i 0.319090i
\(926\) 2.02143 3.96335i 0.0664282 0.130244i
\(927\) 10.5657 0.347024
\(928\) −11.8131 11.8605i −0.387784 0.389340i
\(929\) 41.2449i 1.35320i 0.736350 + 0.676601i \(0.236548\pi\)
−0.736350 + 0.676601i \(0.763452\pi\)
\(930\) 46.8060 91.7711i 1.53483 3.00929i
\(931\) 19.8996 + 24.4428i 0.652184 + 0.801080i
\(932\) −2.80504 3.86732i −0.0918821 0.126678i
\(933\) 46.2778i 1.51507i
\(934\) 14.2419 27.9236i 0.466009 0.913689i
\(935\) 24.1579i 0.790047i
\(936\) 1.30297 + 8.29110i 0.0425890 + 0.271003i
\(937\) 24.8231i 0.810936i 0.914109 + 0.405468i \(0.132891\pi\)
−0.914109 + 0.405468i \(0.867109\pi\)
\(938\) −7.89716 1.03237i −0.257851 0.0337082i
\(939\) 6.35698 0.207452
\(940\) −56.9749 78.5514i −1.85831 2.56206i
\(941\) −22.0956 −0.720295 −0.360147 0.932895i \(-0.617274\pi\)
−0.360147 + 0.932895i \(0.617274\pi\)
\(942\) 20.2436 39.6910i 0.659571 1.29320i
\(943\) −2.80815 −0.0914460
\(944\) −48.9813 16.0018i −1.59421 0.520814i
\(945\) 0.272500 + 0.766325i 0.00886444 + 0.0249286i
\(946\) 11.7311 + 5.98322i 0.381411 + 0.194531i
\(947\) −49.5764 −1.61102 −0.805508 0.592585i \(-0.798107\pi\)
−0.805508 + 0.592585i \(0.798107\pi\)
\(948\) 33.9663 + 46.8295i 1.10318 + 1.52095i
\(949\) 9.25114i 0.300305i
\(950\) 28.4488 55.7788i 0.923002 1.80970i
\(951\) −6.53761 −0.211997
\(952\) 22.7610 12.3614i 0.737689 0.400636i
\(953\) 46.4982 1.50622 0.753112 0.657892i \(-0.228552\pi\)
0.753112 + 0.657892i \(0.228552\pi\)
\(954\) −2.30872 + 4.52663i −0.0747474 + 0.146555i
\(955\) 33.1951i 1.07417i
\(956\) −36.7099 + 26.6264i −1.18728 + 0.861160i
\(957\) −13.1004 −0.423476
\(958\) −28.5386 14.5555i −0.922040 0.470268i
\(959\) −13.2017 + 4.69443i −0.426305 + 0.151591i
\(960\) 23.0862 + 71.6372i 0.745104 + 2.31208i
\(961\) 28.9498 0.933865
\(962\) −0.634161 + 1.24338i −0.0204462 + 0.0400882i
\(963\) 43.0225 1.38638
\(964\) 39.5309 28.6725i 1.27320 0.923480i
\(965\) 72.8053 2.34369
\(966\) 7.37225 + 0.963754i 0.237198 + 0.0310083i
\(967\) 31.7620i 1.02140i 0.859760 + 0.510699i \(0.170613\pi\)
−0.859760 + 0.510699i \(0.829387\pi\)
\(968\) 3.38804 + 21.5588i 0.108896 + 0.692926i
\(969\) 38.0705i 1.22300i
\(970\) 25.5607 50.1160i 0.820704 1.60913i
\(971\) 1.85166i 0.0594226i −0.999559 0.0297113i \(-0.990541\pi\)
0.999559 0.0297113i \(-0.00945879\pi\)
\(972\) 35.5894 25.8137i 1.14153 0.827975i
\(973\) 13.9718 + 39.2916i 0.447916 + 1.25963i
\(974\) −0.571192 + 1.11992i −0.0183022 + 0.0358845i
\(975\) 24.0202i 0.769263i
\(976\) −5.83219 + 17.8523i −0.186684 + 0.571438i
\(977\) −40.6090 −1.29920 −0.649598 0.760278i \(-0.725063\pi\)
−0.649598 + 0.760278i \(0.725063\pi\)
\(978\) 27.1413 53.2151i 0.867882 1.70163i
\(979\) 1.18009i 0.0377159i
\(980\) −52.1072 13.8605i −1.66450 0.442758i
\(981\) 52.0058i 1.66042i
\(982\) −1.64657 0.839799i −0.0525441 0.0267991i
\(983\) 23.1405 0.738066 0.369033 0.929416i \(-0.379689\pi\)
0.369033 + 0.929416i \(0.379689\pi\)
\(984\) −3.70302 23.5631i −0.118048 0.751164i
\(985\) 17.2931i 0.551003i
\(986\) 12.9035 + 6.58117i 0.410931 + 0.209587i
\(987\) −27.2795 76.7153i −0.868315 2.44188i
\(988\) −7.28978 + 5.28742i −0.231919 + 0.168215i
\(989\) 4.17964i 0.132905i
\(990\) 26.0919 + 13.3077i 0.829256 + 0.422946i
\(991\) 3.02612i 0.0961279i −0.998844 0.0480640i \(-0.984695\pi\)
0.998844 0.0480640i \(-0.0153051\pi\)
\(992\) −31.0329 + 30.9088i −0.985294 + 0.981357i
\(993\) 38.2856i 1.21496i
\(994\) 1.93917 14.8337i 0.0615067 0.470496i
\(995\) −35.2508 −1.11753
\(996\) 50.5642 + 69.7130i 1.60219 + 2.20894i
\(997\) 25.0174 0.792308 0.396154 0.918184i \(-0.370345\pi\)
0.396154 + 0.918184i \(0.370345\pi\)
\(998\) 36.2313 + 18.4791i 1.14688 + 0.584944i
\(999\) 0.0787773 0.00249240
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.h.b.27.9 yes 48
4.3 odd 2 2912.2.h.b.2575.7 48
7.6 odd 2 728.2.h.a.27.9 48
8.3 odd 2 728.2.h.a.27.10 yes 48
8.5 even 2 2912.2.h.a.2575.7 48
28.27 even 2 2912.2.h.a.2575.42 48
56.13 odd 2 2912.2.h.b.2575.42 48
56.27 even 2 inner 728.2.h.b.27.10 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.h.a.27.9 48 7.6 odd 2
728.2.h.a.27.10 yes 48 8.3 odd 2
728.2.h.b.27.9 yes 48 1.1 even 1 trivial
728.2.h.b.27.10 yes 48 56.27 even 2 inner
2912.2.h.a.2575.7 48 8.5 even 2
2912.2.h.a.2575.42 48 28.27 even 2
2912.2.h.b.2575.7 48 4.3 odd 2
2912.2.h.b.2575.42 48 56.13 odd 2