Properties

Label 728.2.bm.c.673.7
Level $728$
Weight $2$
Character 728.673
Analytic conductor $5.813$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(225,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.225"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.bm (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 673.7
Character \(\chi\) \(=\) 728.673
Dual form 728.2.bm.c.225.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.223973 - 0.387932i) q^{3} +0.513505i q^{5} +(0.866025 + 0.500000i) q^{7} +(1.39967 - 2.42430i) q^{9} +(-1.05084 + 0.606703i) q^{11} +(-0.600562 + 3.55518i) q^{13} +(0.199205 - 0.115011i) q^{15} +(3.32783 - 5.76397i) q^{17} +(5.39324 + 3.11379i) q^{19} -0.447945i q^{21} +(-0.100432 - 0.173953i) q^{23} +4.73631 q^{25} -2.59779 q^{27} +(-0.904563 - 1.56675i) q^{29} +0.945010i q^{31} +(0.470719 + 0.271770i) q^{33} +(-0.256753 + 0.444709i) q^{35} +(0.151323 - 0.0873661i) q^{37} +(1.51368 - 0.563287i) q^{39} +(5.45396 - 3.14885i) q^{41} +(1.13760 - 1.97038i) q^{43} +(1.24489 + 0.718739i) q^{45} +3.38387i q^{47} +(0.500000 + 0.866025i) q^{49} -2.98137 q^{51} +9.32989 q^{53} +(-0.311545 - 0.539612i) q^{55} -2.78962i q^{57} +(12.8019 + 7.39117i) q^{59} +(4.46098 - 7.72665i) q^{61} +(2.42430 - 1.39967i) q^{63} +(-1.82561 - 0.308392i) q^{65} +(-6.09270 + 3.51762i) q^{67} +(-0.0449879 + 0.0779214i) q^{69} +(-9.82460 - 5.67224i) q^{71} +2.60456i q^{73} +(-1.06080 - 1.83737i) q^{75} -1.21341 q^{77} -11.0720 q^{79} +(-3.61718 - 6.26515i) q^{81} -0.866273i q^{83} +(2.95983 + 1.70886i) q^{85} +(-0.405195 + 0.701818i) q^{87} +(6.67370 - 3.85306i) q^{89} +(-2.29769 + 2.77860i) q^{91} +(0.366600 - 0.211656i) q^{93} +(-1.59895 + 2.76946i) q^{95} +(-13.3489 - 7.70701i) q^{97} +3.39674i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{3} - 18 q^{9} + 12 q^{11} + 8 q^{17} - 12 q^{19} + 2 q^{23} - 28 q^{25} - 20 q^{27} + 2 q^{29} - 18 q^{33} - 8 q^{35} + 60 q^{37} + 18 q^{39} - 6 q^{41} + 24 q^{43} - 72 q^{45} + 12 q^{49} - 72 q^{51}+ \cdots - 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.223973 0.387932i −0.129311 0.223973i 0.794099 0.607788i \(-0.207943\pi\)
−0.923410 + 0.383816i \(0.874610\pi\)
\(4\) 0 0
\(5\) 0.513505i 0.229647i 0.993386 + 0.114823i \(0.0366302\pi\)
−0.993386 + 0.114823i \(0.963370\pi\)
\(6\) 0 0
\(7\) 0.866025 + 0.500000i 0.327327 + 0.188982i
\(8\) 0 0
\(9\) 1.39967 2.42430i 0.466557 0.808101i
\(10\) 0 0
\(11\) −1.05084 + 0.606703i −0.316840 + 0.182928i −0.649983 0.759948i \(-0.725224\pi\)
0.333143 + 0.942876i \(0.391891\pi\)
\(12\) 0 0
\(13\) −0.600562 + 3.55518i −0.166566 + 0.986030i
\(14\) 0 0
\(15\) 0.199205 0.115011i 0.0514346 0.0296958i
\(16\) 0 0
\(17\) 3.32783 5.76397i 0.807117 1.39797i −0.107735 0.994180i \(-0.534360\pi\)
0.914852 0.403788i \(-0.132307\pi\)
\(18\) 0 0
\(19\) 5.39324 + 3.11379i 1.23729 + 0.714352i 0.968540 0.248856i \(-0.0800547\pi\)
0.268754 + 0.963209i \(0.413388\pi\)
\(20\) 0 0
\(21\) 0.447945i 0.0977497i
\(22\) 0 0
\(23\) −0.100432 0.173953i −0.0209415 0.0362717i 0.855365 0.518026i \(-0.173333\pi\)
−0.876306 + 0.481755i \(0.840000\pi\)
\(24\) 0 0
\(25\) 4.73631 0.947262
\(26\) 0 0
\(27\) −2.59779 −0.499945
\(28\) 0 0
\(29\) −0.904563 1.56675i −0.167973 0.290938i 0.769734 0.638365i \(-0.220389\pi\)
−0.937707 + 0.347427i \(0.887056\pi\)
\(30\) 0 0
\(31\) 0.945010i 0.169729i 0.996393 + 0.0848644i \(0.0270457\pi\)
−0.996393 + 0.0848644i \(0.972954\pi\)
\(32\) 0 0
\(33\) 0.470719 + 0.271770i 0.0819417 + 0.0473091i
\(34\) 0 0
\(35\) −0.256753 + 0.444709i −0.0433991 + 0.0751695i
\(36\) 0 0
\(37\) 0.151323 0.0873661i 0.0248773 0.0143629i −0.487510 0.873118i \(-0.662095\pi\)
0.512387 + 0.858755i \(0.328761\pi\)
\(38\) 0 0
\(39\) 1.51368 0.563287i 0.242383 0.0901980i
\(40\) 0 0
\(41\) 5.45396 3.14885i 0.851766 0.491767i −0.00948045 0.999955i \(-0.503018\pi\)
0.861246 + 0.508188i \(0.169684\pi\)
\(42\) 0 0
\(43\) 1.13760 1.97038i 0.173483 0.300481i −0.766153 0.642659i \(-0.777831\pi\)
0.939635 + 0.342178i \(0.111165\pi\)
\(44\) 0 0
\(45\) 1.24489 + 0.718739i 0.185578 + 0.107143i
\(46\) 0 0
\(47\) 3.38387i 0.493588i 0.969068 + 0.246794i \(0.0793770\pi\)
−0.969068 + 0.246794i \(0.920623\pi\)
\(48\) 0 0
\(49\) 0.500000 + 0.866025i 0.0714286 + 0.123718i
\(50\) 0 0
\(51\) −2.98137 −0.417475
\(52\) 0 0
\(53\) 9.32989 1.28156 0.640779 0.767725i \(-0.278611\pi\)
0.640779 + 0.767725i \(0.278611\pi\)
\(54\) 0 0
\(55\) −0.311545 0.539612i −0.0420088 0.0727613i
\(56\) 0 0
\(57\) 2.78962i 0.369494i
\(58\) 0 0
\(59\) 12.8019 + 7.39117i 1.66666 + 0.962249i 0.969418 + 0.245417i \(0.0789250\pi\)
0.697246 + 0.716832i \(0.254408\pi\)
\(60\) 0 0
\(61\) 4.46098 7.72665i 0.571170 0.989296i −0.425276 0.905064i \(-0.639823\pi\)
0.996446 0.0842321i \(-0.0268437\pi\)
\(62\) 0 0
\(63\) 2.42430 1.39967i 0.305434 0.176342i
\(64\) 0 0
\(65\) −1.82561 0.308392i −0.226439 0.0382513i
\(66\) 0 0
\(67\) −6.09270 + 3.51762i −0.744341 + 0.429746i −0.823646 0.567105i \(-0.808063\pi\)
0.0793044 + 0.996850i \(0.474730\pi\)
\(68\) 0 0
\(69\) −0.0449879 + 0.0779214i −0.00541591 + 0.00938063i
\(70\) 0 0
\(71\) −9.82460 5.67224i −1.16597 0.673171i −0.213239 0.977000i \(-0.568401\pi\)
−0.952726 + 0.303829i \(0.901735\pi\)
\(72\) 0 0
\(73\) 2.60456i 0.304840i 0.988316 + 0.152420i \(0.0487067\pi\)
−0.988316 + 0.152420i \(0.951293\pi\)
\(74\) 0 0
\(75\) −1.06080 1.83737i −0.122491 0.212161i
\(76\) 0 0
\(77\) −1.21341 −0.138281
\(78\) 0 0
\(79\) −11.0720 −1.24570 −0.622850 0.782341i \(-0.714025\pi\)
−0.622850 + 0.782341i \(0.714025\pi\)
\(80\) 0 0
\(81\) −3.61718 6.26515i −0.401909 0.696127i
\(82\) 0 0
\(83\) 0.866273i 0.0950858i −0.998869 0.0475429i \(-0.984861\pi\)
0.998869 0.0475429i \(-0.0151391\pi\)
\(84\) 0 0
\(85\) 2.95983 + 1.70886i 0.321039 + 0.185352i
\(86\) 0 0
\(87\) −0.405195 + 0.701818i −0.0434414 + 0.0752428i
\(88\) 0 0
\(89\) 6.67370 3.85306i 0.707411 0.408424i −0.102691 0.994713i \(-0.532745\pi\)
0.810102 + 0.586289i \(0.199412\pi\)
\(90\) 0 0
\(91\) −2.29769 + 2.77860i −0.240864 + 0.291276i
\(92\) 0 0
\(93\) 0.366600 0.211656i 0.0380146 0.0219477i
\(94\) 0 0
\(95\) −1.59895 + 2.76946i −0.164049 + 0.284140i
\(96\) 0 0
\(97\) −13.3489 7.70701i −1.35538 0.782529i −0.366383 0.930464i \(-0.619404\pi\)
−0.988997 + 0.147936i \(0.952737\pi\)
\(98\) 0 0
\(99\) 3.39674i 0.341386i
\(100\) 0 0
\(101\) 3.41786 + 5.91991i 0.340090 + 0.589053i 0.984449 0.175670i \(-0.0562091\pi\)
−0.644359 + 0.764723i \(0.722876\pi\)
\(102\) 0 0
\(103\) −6.83815 −0.673783 −0.336892 0.941543i \(-0.609376\pi\)
−0.336892 + 0.941543i \(0.609376\pi\)
\(104\) 0 0
\(105\) 0.230022 0.0224479
\(106\) 0 0
\(107\) −6.78090 11.7449i −0.655535 1.13542i −0.981759 0.190127i \(-0.939110\pi\)
0.326225 0.945292i \(-0.394223\pi\)
\(108\) 0 0
\(109\) 8.70702i 0.833981i 0.908911 + 0.416991i \(0.136915\pi\)
−0.908911 + 0.416991i \(0.863085\pi\)
\(110\) 0 0
\(111\) −0.0677842 0.0391352i −0.00643379 0.00371455i
\(112\) 0 0
\(113\) −4.48306 + 7.76489i −0.421731 + 0.730459i −0.996109 0.0881309i \(-0.971911\pi\)
0.574378 + 0.818590i \(0.305244\pi\)
\(114\) 0 0
\(115\) 0.0893257 0.0515722i 0.00832967 0.00480914i
\(116\) 0 0
\(117\) 7.77825 + 6.43204i 0.719100 + 0.594642i
\(118\) 0 0
\(119\) 5.76397 3.32783i 0.528382 0.305062i
\(120\) 0 0
\(121\) −4.76382 + 8.25118i −0.433075 + 0.750107i
\(122\) 0 0
\(123\) −2.44308 1.41051i −0.220285 0.127182i
\(124\) 0 0
\(125\) 4.99965i 0.447182i
\(126\) 0 0
\(127\) 7.82328 + 13.5503i 0.694204 + 1.20240i 0.970448 + 0.241309i \(0.0775766\pi\)
−0.276245 + 0.961087i \(0.589090\pi\)
\(128\) 0 0
\(129\) −1.01917 −0.0897326
\(130\) 0 0
\(131\) −0.441531 −0.0385768 −0.0192884 0.999814i \(-0.506140\pi\)
−0.0192884 + 0.999814i \(0.506140\pi\)
\(132\) 0 0
\(133\) 3.11379 + 5.39324i 0.270000 + 0.467653i
\(134\) 0 0
\(135\) 1.33398i 0.114811i
\(136\) 0 0
\(137\) −3.23799 1.86945i −0.276640 0.159718i 0.355261 0.934767i \(-0.384392\pi\)
−0.631901 + 0.775049i \(0.717725\pi\)
\(138\) 0 0
\(139\) −6.98667 + 12.1013i −0.592602 + 1.02642i 0.401279 + 0.915956i \(0.368566\pi\)
−0.993881 + 0.110460i \(0.964767\pi\)
\(140\) 0 0
\(141\) 1.31271 0.757893i 0.110550 0.0638261i
\(142\) 0 0
\(143\) −1.52585 4.10029i −0.127598 0.342884i
\(144\) 0 0
\(145\) 0.804534 0.464498i 0.0668129 0.0385744i
\(146\) 0 0
\(147\) 0.223973 0.387932i 0.0184730 0.0319961i
\(148\) 0 0
\(149\) −15.4642 8.92825i −1.26688 0.731431i −0.292480 0.956272i \(-0.594480\pi\)
−0.974396 + 0.224841i \(0.927814\pi\)
\(150\) 0 0
\(151\) 14.7033i 1.19654i 0.801295 + 0.598269i \(0.204145\pi\)
−0.801295 + 0.598269i \(0.795855\pi\)
\(152\) 0 0
\(153\) −9.31574 16.1353i −0.753133 1.30446i
\(154\) 0 0
\(155\) −0.485268 −0.0389776
\(156\) 0 0
\(157\) −2.87043 −0.229085 −0.114543 0.993418i \(-0.536540\pi\)
−0.114543 + 0.993418i \(0.536540\pi\)
\(158\) 0 0
\(159\) −2.08964 3.61936i −0.165719 0.287034i
\(160\) 0 0
\(161\) 0.200863i 0.0158303i
\(162\) 0 0
\(163\) −16.8356 9.72004i −1.31867 0.761332i −0.335152 0.942164i \(-0.608788\pi\)
−0.983514 + 0.180832i \(0.942121\pi\)
\(164\) 0 0
\(165\) −0.139555 + 0.241717i −0.0108644 + 0.0188176i
\(166\) 0 0
\(167\) −5.33374 + 3.07944i −0.412737 + 0.238294i −0.691965 0.721931i \(-0.743255\pi\)
0.279228 + 0.960225i \(0.409922\pi\)
\(168\) 0 0
\(169\) −12.2787 4.27021i −0.944512 0.328478i
\(170\) 0 0
\(171\) 15.0975 8.71657i 1.15454 0.666573i
\(172\) 0 0
\(173\) 2.00237 3.46820i 0.152237 0.263682i −0.779813 0.626013i \(-0.784686\pi\)
0.932050 + 0.362331i \(0.118019\pi\)
\(174\) 0 0
\(175\) 4.10177 + 2.36816i 0.310064 + 0.179016i
\(176\) 0 0
\(177\) 6.62168i 0.497716i
\(178\) 0 0
\(179\) −1.06309 1.84132i −0.0794590 0.137627i 0.823558 0.567233i \(-0.191986\pi\)
−0.903017 + 0.429606i \(0.858653\pi\)
\(180\) 0 0
\(181\) −17.4412 −1.29640 −0.648198 0.761472i \(-0.724477\pi\)
−0.648198 + 0.761472i \(0.724477\pi\)
\(182\) 0 0
\(183\) −3.99655 −0.295434
\(184\) 0 0
\(185\) 0.0448630 + 0.0777049i 0.00329839 + 0.00571298i
\(186\) 0 0
\(187\) 8.07602i 0.590577i
\(188\) 0 0
\(189\) −2.24975 1.29889i −0.163645 0.0944807i
\(190\) 0 0
\(191\) 0.337550 0.584655i 0.0244243 0.0423041i −0.853555 0.521003i \(-0.825558\pi\)
0.877979 + 0.478699i \(0.158891\pi\)
\(192\) 0 0
\(193\) 19.4940 11.2549i 1.40321 0.810143i 0.408488 0.912764i \(-0.366056\pi\)
0.994721 + 0.102621i \(0.0327227\pi\)
\(194\) 0 0
\(195\) 0.289251 + 0.777282i 0.0207137 + 0.0556623i
\(196\) 0 0
\(197\) −22.2018 + 12.8182i −1.58182 + 0.913262i −0.587222 + 0.809426i \(0.699778\pi\)
−0.994594 + 0.103836i \(0.966888\pi\)
\(198\) 0 0
\(199\) −0.343787 + 0.595457i −0.0243704 + 0.0422108i −0.877953 0.478746i \(-0.841091\pi\)
0.853583 + 0.520957i \(0.174425\pi\)
\(200\) 0 0
\(201\) 2.72919 + 1.57570i 0.192503 + 0.111141i
\(202\) 0 0
\(203\) 1.80913i 0.126976i
\(204\) 0 0
\(205\) 1.61695 + 2.80064i 0.112933 + 0.195605i
\(206\) 0 0
\(207\) −0.562286 −0.0390816
\(208\) 0 0
\(209\) −7.55659 −0.522700
\(210\) 0 0
\(211\) 0.970272 + 1.68056i 0.0667963 + 0.115695i 0.897489 0.441036i \(-0.145389\pi\)
−0.830693 + 0.556731i \(0.812056\pi\)
\(212\) 0 0
\(213\) 5.08170i 0.348193i
\(214\) 0 0
\(215\) 1.01180 + 0.584164i 0.0690044 + 0.0398397i
\(216\) 0 0
\(217\) −0.472505 + 0.818402i −0.0320757 + 0.0555568i
\(218\) 0 0
\(219\) 1.01039 0.583349i 0.0682759 0.0394191i
\(220\) 0 0
\(221\) 18.4934 + 15.2927i 1.24400 + 1.02870i
\(222\) 0 0
\(223\) 11.6208 6.70928i 0.778188 0.449287i −0.0575999 0.998340i \(-0.518345\pi\)
0.835788 + 0.549053i \(0.185011\pi\)
\(224\) 0 0
\(225\) 6.62929 11.4823i 0.441952 0.765484i
\(226\) 0 0
\(227\) −4.33583 2.50329i −0.287779 0.166149i 0.349161 0.937063i \(-0.386467\pi\)
−0.636940 + 0.770914i \(0.719800\pi\)
\(228\) 0 0
\(229\) 23.9222i 1.58082i 0.612576 + 0.790411i \(0.290133\pi\)
−0.612576 + 0.790411i \(0.709867\pi\)
\(230\) 0 0
\(231\) 0.271770 + 0.470719i 0.0178811 + 0.0309711i
\(232\) 0 0
\(233\) −18.3427 −1.20167 −0.600836 0.799373i \(-0.705165\pi\)
−0.600836 + 0.799373i \(0.705165\pi\)
\(234\) 0 0
\(235\) −1.73763 −0.113351
\(236\) 0 0
\(237\) 2.47983 + 4.29519i 0.161082 + 0.279003i
\(238\) 0 0
\(239\) 15.9907i 1.03435i −0.855878 0.517177i \(-0.826983\pi\)
0.855878 0.517177i \(-0.173017\pi\)
\(240\) 0 0
\(241\) 8.09282 + 4.67239i 0.521305 + 0.300975i 0.737468 0.675382i \(-0.236021\pi\)
−0.216164 + 0.976357i \(0.569354\pi\)
\(242\) 0 0
\(243\) −5.51698 + 9.55570i −0.353915 + 0.612998i
\(244\) 0 0
\(245\) −0.444709 + 0.256753i −0.0284114 + 0.0164033i
\(246\) 0 0
\(247\) −14.3091 + 17.3039i −0.910464 + 1.10102i
\(248\) 0 0
\(249\) −0.336055 + 0.194021i −0.0212966 + 0.0122956i
\(250\) 0 0
\(251\) 14.9750 25.9374i 0.945212 1.63715i 0.189885 0.981806i \(-0.439189\pi\)
0.755327 0.655348i \(-0.227478\pi\)
\(252\) 0 0
\(253\) 0.211076 + 0.121865i 0.0132702 + 0.00766156i
\(254\) 0 0
\(255\) 1.53095i 0.0958718i
\(256\) 0 0
\(257\) 8.23979 + 14.2717i 0.513984 + 0.890246i 0.999868 + 0.0162232i \(0.00516424\pi\)
−0.485884 + 0.874023i \(0.661502\pi\)
\(258\) 0 0
\(259\) 0.174732 0.0108573
\(260\) 0 0
\(261\) −5.06437 −0.313476
\(262\) 0 0
\(263\) −14.2331 24.6525i −0.877651 1.52014i −0.853912 0.520417i \(-0.825776\pi\)
−0.0237383 0.999718i \(-0.507557\pi\)
\(264\) 0 0
\(265\) 4.79095i 0.294306i
\(266\) 0 0
\(267\) −2.98945 1.72596i −0.182952 0.105627i
\(268\) 0 0
\(269\) −2.39771 + 4.15295i −0.146191 + 0.253210i −0.929817 0.368023i \(-0.880035\pi\)
0.783626 + 0.621233i \(0.213368\pi\)
\(270\) 0 0
\(271\) 23.0244 13.2932i 1.39863 0.807502i 0.404384 0.914589i \(-0.367486\pi\)
0.994250 + 0.107088i \(0.0341525\pi\)
\(272\) 0 0
\(273\) 1.59253 + 0.269019i 0.0963841 + 0.0162818i
\(274\) 0 0
\(275\) −4.97711 + 2.87354i −0.300131 + 0.173281i
\(276\) 0 0
\(277\) 11.5438 19.9945i 0.693602 1.20135i −0.277047 0.960856i \(-0.589356\pi\)
0.970650 0.240498i \(-0.0773108\pi\)
\(278\) 0 0
\(279\) 2.29099 + 1.32270i 0.137158 + 0.0791882i
\(280\) 0 0
\(281\) 15.7355i 0.938701i −0.883012 0.469350i \(-0.844488\pi\)
0.883012 0.469350i \(-0.155512\pi\)
\(282\) 0 0
\(283\) 7.21744 + 12.5010i 0.429032 + 0.743105i 0.996787 0.0800919i \(-0.0255214\pi\)
−0.567755 + 0.823197i \(0.692188\pi\)
\(284\) 0 0
\(285\) 1.43248 0.0848529
\(286\) 0 0
\(287\) 6.29769 0.371741
\(288\) 0 0
\(289\) −13.6489 23.6406i −0.802876 1.39062i
\(290\) 0 0
\(291\) 6.90464i 0.404757i
\(292\) 0 0
\(293\) 2.14887 + 1.24065i 0.125538 + 0.0724795i 0.561454 0.827508i \(-0.310242\pi\)
−0.435916 + 0.899987i \(0.643575\pi\)
\(294\) 0 0
\(295\) −3.79541 + 6.57384i −0.220977 + 0.382744i
\(296\) 0 0
\(297\) 2.72986 1.57609i 0.158403 0.0914539i
\(298\) 0 0
\(299\) 0.678750 0.252584i 0.0392531 0.0146073i
\(300\) 0 0
\(301\) 1.97038 1.13760i 0.113571 0.0655703i
\(302\) 0 0
\(303\) 1.53102 2.65180i 0.0879545 0.152342i
\(304\) 0 0
\(305\) 3.96768 + 2.29074i 0.227188 + 0.131167i
\(306\) 0 0
\(307\) 3.02698i 0.172759i 0.996262 + 0.0863793i \(0.0275297\pi\)
−0.996262 + 0.0863793i \(0.972470\pi\)
\(308\) 0 0
\(309\) 1.53156 + 2.65274i 0.0871273 + 0.150909i
\(310\) 0 0
\(311\) 33.8272 1.91816 0.959082 0.283130i \(-0.0913728\pi\)
0.959082 + 0.283130i \(0.0913728\pi\)
\(312\) 0 0
\(313\) −2.92903 −0.165559 −0.0827794 0.996568i \(-0.526380\pi\)
−0.0827794 + 0.996568i \(0.526380\pi\)
\(314\) 0 0
\(315\) 0.718739 + 1.24489i 0.0404964 + 0.0701418i
\(316\) 0 0
\(317\) 14.1111i 0.792556i 0.918131 + 0.396278i \(0.129698\pi\)
−0.918131 + 0.396278i \(0.870302\pi\)
\(318\) 0 0
\(319\) 1.90110 + 1.09760i 0.106441 + 0.0614539i
\(320\) 0 0
\(321\) −3.03747 + 5.26106i −0.169535 + 0.293644i
\(322\) 0 0
\(323\) 35.8956 20.7243i 1.99728 1.15313i
\(324\) 0 0
\(325\) −2.84445 + 16.8385i −0.157782 + 0.934029i
\(326\) 0 0
\(327\) 3.37773 1.95013i 0.186789 0.107843i
\(328\) 0 0
\(329\) −1.69193 + 2.93051i −0.0932793 + 0.161564i
\(330\) 0 0
\(331\) 13.2496 + 7.64968i 0.728266 + 0.420464i 0.817787 0.575521i \(-0.195201\pi\)
−0.0895218 + 0.995985i \(0.528534\pi\)
\(332\) 0 0
\(333\) 0.489136i 0.0268045i
\(334\) 0 0
\(335\) −1.80632 3.12863i −0.0986896 0.170935i
\(336\) 0 0
\(337\) −27.7862 −1.51361 −0.756806 0.653639i \(-0.773241\pi\)
−0.756806 + 0.653639i \(0.773241\pi\)
\(338\) 0 0
\(339\) 4.01633 0.218137
\(340\) 0 0
\(341\) −0.573341 0.993055i −0.0310481 0.0537769i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) −0.0400130 0.0231015i −0.00215423 0.00124375i
\(346\) 0 0
\(347\) −7.66358 + 13.2737i −0.411402 + 0.712570i −0.995043 0.0994420i \(-0.968294\pi\)
0.583641 + 0.812012i \(0.301628\pi\)
\(348\) 0 0
\(349\) −12.5885 + 7.26799i −0.673849 + 0.389047i −0.797533 0.603275i \(-0.793862\pi\)
0.123685 + 0.992322i \(0.460529\pi\)
\(350\) 0 0
\(351\) 1.56013 9.23562i 0.0832737 0.492961i
\(352\) 0 0
\(353\) −5.27079 + 3.04309i −0.280536 + 0.161967i −0.633666 0.773607i \(-0.718451\pi\)
0.353130 + 0.935574i \(0.385117\pi\)
\(354\) 0 0
\(355\) 2.91272 5.04499i 0.154591 0.267760i
\(356\) 0 0
\(357\) −2.58194 1.49069i −0.136651 0.0788954i
\(358\) 0 0
\(359\) 1.05654i 0.0557621i 0.999611 + 0.0278811i \(0.00887597\pi\)
−0.999611 + 0.0278811i \(0.991124\pi\)
\(360\) 0 0
\(361\) 9.89137 + 17.1324i 0.520599 + 0.901703i
\(362\) 0 0
\(363\) 4.26786 0.224005
\(364\) 0 0
\(365\) −1.33745 −0.0700055
\(366\) 0 0
\(367\) −0.958906 1.66087i −0.0500545 0.0866969i 0.839913 0.542722i \(-0.182606\pi\)
−0.889967 + 0.456025i \(0.849273\pi\)
\(368\) 0 0
\(369\) 17.6294i 0.917751i
\(370\) 0 0
\(371\) 8.07992 + 4.66494i 0.419489 + 0.242192i
\(372\) 0 0
\(373\) −3.20525 + 5.55165i −0.165962 + 0.287454i −0.936996 0.349339i \(-0.886406\pi\)
0.771035 + 0.636793i \(0.219739\pi\)
\(374\) 0 0
\(375\) 1.93952 1.11978i 0.100157 0.0578254i
\(376\) 0 0
\(377\) 6.11332 2.27496i 0.314852 0.117166i
\(378\) 0 0
\(379\) 17.6014 10.1622i 0.904123 0.521996i 0.0255874 0.999673i \(-0.491854\pi\)
0.878536 + 0.477677i \(0.158521\pi\)
\(380\) 0 0
\(381\) 3.50440 6.06980i 0.179536 0.310965i
\(382\) 0 0
\(383\) 8.52361 + 4.92111i 0.435536 + 0.251457i 0.701702 0.712470i \(-0.252424\pi\)
−0.266166 + 0.963927i \(0.585757\pi\)
\(384\) 0 0
\(385\) 0.623091i 0.0317556i
\(386\) 0 0
\(387\) −3.18454 5.51578i −0.161879 0.280383i
\(388\) 0 0
\(389\) 18.6688 0.946546 0.473273 0.880916i \(-0.343072\pi\)
0.473273 + 0.880916i \(0.343072\pi\)
\(390\) 0 0
\(391\) −1.33688 −0.0676089
\(392\) 0 0
\(393\) 0.0988910 + 0.171284i 0.00498839 + 0.00864014i
\(394\) 0 0
\(395\) 5.68555i 0.286071i
\(396\) 0 0
\(397\) 22.7952 + 13.1608i 1.14406 + 0.660521i 0.947432 0.319958i \(-0.103669\pi\)
0.196625 + 0.980479i \(0.437002\pi\)
\(398\) 0 0
\(399\) 1.39481 2.41588i 0.0698277 0.120945i
\(400\) 0 0
\(401\) 18.1917 10.5030i 0.908450 0.524494i 0.0285176 0.999593i \(-0.490921\pi\)
0.879932 + 0.475100i \(0.157588\pi\)
\(402\) 0 0
\(403\) −3.35968 0.567537i −0.167358 0.0282710i
\(404\) 0 0
\(405\) 3.21719 1.85744i 0.159863 0.0922971i
\(406\) 0 0
\(407\) −0.106011 + 0.183616i −0.00525475 + 0.00910149i
\(408\) 0 0
\(409\) −17.7218 10.2317i −0.876289 0.505926i −0.00685600 0.999976i \(-0.502182\pi\)
−0.869433 + 0.494051i \(0.835516\pi\)
\(410\) 0 0
\(411\) 1.67483i 0.0826131i
\(412\) 0 0
\(413\) 7.39117 + 12.8019i 0.363696 + 0.629940i
\(414\) 0 0
\(415\) 0.444836 0.0218361
\(416\) 0 0
\(417\) 6.25929 0.306519
\(418\) 0 0
\(419\) −14.1991 24.5935i −0.693669 1.20147i −0.970627 0.240588i \(-0.922660\pi\)
0.276958 0.960882i \(-0.410674\pi\)
\(420\) 0 0
\(421\) 25.0074i 1.21879i 0.792868 + 0.609393i \(0.208587\pi\)
−0.792868 + 0.609393i \(0.791413\pi\)
\(422\) 0 0
\(423\) 8.20352 + 4.73630i 0.398869 + 0.230287i
\(424\) 0 0
\(425\) 15.7616 27.3000i 0.764552 1.32424i
\(426\) 0 0
\(427\) 7.72665 4.46098i 0.373919 0.215882i
\(428\) 0 0
\(429\) −1.24889 + 1.51028i −0.0602969 + 0.0729169i
\(430\) 0 0
\(431\) 12.1959 7.04133i 0.587458 0.339169i −0.176634 0.984277i \(-0.556521\pi\)
0.764092 + 0.645108i \(0.223187\pi\)
\(432\) 0 0
\(433\) −8.66959 + 15.0162i −0.416634 + 0.721631i −0.995598 0.0937214i \(-0.970124\pi\)
0.578964 + 0.815353i \(0.303457\pi\)
\(434\) 0 0
\(435\) −0.360387 0.208070i −0.0172792 0.00997617i
\(436\) 0 0
\(437\) 1.25089i 0.0598383i
\(438\) 0 0
\(439\) −3.48416 6.03474i −0.166290 0.288023i 0.770823 0.637050i \(-0.219845\pi\)
−0.937113 + 0.349027i \(0.886512\pi\)
\(440\) 0 0
\(441\) 2.79934 0.133302
\(442\) 0 0
\(443\) −15.4247 −0.732851 −0.366425 0.930447i \(-0.619419\pi\)
−0.366425 + 0.930447i \(0.619419\pi\)
\(444\) 0 0
\(445\) 1.97857 + 3.42698i 0.0937932 + 0.162455i
\(446\) 0 0
\(447\) 7.99874i 0.378327i
\(448\) 0 0
\(449\) 20.8297 + 12.0260i 0.983015 + 0.567544i 0.903179 0.429264i \(-0.141227\pi\)
0.0798362 + 0.996808i \(0.474560\pi\)
\(450\) 0 0
\(451\) −3.82083 + 6.61787i −0.179916 + 0.311623i
\(452\) 0 0
\(453\) 5.70388 3.29314i 0.267992 0.154725i
\(454\) 0 0
\(455\) −1.42682 1.17988i −0.0668906 0.0553135i
\(456\) 0 0
\(457\) 0.836738 0.483091i 0.0391410 0.0225980i −0.480302 0.877103i \(-0.659473\pi\)
0.519443 + 0.854505i \(0.326140\pi\)
\(458\) 0 0
\(459\) −8.64500 + 14.9736i −0.403514 + 0.698907i
\(460\) 0 0
\(461\) −18.5401 10.7041i −0.863497 0.498540i 0.00168489 0.999999i \(-0.499464\pi\)
−0.865182 + 0.501458i \(0.832797\pi\)
\(462\) 0 0
\(463\) 31.8588i 1.48060i 0.672275 + 0.740301i \(0.265317\pi\)
−0.672275 + 0.740301i \(0.734683\pi\)
\(464\) 0 0
\(465\) 0.108687 + 0.188251i 0.00504022 + 0.00872992i
\(466\) 0 0
\(467\) −34.3765 −1.59075 −0.795376 0.606116i \(-0.792727\pi\)
−0.795376 + 0.606116i \(0.792727\pi\)
\(468\) 0 0
\(469\) −7.03524 −0.324857
\(470\) 0 0
\(471\) 0.642897 + 1.11353i 0.0296231 + 0.0513088i
\(472\) 0 0
\(473\) 2.76075i 0.126939i
\(474\) 0 0
\(475\) 25.5441 + 14.7479i 1.17204 + 0.676679i
\(476\) 0 0
\(477\) 13.0588 22.6185i 0.597921 1.03563i
\(478\) 0 0
\(479\) 20.7680 11.9904i 0.948916 0.547857i 0.0561718 0.998421i \(-0.482111\pi\)
0.892744 + 0.450564i \(0.148777\pi\)
\(480\) 0 0
\(481\) 0.219724 + 0.590448i 0.0100185 + 0.0269221i
\(482\) 0 0
\(483\) −0.0779214 + 0.0449879i −0.00354554 + 0.00204702i
\(484\) 0 0
\(485\) 3.95759 6.85475i 0.179705 0.311258i
\(486\) 0 0
\(487\) −19.7517 11.4037i −0.895037 0.516750i −0.0194500 0.999811i \(-0.506192\pi\)
−0.875587 + 0.483061i \(0.839525\pi\)
\(488\) 0 0
\(489\) 8.70809i 0.393794i
\(490\) 0 0
\(491\) −6.44981 11.1714i −0.291076 0.504158i 0.682989 0.730429i \(-0.260680\pi\)
−0.974064 + 0.226271i \(0.927347\pi\)
\(492\) 0 0
\(493\) −12.0409 −0.542296
\(494\) 0 0
\(495\) −1.74425 −0.0783980
\(496\) 0 0
\(497\) −5.67224 9.82460i −0.254435 0.440694i
\(498\) 0 0
\(499\) 43.2772i 1.93735i −0.248326 0.968677i \(-0.579880\pi\)
0.248326 0.968677i \(-0.420120\pi\)
\(500\) 0 0
\(501\) 2.38922 + 1.37942i 0.106743 + 0.0616279i
\(502\) 0 0
\(503\) −4.29338 + 7.43636i −0.191433 + 0.331571i −0.945725 0.324967i \(-0.894647\pi\)
0.754293 + 0.656538i \(0.227980\pi\)
\(504\) 0 0
\(505\) −3.03991 + 1.75509i −0.135274 + 0.0781005i
\(506\) 0 0
\(507\) 1.09353 + 5.71969i 0.0485653 + 0.254020i
\(508\) 0 0
\(509\) −0.925062 + 0.534085i −0.0410026 + 0.0236729i −0.520361 0.853946i \(-0.674203\pi\)
0.479359 + 0.877619i \(0.340869\pi\)
\(510\) 0 0
\(511\) −1.30228 + 2.25561i −0.0576094 + 0.0997824i
\(512\) 0 0
\(513\) −14.0105 8.08897i −0.618579 0.357137i
\(514\) 0 0
\(515\) 3.51143i 0.154732i
\(516\) 0 0
\(517\) −2.05300 3.55590i −0.0902909 0.156389i
\(518\) 0 0
\(519\) −1.79390 −0.0787435
\(520\) 0 0
\(521\) 1.01764 0.0445834 0.0222917 0.999752i \(-0.492904\pi\)
0.0222917 + 0.999752i \(0.492904\pi\)
\(522\) 0 0
\(523\) 9.79632 + 16.9677i 0.428363 + 0.741947i 0.996728 0.0808300i \(-0.0257571\pi\)
−0.568365 + 0.822777i \(0.692424\pi\)
\(524\) 0 0
\(525\) 2.12161i 0.0925946i
\(526\) 0 0
\(527\) 5.44701 + 3.14483i 0.237275 + 0.136991i
\(528\) 0 0
\(529\) 11.4798 19.8836i 0.499123 0.864506i
\(530\) 0 0
\(531\) 35.8369 20.6904i 1.55519 0.897889i
\(532\) 0 0
\(533\) 7.91928 + 21.2809i 0.343022 + 0.921779i
\(534\) 0 0
\(535\) 6.03105 3.48203i 0.260745 0.150541i
\(536\) 0 0
\(537\) −0.476205 + 0.824812i −0.0205498 + 0.0355933i
\(538\) 0 0
\(539\) −1.05084 0.606703i −0.0452629 0.0261326i
\(540\) 0 0
\(541\) 5.02635i 0.216100i −0.994145 0.108050i \(-0.965539\pi\)
0.994145 0.108050i \(-0.0344606\pi\)
\(542\) 0 0
\(543\) 3.90636 + 6.76601i 0.167638 + 0.290357i
\(544\) 0 0
\(545\) −4.47110 −0.191521
\(546\) 0 0
\(547\) −34.2286 −1.46351 −0.731755 0.681568i \(-0.761298\pi\)
−0.731755 + 0.681568i \(0.761298\pi\)
\(548\) 0 0
\(549\) −12.4878 21.6296i −0.532967 0.923127i
\(550\) 0 0
\(551\) 11.2665i 0.479968i
\(552\) 0 0
\(553\) −9.58866 5.53601i −0.407751 0.235415i
\(554\) 0 0
\(555\) 0.0200962 0.0348076i 0.000853034 0.00147750i
\(556\) 0 0
\(557\) −23.1413 + 13.3606i −0.980527 + 0.566108i −0.902429 0.430838i \(-0.858218\pi\)
−0.0780978 + 0.996946i \(0.524885\pi\)
\(558\) 0 0
\(559\) 6.32187 + 5.22772i 0.267387 + 0.221109i
\(560\) 0 0
\(561\) 3.13295 1.80881i 0.132273 0.0763679i
\(562\) 0 0
\(563\) −9.19952 + 15.9340i −0.387713 + 0.671539i −0.992142 0.125120i \(-0.960068\pi\)
0.604428 + 0.796660i \(0.293402\pi\)
\(564\) 0 0
\(565\) −3.98731 2.30208i −0.167747 0.0968491i
\(566\) 0 0
\(567\) 7.23437i 0.303815i
\(568\) 0 0
\(569\) 14.8539 + 25.7278i 0.622710 + 1.07857i 0.988979 + 0.148056i \(0.0473016\pi\)
−0.366269 + 0.930509i \(0.619365\pi\)
\(570\) 0 0
\(571\) 24.0391 1.00600 0.503002 0.864285i \(-0.332229\pi\)
0.503002 + 0.864285i \(0.332229\pi\)
\(572\) 0 0
\(573\) −0.302408 −0.0126333
\(574\) 0 0
\(575\) −0.475676 0.823895i −0.0198371 0.0343588i
\(576\) 0 0
\(577\) 19.4579i 0.810041i 0.914308 + 0.405021i \(0.132736\pi\)
−0.914308 + 0.405021i \(0.867264\pi\)
\(578\) 0 0
\(579\) −8.73225 5.04156i −0.362900 0.209520i
\(580\) 0 0
\(581\) 0.433136 0.750214i 0.0179695 0.0311241i
\(582\) 0 0
\(583\) −9.80423 + 5.66047i −0.406050 + 0.234433i
\(584\) 0 0
\(585\) −3.30289 + 3.99418i −0.136558 + 0.165139i
\(586\) 0 0
\(587\) −7.96443 + 4.59827i −0.328727 + 0.189791i −0.655276 0.755390i \(-0.727448\pi\)
0.326549 + 0.945180i \(0.394114\pi\)
\(588\) 0 0
\(589\) −2.94256 + 5.09667i −0.121246 + 0.210004i
\(590\) 0 0
\(591\) 9.94521 + 5.74187i 0.409091 + 0.236189i
\(592\) 0 0
\(593\) 9.79698i 0.402314i 0.979559 + 0.201157i \(0.0644701\pi\)
−0.979559 + 0.201157i \(0.935530\pi\)
\(594\) 0 0
\(595\) 1.70886 + 2.95983i 0.0700564 + 0.121341i
\(596\) 0 0
\(597\) 0.307996 0.0126054
\(598\) 0 0
\(599\) −45.6442 −1.86497 −0.932487 0.361205i \(-0.882366\pi\)
−0.932487 + 0.361205i \(0.882366\pi\)
\(600\) 0 0
\(601\) −9.93424 17.2066i −0.405226 0.701872i 0.589122 0.808044i \(-0.299474\pi\)
−0.994348 + 0.106172i \(0.966141\pi\)
\(602\) 0 0
\(603\) 19.6941i 0.802004i
\(604\) 0 0
\(605\) −4.23703 2.44625i −0.172260 0.0994541i
\(606\) 0 0
\(607\) −15.5948 + 27.0110i −0.632974 + 1.09634i 0.353967 + 0.935258i \(0.384833\pi\)
−0.986941 + 0.161085i \(0.948501\pi\)
\(608\) 0 0
\(609\) −0.701818 + 0.405195i −0.0284391 + 0.0164193i
\(610\) 0 0
\(611\) −12.0303 2.03222i −0.486692 0.0822148i
\(612\) 0 0
\(613\) 24.6358 14.2235i 0.995031 0.574481i 0.0882564 0.996098i \(-0.471871\pi\)
0.906774 + 0.421617i \(0.138537\pi\)
\(614\) 0 0
\(615\) 0.724305 1.25453i 0.0292068 0.0505877i
\(616\) 0 0
\(617\) −4.12564 2.38194i −0.166092 0.0958932i 0.414650 0.909981i \(-0.363904\pi\)
−0.580742 + 0.814088i \(0.697237\pi\)
\(618\) 0 0
\(619\) 38.6156i 1.55209i 0.630676 + 0.776046i \(0.282778\pi\)
−0.630676 + 0.776046i \(0.717222\pi\)
\(620\) 0 0
\(621\) 0.260900 + 0.451893i 0.0104696 + 0.0181338i
\(622\) 0 0
\(623\) 7.70613 0.308739
\(624\) 0 0
\(625\) 21.1142 0.844569
\(626\) 0 0
\(627\) 1.69247 + 2.93144i 0.0675907 + 0.117070i
\(628\) 0 0
\(629\) 1.16296i 0.0463702i
\(630\) 0 0
\(631\) −9.05840 5.22987i −0.360609 0.208198i 0.308739 0.951147i \(-0.400093\pi\)
−0.669348 + 0.742949i \(0.733426\pi\)
\(632\) 0 0
\(633\) 0.434629 0.752799i 0.0172749 0.0299211i
\(634\) 0 0
\(635\) −6.95816 + 4.01729i −0.276126 + 0.159421i
\(636\) 0 0
\(637\) −3.37916 + 1.25749i −0.133887 + 0.0498236i
\(638\) 0 0
\(639\) −27.5025 + 15.8785i −1.08798 + 0.628146i
\(640\) 0 0
\(641\) 4.56383 7.90479i 0.180261 0.312220i −0.761709 0.647920i \(-0.775639\pi\)
0.941969 + 0.335699i \(0.108973\pi\)
\(642\) 0 0
\(643\) −2.15211 1.24252i −0.0848709 0.0490002i 0.456964 0.889485i \(-0.348937\pi\)
−0.541835 + 0.840485i \(0.682270\pi\)
\(644\) 0 0
\(645\) 0.523347i 0.0206068i
\(646\) 0 0
\(647\) −20.7448 35.9310i −0.815561 1.41259i −0.908924 0.416962i \(-0.863095\pi\)
0.0933626 0.995632i \(-0.470238\pi\)
\(648\) 0 0
\(649\) −17.9370 −0.704089
\(650\) 0 0
\(651\) 0.423313 0.0165909
\(652\) 0 0
\(653\) 6.58656 + 11.4083i 0.257752 + 0.446440i 0.965639 0.259886i \(-0.0836849\pi\)
−0.707887 + 0.706325i \(0.750352\pi\)
\(654\) 0 0
\(655\) 0.226729i 0.00885903i
\(656\) 0 0
\(657\) 6.31423 + 3.64552i 0.246342 + 0.142225i
\(658\) 0 0
\(659\) −0.306784 + 0.531366i −0.0119506 + 0.0206991i −0.871939 0.489615i \(-0.837137\pi\)
0.859988 + 0.510314i \(0.170471\pi\)
\(660\) 0 0
\(661\) 8.42874 4.86634i 0.327840 0.189279i −0.327042 0.945010i \(-0.606052\pi\)
0.654882 + 0.755731i \(0.272718\pi\)
\(662\) 0 0
\(663\) 1.79050 10.5993i 0.0695372 0.411643i
\(664\) 0 0
\(665\) −2.76946 + 1.59895i −0.107395 + 0.0620045i
\(666\) 0 0
\(667\) −0.181694 + 0.314703i −0.00703520 + 0.0121853i
\(668\) 0 0
\(669\) −5.20549 3.00539i −0.201256 0.116195i
\(670\) 0 0
\(671\) 10.8260i 0.417932i
\(672\) 0 0
\(673\) −7.42529 12.8610i −0.286224 0.495754i 0.686681 0.726958i \(-0.259067\pi\)
−0.972905 + 0.231204i \(0.925733\pi\)
\(674\) 0 0
\(675\) −12.3039 −0.473579
\(676\) 0 0
\(677\) −20.3971 −0.783925 −0.391962 0.919981i \(-0.628204\pi\)
−0.391962 + 0.919981i \(0.628204\pi\)
\(678\) 0 0
\(679\) −7.70701 13.3489i −0.295768 0.512285i
\(680\) 0 0
\(681\) 2.24267i 0.0859395i
\(682\) 0 0
\(683\) −13.7360 7.93047i −0.525593 0.303451i 0.213627 0.976915i \(-0.431472\pi\)
−0.739220 + 0.673464i \(0.764806\pi\)
\(684\) 0 0
\(685\) 0.959975 1.66273i 0.0366788 0.0635295i
\(686\) 0 0
\(687\) 9.28018 5.35792i 0.354061 0.204417i
\(688\) 0 0
\(689\) −5.60317 + 33.1695i −0.213464 + 1.26366i
\(690\) 0 0
\(691\) −29.6870 + 17.1398i −1.12935 + 0.652029i −0.943771 0.330601i \(-0.892749\pi\)
−0.185577 + 0.982630i \(0.559415\pi\)
\(692\) 0 0
\(693\) −1.69837 + 2.94167i −0.0645158 + 0.111745i
\(694\) 0 0
\(695\) −6.21407 3.58769i −0.235713 0.136089i
\(696\) 0 0
\(697\) 41.9153i 1.58766i
\(698\) 0 0
\(699\) 4.10827 + 7.11573i 0.155389 + 0.269141i
\(700\) 0 0
\(701\) −2.97957 −0.112537 −0.0562685 0.998416i \(-0.517920\pi\)
−0.0562685 + 0.998416i \(0.517920\pi\)
\(702\) 0 0
\(703\) 1.08816 0.0410407
\(704\) 0 0
\(705\) 0.389182 + 0.674084i 0.0146575 + 0.0253875i
\(706\) 0 0
\(707\) 6.83572i 0.257084i
\(708\) 0 0
\(709\) 13.9577 + 8.05850i 0.524194 + 0.302643i 0.738649 0.674091i \(-0.235464\pi\)
−0.214455 + 0.976734i \(0.568798\pi\)
\(710\) 0 0
\(711\) −15.4972 + 26.8420i −0.581191 + 1.00665i
\(712\) 0 0
\(713\) 0.164387 0.0949090i 0.00615635 0.00355437i
\(714\) 0 0
\(715\) 2.10552 0.783530i 0.0787421 0.0293024i
\(716\) 0 0
\(717\) −6.20331 + 3.58149i −0.231667 + 0.133753i
\(718\) 0 0
\(719\) 9.10556 15.7713i 0.339580 0.588170i −0.644774 0.764374i \(-0.723048\pi\)
0.984354 + 0.176203i \(0.0563817\pi\)
\(720\) 0 0
\(721\) −5.92201 3.41908i −0.220547 0.127333i
\(722\) 0 0
\(723\) 4.18595i 0.155677i
\(724\) 0 0
\(725\) −4.28429 7.42061i −0.159115 0.275595i
\(726\) 0 0
\(727\) −20.9527 −0.777094 −0.388547 0.921429i \(-0.627023\pi\)
−0.388547 + 0.921429i \(0.627023\pi\)
\(728\) 0 0
\(729\) −16.7605 −0.620759
\(730\) 0 0
\(731\) −7.57149 13.1142i −0.280042 0.485046i
\(732\) 0 0
\(733\) 33.6472i 1.24279i −0.783498 0.621394i \(-0.786566\pi\)
0.783498 0.621394i \(-0.213434\pi\)
\(734\) 0 0
\(735\) 0.199205 + 0.115011i 0.00734779 + 0.00424225i
\(736\) 0 0
\(737\) 4.26830 7.39292i 0.157225 0.272322i
\(738\) 0 0
\(739\) −27.5487 + 15.9053i −1.01340 + 0.585085i −0.912184 0.409780i \(-0.865606\pi\)
−0.101212 + 0.994865i \(0.532272\pi\)
\(740\) 0 0
\(741\) 9.91759 + 1.67534i 0.364332 + 0.0615450i
\(742\) 0 0
\(743\) 3.98668 2.30171i 0.146257 0.0844417i −0.425086 0.905153i \(-0.639756\pi\)
0.571343 + 0.820712i \(0.306423\pi\)
\(744\) 0 0
\(745\) 4.58471 7.94094i 0.167971 0.290934i
\(746\) 0 0
\(747\) −2.10011 1.21250i −0.0768390 0.0443630i
\(748\) 0 0
\(749\) 13.5618i 0.495538i
\(750\) 0 0
\(751\) 18.6203 + 32.2513i 0.679465 + 1.17687i 0.975142 + 0.221580i \(0.0711214\pi\)
−0.295677 + 0.955288i \(0.595545\pi\)
\(752\) 0 0
\(753\) −13.4159 −0.488904
\(754\) 0 0
\(755\) −7.55023 −0.274781
\(756\) 0 0
\(757\) −11.3213 19.6092i −0.411481 0.712707i 0.583571 0.812062i \(-0.301655\pi\)
−0.995052 + 0.0993557i \(0.968322\pi\)
\(758\) 0 0
\(759\) 0.109177i 0.00396288i
\(760\) 0 0
\(761\) 34.2062 + 19.7489i 1.23997 + 0.715899i 0.969089 0.246713i \(-0.0793506\pi\)
0.270884 + 0.962612i \(0.412684\pi\)
\(762\) 0 0
\(763\) −4.35351 + 7.54050i −0.157608 + 0.272984i
\(764\) 0 0
\(765\) 8.28558 4.78368i 0.299566 0.172954i
\(766\) 0 0
\(767\) −33.9653 + 41.0742i −1.22642 + 1.48310i
\(768\) 0 0
\(769\) −39.8354 + 22.9990i −1.43650 + 0.829363i −0.997605 0.0691750i \(-0.977963\pi\)
−0.438895 + 0.898538i \(0.644630\pi\)
\(770\) 0 0
\(771\) 3.69097 6.39296i 0.132927 0.230237i
\(772\) 0 0
\(773\) −20.1887 11.6559i −0.726136 0.419235i 0.0908712 0.995863i \(-0.471035\pi\)
−0.817007 + 0.576628i \(0.804368\pi\)
\(774\) 0 0
\(775\) 4.47586i 0.160778i
\(776\) 0 0
\(777\) −0.0391352 0.0677842i −0.00140397 0.00243174i
\(778\) 0 0
\(779\) 39.2194 1.40518
\(780\) 0 0
\(781\) 13.7655 0.492567
\(782\) 0 0
\(783\) 2.34986 + 4.07008i 0.0839773 + 0.145453i
\(784\) 0 0
\(785\) 1.47398i 0.0526086i
\(786\) 0 0
\(787\) −26.1282 15.0851i −0.931370 0.537727i −0.0441253 0.999026i \(-0.514050\pi\)
−0.887245 + 0.461299i \(0.847383\pi\)
\(788\) 0 0
\(789\) −6.37565 + 11.0430i −0.226979 + 0.393139i
\(790\) 0 0
\(791\) −7.76489 + 4.48306i −0.276088 + 0.159399i
\(792\) 0 0
\(793\) 24.7905 + 20.4999i 0.880338 + 0.727974i
\(794\) 0 0
\(795\) 1.85856 1.07304i 0.0659164 0.0380569i
\(796\) 0 0
\(797\) 3.50723 6.07471i 0.124233 0.215177i −0.797200 0.603715i \(-0.793686\pi\)
0.921433 + 0.388538i \(0.127020\pi\)
\(798\) 0 0
\(799\) 19.5045 + 11.2609i 0.690020 + 0.398383i
\(800\) 0 0
\(801\) 21.5721i 0.762213i
\(802\) 0 0
\(803\) −1.58019 2.73697i −0.0557638 0.0965857i
\(804\) 0 0
\(805\) 0.103144 0.00363536
\(806\) 0 0
\(807\) 2.14808 0.0756161
\(808\) 0 0
\(809\) 21.8194 + 37.7924i 0.767131 + 1.32871i 0.939113 + 0.343609i \(0.111650\pi\)
−0.171982 + 0.985100i \(0.555017\pi\)
\(810\) 0 0
\(811\) 6.77674i 0.237964i −0.992896 0.118982i \(-0.962037\pi\)
0.992896 0.118982i \(-0.0379630\pi\)
\(812\) 0 0
\(813\) −10.3137 5.95461i −0.361717 0.208837i
\(814\) 0 0
\(815\) 4.99129 8.64517i 0.174837 0.302827i
\(816\) 0 0
\(817\) 12.2707 7.08450i 0.429298 0.247855i
\(818\) 0 0
\(819\) 3.52015 + 9.45943i 0.123004 + 0.330539i
\(820\) 0 0
\(821\) 29.9561 17.2951i 1.04547 0.603605i 0.124095 0.992270i \(-0.460397\pi\)
0.921379 + 0.388666i \(0.127064\pi\)
\(822\) 0 0
\(823\) 22.8633 39.6004i 0.796965 1.38038i −0.124618 0.992205i \(-0.539771\pi\)
0.921584 0.388180i \(-0.126896\pi\)
\(824\) 0 0
\(825\) 2.22947 + 1.28719i 0.0776203 + 0.0448141i
\(826\) 0 0
\(827\) 19.0625i 0.662869i 0.943478 + 0.331434i \(0.107533\pi\)
−0.943478 + 0.331434i \(0.892467\pi\)
\(828\) 0 0
\(829\) −8.56856 14.8412i −0.297598 0.515455i 0.677988 0.735073i \(-0.262852\pi\)
−0.975586 + 0.219618i \(0.929519\pi\)
\(830\) 0 0
\(831\) −10.3420 −0.358761
\(832\) 0 0
\(833\) 6.65566 0.230605
\(834\) 0 0
\(835\) −1.58131 2.73891i −0.0547234 0.0947837i
\(836\) 0 0
\(837\) 2.45494i 0.0848550i
\(838\) 0 0
\(839\) −4.60791 2.66038i −0.159083 0.0918464i 0.418345 0.908288i \(-0.362610\pi\)
−0.577428 + 0.816442i \(0.695944\pi\)
\(840\) 0 0
\(841\) 12.8635 22.2803i 0.443570 0.768286i
\(842\) 0 0
\(843\) −6.10430 + 3.52432i −0.210243 + 0.121384i
\(844\) 0 0
\(845\) 2.19278 6.30515i 0.0754339 0.216904i
\(846\) 0 0
\(847\) −8.25118 + 4.76382i −0.283514 + 0.163687i
\(848\) 0 0
\(849\) 3.23302 5.59975i 0.110957 0.192183i
\(850\) 0 0
\(851\) −0.0303952 0.0175487i −0.00104193 0.000601560i
\(852\) 0 0
\(853\) 14.4810i 0.495821i 0.968783 + 0.247910i \(0.0797438\pi\)
−0.968783 + 0.247910i \(0.920256\pi\)
\(854\) 0 0
\(855\) 4.47601 + 7.75267i 0.153076 + 0.265136i
\(856\) 0 0
\(857\) −15.5998 −0.532878 −0.266439 0.963852i \(-0.585847\pi\)
−0.266439 + 0.963852i \(0.585847\pi\)
\(858\) 0 0
\(859\) −1.56167 −0.0532835 −0.0266417 0.999645i \(-0.508481\pi\)
−0.0266417 + 0.999645i \(0.508481\pi\)
\(860\) 0 0
\(861\) −1.41051 2.44308i −0.0480701 0.0832598i
\(862\) 0 0
\(863\) 42.2076i 1.43676i 0.695649 + 0.718382i \(0.255117\pi\)
−0.695649 + 0.718382i \(0.744883\pi\)
\(864\) 0 0
\(865\) 1.78094 + 1.02823i 0.0605537 + 0.0349607i
\(866\) 0 0
\(867\) −6.11396 + 10.5897i −0.207641 + 0.359645i
\(868\) 0 0
\(869\) 11.6349 6.71744i 0.394688 0.227873i
\(870\) 0 0
\(871\) −8.84674 23.7732i −0.299760 0.805524i
\(872\) 0 0
\(873\) −37.3683 + 21.5746i −1.26472 + 0.730189i
\(874\) 0 0
\(875\) −2.49982 + 4.32982i −0.0845095 + 0.146375i
\(876\) 0 0
\(877\) −6.91336 3.99143i −0.233448 0.134781i 0.378714 0.925514i \(-0.376366\pi\)
−0.612162 + 0.790733i \(0.709700\pi\)
\(878\) 0 0
\(879\) 1.11149i 0.0374895i
\(880\) 0 0
\(881\) 10.9285 + 18.9288i 0.368192 + 0.637727i 0.989283 0.146011i \(-0.0466436\pi\)
−0.621091 + 0.783739i \(0.713310\pi\)
\(882\) 0 0
\(883\) −23.5213 −0.791555 −0.395778 0.918346i \(-0.629525\pi\)
−0.395778 + 0.918346i \(0.629525\pi\)
\(884\) 0 0
\(885\) 3.40027 0.114299
\(886\) 0 0
\(887\) −7.39357 12.8060i −0.248252 0.429985i 0.714789 0.699340i \(-0.246523\pi\)
−0.963041 + 0.269355i \(0.913189\pi\)
\(888\) 0 0
\(889\) 15.6466i 0.524769i
\(890\) 0 0
\(891\) 7.60217 + 4.38911i 0.254682 + 0.147041i
\(892\) 0 0
\(893\) −10.5366 + 18.2500i −0.352595 + 0.610713i
\(894\) 0 0
\(895\) 0.945529 0.545902i 0.0316056 0.0182475i
\(896\) 0 0
\(897\) −0.250007 0.206737i −0.00834748 0.00690274i
\(898\) 0 0
\(899\) 1.48059 0.854821i 0.0493805 0.0285099i
\(900\) 0 0
\(901\) 31.0483 53.7772i 1.03437 1.79158i
\(902\) 0 0
\(903\) −0.882624 0.509583i −0.0293719 0.0169579i
\(904\) 0 0
\(905\) 8.95616i 0.297713i
\(906\) 0 0
\(907\) 4.26305 + 7.38382i 0.141552 + 0.245176i 0.928081 0.372377i \(-0.121457\pi\)
−0.786529 + 0.617553i \(0.788124\pi\)
\(908\) 0 0
\(909\) 19.1356 0.634686
\(910\) 0 0
\(911\) 43.5745 1.44369 0.721843 0.692057i \(-0.243295\pi\)
0.721843 + 0.692057i \(0.243295\pi\)
\(912\) 0 0
\(913\) 0.525571 + 0.910315i 0.0173938 + 0.0301270i
\(914\) 0 0
\(915\) 2.05225i 0.0678453i
\(916\) 0 0
\(917\) −0.382377 0.220766i −0.0126272 0.00729033i
\(918\) 0 0
\(919\) −20.1129 + 34.8365i −0.663462 + 1.14915i 0.316237 + 0.948680i \(0.397580\pi\)
−0.979700 + 0.200470i \(0.935753\pi\)
\(920\) 0 0
\(921\) 1.17426 0.677960i 0.0386932 0.0223395i
\(922\) 0 0
\(923\) 26.0661 31.5217i 0.857977 1.03755i
\(924\) 0 0
\(925\) 0.716711 0.413793i 0.0235653 0.0136054i
\(926\) 0 0
\(927\) −9.57117 + 16.5778i −0.314359 + 0.544485i
\(928\) 0 0
\(929\) −4.47945 2.58621i −0.146966 0.0848508i 0.424714 0.905328i \(-0.360375\pi\)
−0.571680 + 0.820477i \(0.693708\pi\)
\(930\) 0 0
\(931\) 6.22758i 0.204101i
\(932\) 0 0
\(933\) −7.57636 13.1226i −0.248039 0.429616i
\(934\) 0 0
\(935\) −4.14708 −0.135624
\(936\) 0 0
\(937\) 54.0084 1.76438 0.882188 0.470897i \(-0.156070\pi\)
0.882188 + 0.470897i \(0.156070\pi\)
\(938\) 0 0
\(939\) 0.656023 + 1.13627i 0.0214085 + 0.0370806i
\(940\) 0 0
\(941\) 6.99115i 0.227905i 0.993486 + 0.113953i \(0.0363512\pi\)
−0.993486 + 0.113953i \(0.963649\pi\)
\(942\) 0 0
\(943\) −1.09550 0.632488i −0.0356744 0.0205967i
\(944\) 0 0
\(945\) 0.666989 1.15526i 0.0216972 0.0375806i
\(946\) 0 0
\(947\) 18.0291 10.4091i 0.585867 0.338250i −0.177595 0.984104i \(-0.556832\pi\)
0.763462 + 0.645853i \(0.223498\pi\)
\(948\) 0 0
\(949\) −9.25967 1.56420i −0.300582 0.0507760i
\(950\) 0 0
\(951\) 5.47413 3.16049i 0.177511 0.102486i
\(952\) 0 0
\(953\) −8.03096 + 13.9100i −0.260148 + 0.450590i −0.966281 0.257489i \(-0.917105\pi\)
0.706133 + 0.708079i \(0.250438\pi\)
\(954\) 0 0
\(955\) 0.300223 + 0.173334i 0.00971500 + 0.00560896i
\(956\) 0 0
\(957\) 0.983332i 0.0317866i
\(958\) 0 0
\(959\) −1.86945 3.23799i −0.0603678 0.104560i
\(960\) 0 0
\(961\) 30.1070 0.971192
\(962\) 0 0
\(963\) −37.9642 −1.22338
\(964\) 0 0
\(965\) 5.77943 + 10.0103i 0.186047 + 0.322242i
\(966\) 0 0
\(967\) 13.7691i 0.442786i 0.975185 + 0.221393i \(0.0710603\pi\)
−0.975185 + 0.221393i \(0.928940\pi\)
\(968\) 0 0
\(969\) −16.0793 9.28336i −0.516540 0.298225i
\(970\) 0 0
\(971\) −15.6658 + 27.1340i −0.502740 + 0.870771i 0.497255 + 0.867605i \(0.334341\pi\)
−0.999995 + 0.00316696i \(0.998992\pi\)
\(972\) 0 0
\(973\) −12.1013 + 6.98667i −0.387949 + 0.223982i
\(974\) 0 0
\(975\) 7.16925 2.66790i 0.229600 0.0854412i
\(976\) 0 0
\(977\) 6.84904 3.95430i 0.219120 0.126509i −0.386423 0.922322i \(-0.626289\pi\)
0.605543 + 0.795813i \(0.292956\pi\)
\(978\) 0 0
\(979\) −4.67533 + 8.09791i −0.149424 + 0.258810i
\(980\) 0 0
\(981\) 21.1085 + 12.1870i 0.673941 + 0.389100i
\(982\) 0 0
\(983\) 56.2452i 1.79394i −0.442087 0.896972i \(-0.645762\pi\)
0.442087 0.896972i \(-0.354238\pi\)
\(984\) 0 0
\(985\) −6.58224 11.4008i −0.209728 0.363259i
\(986\) 0 0
\(987\) 1.51579 0.0482480
\(988\) 0 0
\(989\) −0.457005 −0.0145319
\(990\) 0 0
\(991\) −24.6073 42.6210i −0.781676 1.35390i −0.930965 0.365109i \(-0.881032\pi\)
0.149289 0.988794i \(-0.452301\pi\)
\(992\) 0 0
\(993\) 6.85327i 0.217482i
\(994\) 0 0
\(995\) −0.305771 0.176537i −0.00969358 0.00559659i
\(996\) 0 0
\(997\) 1.36350 2.36165i 0.0431824 0.0747942i −0.843626 0.536931i \(-0.819584\pi\)
0.886809 + 0.462137i \(0.152917\pi\)
\(998\) 0 0
\(999\) −0.393104 + 0.226959i −0.0124373 + 0.00718066i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.bm.c.673.7 yes 24
4.3 odd 2 1456.2.cc.g.673.6 24
13.2 odd 12 9464.2.a.bm.1.6 12
13.4 even 6 inner 728.2.bm.c.225.7 24
13.11 odd 12 9464.2.a.bl.1.6 12
52.43 odd 6 1456.2.cc.g.225.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.bm.c.225.7 24 13.4 even 6 inner
728.2.bm.c.673.7 yes 24 1.1 even 1 trivial
1456.2.cc.g.225.6 24 52.43 odd 6
1456.2.cc.g.673.6 24 4.3 odd 2
9464.2.a.bl.1.6 12 13.11 odd 12
9464.2.a.bm.1.6 12 13.2 odd 12