Properties

Label 728.2.bm.c.673.12
Level $728$
Weight $2$
Character 728.673
Analytic conductor $5.813$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(225,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.225"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.bm (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 673.12
Character \(\chi\) \(=\) 728.673
Dual form 728.2.bm.c.225.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.64970 + 2.85736i) q^{3} +0.585323i q^{5} +(-0.866025 - 0.500000i) q^{7} +(-3.94299 + 6.82946i) q^{9} +(-2.18937 + 1.26403i) q^{11} +(1.94161 - 3.03812i) q^{13} +(-1.67248 + 0.965606i) q^{15} +(-3.75538 + 6.50450i) q^{17} +(-1.63478 - 0.943840i) q^{19} -3.29939i q^{21} +(-1.62263 - 2.81048i) q^{23} +4.65740 q^{25} -16.1208 q^{27} +(3.51324 + 6.08510i) q^{29} +9.37426i q^{31} +(-7.22358 - 4.17054i) q^{33} +(0.292662 - 0.506905i) q^{35} +(9.17423 - 5.29675i) q^{37} +(11.8840 + 0.535894i) q^{39} +(4.38794 - 2.53338i) q^{41} +(2.82059 - 4.88541i) q^{43} +(-3.99744 - 2.30793i) q^{45} -4.57145i q^{47} +(0.500000 + 0.866025i) q^{49} -24.7809 q^{51} -1.36120 q^{53} +(-0.739868 - 1.28149i) q^{55} -6.22820i q^{57} +(3.16353 + 1.82647i) q^{59} +(-4.38685 + 7.59824i) q^{61} +(6.82946 - 3.94299i) q^{63} +(1.77828 + 1.13647i) q^{65} +(1.03813 - 0.599365i) q^{67} +(5.35370 - 9.27289i) q^{69} +(-2.22017 - 1.28181i) q^{71} -6.75730i q^{73} +(7.68329 + 13.3078i) q^{75} +2.52807 q^{77} -3.16871 q^{79} +(-14.7654 - 25.5744i) q^{81} +9.05649i q^{83} +(-3.80724 - 2.19811i) q^{85} +(-11.5915 + 20.0771i) q^{87} +(14.9056 - 8.60576i) q^{89} +(-3.20054 + 1.66028i) q^{91} +(-26.7856 + 15.4647i) q^{93} +(0.552452 - 0.956874i) q^{95} +(-2.57685 - 1.48774i) q^{97} -19.9363i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{3} - 18 q^{9} + 12 q^{11} + 8 q^{17} - 12 q^{19} + 2 q^{23} - 28 q^{25} - 20 q^{27} + 2 q^{29} - 18 q^{33} - 8 q^{35} + 60 q^{37} + 18 q^{39} - 6 q^{41} + 24 q^{43} - 72 q^{45} + 12 q^{49} - 72 q^{51}+ \cdots - 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.64970 + 2.85736i 0.952452 + 1.64970i 0.740093 + 0.672504i \(0.234781\pi\)
0.212359 + 0.977192i \(0.431885\pi\)
\(4\) 0 0
\(5\) 0.585323i 0.261765i 0.991398 + 0.130882i \(0.0417810\pi\)
−0.991398 + 0.130882i \(0.958219\pi\)
\(6\) 0 0
\(7\) −0.866025 0.500000i −0.327327 0.188982i
\(8\) 0 0
\(9\) −3.94299 + 6.82946i −1.31433 + 2.27649i
\(10\) 0 0
\(11\) −2.18937 + 1.26403i −0.660119 + 0.381120i −0.792322 0.610103i \(-0.791128\pi\)
0.132203 + 0.991223i \(0.457795\pi\)
\(12\) 0 0
\(13\) 1.94161 3.03812i 0.538505 0.842622i
\(14\) 0 0
\(15\) −1.67248 + 0.965606i −0.431832 + 0.249318i
\(16\) 0 0
\(17\) −3.75538 + 6.50450i −0.910813 + 1.57757i −0.0978939 + 0.995197i \(0.531211\pi\)
−0.812919 + 0.582377i \(0.802123\pi\)
\(18\) 0 0
\(19\) −1.63478 0.943840i −0.375044 0.216532i 0.300616 0.953745i \(-0.402808\pi\)
−0.675660 + 0.737214i \(0.736141\pi\)
\(20\) 0 0
\(21\) 3.29939i 0.719986i
\(22\) 0 0
\(23\) −1.62263 2.81048i −0.338343 0.586026i 0.645779 0.763525i \(-0.276533\pi\)
−0.984121 + 0.177498i \(0.943200\pi\)
\(24\) 0 0
\(25\) 4.65740 0.931479
\(26\) 0 0
\(27\) −16.1208 −3.10245
\(28\) 0 0
\(29\) 3.51324 + 6.08510i 0.652392 + 1.12998i 0.982541 + 0.186047i \(0.0595676\pi\)
−0.330149 + 0.943929i \(0.607099\pi\)
\(30\) 0 0
\(31\) 9.37426i 1.68367i 0.539738 + 0.841833i \(0.318523\pi\)
−0.539738 + 0.841833i \(0.681477\pi\)
\(32\) 0 0
\(33\) −7.22358 4.17054i −1.25746 0.725998i
\(34\) 0 0
\(35\) 0.292662 0.506905i 0.0494689 0.0856826i
\(36\) 0 0
\(37\) 9.17423 5.29675i 1.50823 0.870780i 0.508281 0.861191i \(-0.330281\pi\)
0.999954 0.00958820i \(-0.00305207\pi\)
\(38\) 0 0
\(39\) 11.8840 + 0.535894i 1.90297 + 0.0858117i
\(40\) 0 0
\(41\) 4.38794 2.53338i 0.685282 0.395647i −0.116560 0.993184i \(-0.537187\pi\)
0.801842 + 0.597536i \(0.203854\pi\)
\(42\) 0 0
\(43\) 2.82059 4.88541i 0.430136 0.745017i −0.566749 0.823891i \(-0.691799\pi\)
0.996885 + 0.0788734i \(0.0251323\pi\)
\(44\) 0 0
\(45\) −3.99744 2.30793i −0.595904 0.344045i
\(46\) 0 0
\(47\) 4.57145i 0.666815i −0.942783 0.333408i \(-0.891801\pi\)
0.942783 0.333408i \(-0.108199\pi\)
\(48\) 0 0
\(49\) 0.500000 + 0.866025i 0.0714286 + 0.123718i
\(50\) 0 0
\(51\) −24.7809 −3.47002
\(52\) 0 0
\(53\) −1.36120 −0.186975 −0.0934877 0.995620i \(-0.529802\pi\)
−0.0934877 + 0.995620i \(0.529802\pi\)
\(54\) 0 0
\(55\) −0.739868 1.28149i −0.0997638 0.172796i
\(56\) 0 0
\(57\) 6.22820i 0.824945i
\(58\) 0 0
\(59\) 3.16353 + 1.82647i 0.411857 + 0.237786i 0.691587 0.722293i \(-0.256912\pi\)
−0.279730 + 0.960079i \(0.590245\pi\)
\(60\) 0 0
\(61\) −4.38685 + 7.59824i −0.561678 + 0.972855i 0.435672 + 0.900105i \(0.356511\pi\)
−0.997350 + 0.0727496i \(0.976823\pi\)
\(62\) 0 0
\(63\) 6.82946 3.94299i 0.860432 0.496770i
\(64\) 0 0
\(65\) 1.77828 + 1.13647i 0.220569 + 0.140962i
\(66\) 0 0
\(67\) 1.03813 0.599365i 0.126828 0.0732241i −0.435244 0.900313i \(-0.643338\pi\)
0.562072 + 0.827089i \(0.310005\pi\)
\(68\) 0 0
\(69\) 5.35370 9.27289i 0.644510 1.11632i
\(70\) 0 0
\(71\) −2.22017 1.28181i −0.263485 0.152123i 0.362438 0.932008i \(-0.381944\pi\)
−0.625923 + 0.779885i \(0.715278\pi\)
\(72\) 0 0
\(73\) 6.75730i 0.790882i −0.918491 0.395441i \(-0.870592\pi\)
0.918491 0.395441i \(-0.129408\pi\)
\(74\) 0 0
\(75\) 7.68329 + 13.3078i 0.887190 + 1.53666i
\(76\) 0 0
\(77\) 2.52807 0.288100
\(78\) 0 0
\(79\) −3.16871 −0.356508 −0.178254 0.983985i \(-0.557045\pi\)
−0.178254 + 0.983985i \(0.557045\pi\)
\(80\) 0 0
\(81\) −14.7654 25.5744i −1.64060 2.84160i
\(82\) 0 0
\(83\) 9.05649i 0.994079i 0.867728 + 0.497039i \(0.165580\pi\)
−0.867728 + 0.497039i \(0.834420\pi\)
\(84\) 0 0
\(85\) −3.80724 2.19811i −0.412953 0.238419i
\(86\) 0 0
\(87\) −11.5915 + 20.0771i −1.24274 + 2.15250i
\(88\) 0 0
\(89\) 14.9056 8.60576i 1.57999 0.912209i 0.585134 0.810937i \(-0.301042\pi\)
0.994859 0.101273i \(-0.0322914\pi\)
\(90\) 0 0
\(91\) −3.20054 + 1.66028i −0.335508 + 0.174045i
\(92\) 0 0
\(93\) −26.7856 + 15.4647i −2.77754 + 1.60361i
\(94\) 0 0
\(95\) 0.552452 0.956874i 0.0566803 0.0981732i
\(96\) 0 0
\(97\) −2.57685 1.48774i −0.261639 0.151058i 0.363443 0.931616i \(-0.381601\pi\)
−0.625082 + 0.780559i \(0.714935\pi\)
\(98\) 0 0
\(99\) 19.9363i 2.00367i
\(100\) 0 0
\(101\) −0.789475 1.36741i −0.0785557 0.136063i 0.824071 0.566486i \(-0.191698\pi\)
−0.902627 + 0.430424i \(0.858364\pi\)
\(102\) 0 0
\(103\) 18.0946 1.78291 0.891455 0.453110i \(-0.149686\pi\)
0.891455 + 0.453110i \(0.149686\pi\)
\(104\) 0 0
\(105\) 1.93121 0.188467
\(106\) 0 0
\(107\) 7.43254 + 12.8735i 0.718531 + 1.24453i 0.961582 + 0.274518i \(0.0885183\pi\)
−0.243051 + 0.970013i \(0.578148\pi\)
\(108\) 0 0
\(109\) 3.64426i 0.349057i −0.984652 0.174528i \(-0.944160\pi\)
0.984652 0.174528i \(-0.0558401\pi\)
\(110\) 0 0
\(111\) 30.2694 + 17.4760i 2.87304 + 1.65875i
\(112\) 0 0
\(113\) 2.63423 4.56262i 0.247808 0.429215i −0.715110 0.699012i \(-0.753623\pi\)
0.962917 + 0.269797i \(0.0869566\pi\)
\(114\) 0 0
\(115\) 1.64504 0.949766i 0.153401 0.0885661i
\(116\) 0 0
\(117\) 13.0930 + 25.2394i 1.21045 + 2.33338i
\(118\) 0 0
\(119\) 6.50450 3.75538i 0.596267 0.344255i
\(120\) 0 0
\(121\) −2.30444 + 3.99141i −0.209495 + 0.362856i
\(122\) 0 0
\(123\) 14.4775 + 8.35861i 1.30540 + 0.753671i
\(124\) 0 0
\(125\) 5.65270i 0.505593i
\(126\) 0 0
\(127\) −0.227565 0.394154i −0.0201931 0.0349755i 0.855752 0.517386i \(-0.173095\pi\)
−0.875945 + 0.482410i \(0.839761\pi\)
\(128\) 0 0
\(129\) 18.6125 1.63874
\(130\) 0 0
\(131\) −12.0924 −1.05652 −0.528258 0.849084i \(-0.677155\pi\)
−0.528258 + 0.849084i \(0.677155\pi\)
\(132\) 0 0
\(133\) 0.943840 + 1.63478i 0.0818413 + 0.141753i
\(134\) 0 0
\(135\) 9.43587i 0.812110i
\(136\) 0 0
\(137\) 8.09475 + 4.67351i 0.691581 + 0.399285i 0.804204 0.594353i \(-0.202592\pi\)
−0.112623 + 0.993638i \(0.535925\pi\)
\(138\) 0 0
\(139\) −9.41833 + 16.3130i −0.798853 + 1.38365i 0.121511 + 0.992590i \(0.461226\pi\)
−0.920364 + 0.391063i \(0.872107\pi\)
\(140\) 0 0
\(141\) 13.0623 7.54151i 1.10004 0.635110i
\(142\) 0 0
\(143\) −0.410614 + 9.10581i −0.0343372 + 0.761466i
\(144\) 0 0
\(145\) −3.56175 + 2.05638i −0.295788 + 0.170773i
\(146\) 0 0
\(147\) −1.64970 + 2.85736i −0.136065 + 0.235671i
\(148\) 0 0
\(149\) 8.57164 + 4.94884i 0.702216 + 0.405425i 0.808172 0.588946i \(-0.200457\pi\)
−0.105956 + 0.994371i \(0.533790\pi\)
\(150\) 0 0
\(151\) 9.56475i 0.778368i −0.921160 0.389184i \(-0.872757\pi\)
0.921160 0.389184i \(-0.127243\pi\)
\(152\) 0 0
\(153\) −29.6148 51.2944i −2.39422 4.14691i
\(154\) 0 0
\(155\) −5.48697 −0.440724
\(156\) 0 0
\(157\) 6.16478 0.492003 0.246002 0.969269i \(-0.420883\pi\)
0.246002 + 0.969269i \(0.420883\pi\)
\(158\) 0 0
\(159\) −2.24557 3.88944i −0.178085 0.308453i
\(160\) 0 0
\(161\) 3.24527i 0.255763i
\(162\) 0 0
\(163\) −9.43020 5.44453i −0.738630 0.426449i 0.0829407 0.996554i \(-0.473569\pi\)
−0.821571 + 0.570106i \(0.806902\pi\)
\(164\) 0 0
\(165\) 2.44111 4.22813i 0.190040 0.329160i
\(166\) 0 0
\(167\) −10.8189 + 6.24631i −0.837193 + 0.483354i −0.856309 0.516463i \(-0.827248\pi\)
0.0191158 + 0.999817i \(0.493915\pi\)
\(168\) 0 0
\(169\) −5.46032 11.7977i −0.420025 0.907513i
\(170\) 0 0
\(171\) 12.8918 7.44311i 0.985864 0.569189i
\(172\) 0 0
\(173\) −1.86521 + 3.23063i −0.141809 + 0.245620i −0.928178 0.372137i \(-0.878625\pi\)
0.786369 + 0.617757i \(0.211959\pi\)
\(174\) 0 0
\(175\) −4.03342 2.32870i −0.304898 0.176033i
\(176\) 0 0
\(177\) 12.0525i 0.905918i
\(178\) 0 0
\(179\) −6.07746 10.5265i −0.454250 0.786785i 0.544394 0.838829i \(-0.316759\pi\)
−0.998645 + 0.0520447i \(0.983426\pi\)
\(180\) 0 0
\(181\) 13.4670 1.00100 0.500498 0.865738i \(-0.333150\pi\)
0.500498 + 0.865738i \(0.333150\pi\)
\(182\) 0 0
\(183\) −28.9478 −2.13989
\(184\) 0 0
\(185\) 3.10031 + 5.36989i 0.227939 + 0.394802i
\(186\) 0 0
\(187\) 18.9877i 1.38852i
\(188\) 0 0
\(189\) 13.9610 + 8.06039i 1.01551 + 0.586307i
\(190\) 0 0
\(191\) 7.25019 12.5577i 0.524605 0.908643i −0.474984 0.879994i \(-0.657546\pi\)
0.999590 0.0286489i \(-0.00912047\pi\)
\(192\) 0 0
\(193\) 4.18561 2.41656i 0.301287 0.173948i −0.341734 0.939797i \(-0.611014\pi\)
0.643021 + 0.765849i \(0.277681\pi\)
\(194\) 0 0
\(195\) −0.313671 + 6.95601i −0.0224625 + 0.498130i
\(196\) 0 0
\(197\) −1.89034 + 1.09139i −0.134681 + 0.0777582i −0.565827 0.824524i \(-0.691443\pi\)
0.431146 + 0.902282i \(0.358110\pi\)
\(198\) 0 0
\(199\) 9.39703 16.2761i 0.666138 1.15378i −0.312838 0.949807i \(-0.601280\pi\)
0.978976 0.203978i \(-0.0653870\pi\)
\(200\) 0 0
\(201\) 3.42520 + 1.97754i 0.241595 + 0.139485i
\(202\) 0 0
\(203\) 7.02647i 0.493162i
\(204\) 0 0
\(205\) 1.48285 + 2.56837i 0.103567 + 0.179382i
\(206\) 0 0
\(207\) 25.5921 1.77878
\(208\) 0 0
\(209\) 4.77218 0.330098
\(210\) 0 0
\(211\) −3.19286 5.53020i −0.219806 0.380715i 0.734943 0.678129i \(-0.237209\pi\)
−0.954748 + 0.297415i \(0.903876\pi\)
\(212\) 0 0
\(213\) 8.45841i 0.579560i
\(214\) 0 0
\(215\) 2.85954 + 1.65096i 0.195019 + 0.112594i
\(216\) 0 0
\(217\) 4.68713 8.11835i 0.318183 0.551109i
\(218\) 0 0
\(219\) 19.3080 11.1475i 1.30471 0.753277i
\(220\) 0 0
\(221\) 12.4700 + 24.0385i 0.838822 + 1.61700i
\(222\) 0 0
\(223\) 10.5181 6.07263i 0.704344 0.406653i −0.104619 0.994512i \(-0.533362\pi\)
0.808963 + 0.587859i \(0.200029\pi\)
\(224\) 0 0
\(225\) −18.3641 + 31.8075i −1.22427 + 2.12050i
\(226\) 0 0
\(227\) −10.5678 6.10130i −0.701407 0.404957i 0.106465 0.994316i \(-0.466047\pi\)
−0.807871 + 0.589359i \(0.799380\pi\)
\(228\) 0 0
\(229\) 16.3341i 1.07938i −0.841862 0.539692i \(-0.818541\pi\)
0.841862 0.539692i \(-0.181459\pi\)
\(230\) 0 0
\(231\) 4.17054 + 7.22358i 0.274401 + 0.475277i
\(232\) 0 0
\(233\) −15.2583 −0.999606 −0.499803 0.866139i \(-0.666594\pi\)
−0.499803 + 0.866139i \(0.666594\pi\)
\(234\) 0 0
\(235\) 2.67578 0.174549
\(236\) 0 0
\(237\) −5.22741 9.05414i −0.339557 0.588130i
\(238\) 0 0
\(239\) 9.74398i 0.630286i −0.949044 0.315143i \(-0.897948\pi\)
0.949044 0.315143i \(-0.102052\pi\)
\(240\) 0 0
\(241\) 20.0787 + 11.5925i 1.29338 + 0.746736i 0.979253 0.202643i \(-0.0649532\pi\)
0.314132 + 0.949379i \(0.398287\pi\)
\(242\) 0 0
\(243\) 24.5357 42.4971i 1.57396 2.72619i
\(244\) 0 0
\(245\) −0.506905 + 0.292662i −0.0323850 + 0.0186975i
\(246\) 0 0
\(247\) −6.04160 + 3.13408i −0.384418 + 0.199417i
\(248\) 0 0
\(249\) −25.8776 + 14.9404i −1.63993 + 0.946812i
\(250\) 0 0
\(251\) −0.536680 + 0.929556i −0.0338749 + 0.0586731i −0.882466 0.470377i \(-0.844118\pi\)
0.848591 + 0.529050i \(0.177451\pi\)
\(252\) 0 0
\(253\) 7.10509 + 4.10212i 0.446693 + 0.257898i
\(254\) 0 0
\(255\) 14.5049i 0.908329i
\(256\) 0 0
\(257\) 9.95641 + 17.2450i 0.621064 + 1.07571i 0.989288 + 0.145977i \(0.0466326\pi\)
−0.368224 + 0.929737i \(0.620034\pi\)
\(258\) 0 0
\(259\) −10.5935 −0.658248
\(260\) 0 0
\(261\) −55.4107 −3.42983
\(262\) 0 0
\(263\) 8.82917 + 15.2926i 0.544430 + 0.942981i 0.998643 + 0.0520873i \(0.0165874\pi\)
−0.454212 + 0.890893i \(0.650079\pi\)
\(264\) 0 0
\(265\) 0.796743i 0.0489435i
\(266\) 0 0
\(267\) 49.1795 + 28.3938i 3.00974 + 1.73767i
\(268\) 0 0
\(269\) 0.217802 0.377244i 0.0132796 0.0230010i −0.859309 0.511456i \(-0.829106\pi\)
0.872589 + 0.488455i \(0.162440\pi\)
\(270\) 0 0
\(271\) 0.0345513 0.0199482i 0.00209884 0.00121177i −0.498950 0.866631i \(-0.666281\pi\)
0.501049 + 0.865419i \(0.332948\pi\)
\(272\) 0 0
\(273\) −10.0239 6.40612i −0.606677 0.387716i
\(274\) 0 0
\(275\) −10.1968 + 5.88710i −0.614888 + 0.355006i
\(276\) 0 0
\(277\) 9.63076 16.6810i 0.578656 1.00226i −0.416977 0.908917i \(-0.636911\pi\)
0.995634 0.0933454i \(-0.0297561\pi\)
\(278\) 0 0
\(279\) −64.0212 36.9626i −3.83285 2.21290i
\(280\) 0 0
\(281\) 14.3098i 0.853653i 0.904334 + 0.426826i \(0.140368\pi\)
−0.904334 + 0.426826i \(0.859632\pi\)
\(282\) 0 0
\(283\) −5.43032 9.40560i −0.322799 0.559105i 0.658265 0.752786i \(-0.271291\pi\)
−0.981064 + 0.193681i \(0.937957\pi\)
\(284\) 0 0
\(285\) 3.64551 0.215941
\(286\) 0 0
\(287\) −5.06676 −0.299081
\(288\) 0 0
\(289\) −19.7057 34.1313i −1.15916 2.00772i
\(290\) 0 0
\(291\) 9.81730i 0.575500i
\(292\) 0 0
\(293\) 0.753925 + 0.435279i 0.0440447 + 0.0254292i 0.521861 0.853031i \(-0.325238\pi\)
−0.477816 + 0.878460i \(0.658571\pi\)
\(294\) 0 0
\(295\) −1.06907 + 1.85169i −0.0622439 + 0.107810i
\(296\) 0 0
\(297\) 35.2943 20.3772i 2.04798 1.18240i
\(298\) 0 0
\(299\) −11.6891 0.527103i −0.675998 0.0304832i
\(300\) 0 0
\(301\) −4.88541 + 2.82059i −0.281590 + 0.162576i
\(302\) 0 0
\(303\) 2.60479 4.51163i 0.149641 0.259186i
\(304\) 0 0
\(305\) −4.44743 2.56772i −0.254659 0.147027i
\(306\) 0 0
\(307\) 31.5607i 1.80127i 0.434580 + 0.900633i \(0.356897\pi\)
−0.434580 + 0.900633i \(0.643103\pi\)
\(308\) 0 0
\(309\) 29.8505 + 51.7026i 1.69814 + 2.94126i
\(310\) 0 0
\(311\) −25.1782 −1.42772 −0.713861 0.700287i \(-0.753055\pi\)
−0.713861 + 0.700287i \(0.753055\pi\)
\(312\) 0 0
\(313\) −0.499674 −0.0282432 −0.0141216 0.999900i \(-0.504495\pi\)
−0.0141216 + 0.999900i \(0.504495\pi\)
\(314\) 0 0
\(315\) 2.30793 + 3.99744i 0.130037 + 0.225231i
\(316\) 0 0
\(317\) 3.83012i 0.215121i 0.994199 + 0.107560i \(0.0343039\pi\)
−0.994199 + 0.107560i \(0.965696\pi\)
\(318\) 0 0
\(319\) −15.3835 8.88169i −0.861313 0.497279i
\(320\) 0 0
\(321\) −24.5229 + 42.4748i −1.36873 + 2.37071i
\(322\) 0 0
\(323\) 12.2784 7.08895i 0.683190 0.394440i
\(324\) 0 0
\(325\) 9.04283 14.1497i 0.501606 0.784885i
\(326\) 0 0
\(327\) 10.4130 6.01192i 0.575838 0.332460i
\(328\) 0 0
\(329\) −2.28573 + 3.95900i −0.126016 + 0.218267i
\(330\) 0 0
\(331\) −17.6477 10.1889i −0.970005 0.560033i −0.0707674 0.997493i \(-0.522545\pi\)
−0.899238 + 0.437460i \(0.855878\pi\)
\(332\) 0 0
\(333\) 83.5401i 4.57797i
\(334\) 0 0
\(335\) 0.350822 + 0.607642i 0.0191675 + 0.0331990i
\(336\) 0 0
\(337\) −27.7240 −1.51022 −0.755111 0.655597i \(-0.772417\pi\)
−0.755111 + 0.655597i \(0.772417\pi\)
\(338\) 0 0
\(339\) 17.3827 0.944100
\(340\) 0 0
\(341\) −11.8494 20.5237i −0.641679 1.11142i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 5.42764 + 3.13365i 0.292214 + 0.168710i
\(346\) 0 0
\(347\) −7.77404 + 13.4650i −0.417332 + 0.722841i −0.995670 0.0929566i \(-0.970368\pi\)
0.578338 + 0.815797i \(0.303702\pi\)
\(348\) 0 0
\(349\) −9.27468 + 5.35474i −0.496462 + 0.286633i −0.727251 0.686371i \(-0.759203\pi\)
0.230789 + 0.973004i \(0.425869\pi\)
\(350\) 0 0
\(351\) −31.3002 + 48.9768i −1.67068 + 2.61419i
\(352\) 0 0
\(353\) 24.2023 13.9732i 1.28816 0.743718i 0.309832 0.950791i \(-0.399727\pi\)
0.978325 + 0.207074i \(0.0663940\pi\)
\(354\) 0 0
\(355\) 0.750275 1.29951i 0.0398205 0.0689711i
\(356\) 0 0
\(357\) 21.4609 + 12.3905i 1.13583 + 0.655773i
\(358\) 0 0
\(359\) 34.8499i 1.83931i −0.392733 0.919653i \(-0.628470\pi\)
0.392733 0.919653i \(-0.371530\pi\)
\(360\) 0 0
\(361\) −7.71833 13.3685i −0.406228 0.703608i
\(362\) 0 0
\(363\) −15.2065 −0.798136
\(364\) 0 0
\(365\) 3.95520 0.207025
\(366\) 0 0
\(367\) −0.0561008 0.0971695i −0.00292844 0.00507221i 0.864557 0.502534i \(-0.167599\pi\)
−0.867486 + 0.497462i \(0.834265\pi\)
\(368\) 0 0
\(369\) 39.9564i 2.08005i
\(370\) 0 0
\(371\) 1.17884 + 0.680601i 0.0612021 + 0.0353350i
\(372\) 0 0
\(373\) 10.5775 18.3207i 0.547682 0.948612i −0.450751 0.892650i \(-0.648844\pi\)
0.998433 0.0559628i \(-0.0178228\pi\)
\(374\) 0 0
\(375\) −16.1518 + 9.32524i −0.834074 + 0.481553i
\(376\) 0 0
\(377\) 25.3086 + 1.14125i 1.30346 + 0.0587776i
\(378\) 0 0
\(379\) −18.3416 + 10.5895i −0.942144 + 0.543947i −0.890632 0.454725i \(-0.849737\pi\)
−0.0515124 + 0.998672i \(0.516404\pi\)
\(380\) 0 0
\(381\) 0.750826 1.30047i 0.0384660 0.0666251i
\(382\) 0 0
\(383\) 14.0337 + 8.10235i 0.717088 + 0.414011i 0.813680 0.581313i \(-0.197461\pi\)
−0.0965920 + 0.995324i \(0.530794\pi\)
\(384\) 0 0
\(385\) 1.47974i 0.0754143i
\(386\) 0 0
\(387\) 22.2431 + 38.5262i 1.13068 + 1.95840i
\(388\) 0 0
\(389\) 9.72438 0.493046 0.246523 0.969137i \(-0.420712\pi\)
0.246523 + 0.969137i \(0.420712\pi\)
\(390\) 0 0
\(391\) 24.3744 1.23267
\(392\) 0 0
\(393\) −19.9487 34.5522i −1.00628 1.74293i
\(394\) 0 0
\(395\) 1.85472i 0.0933211i
\(396\) 0 0
\(397\) −30.2997 17.4935i −1.52070 0.877976i −0.999702 0.0244166i \(-0.992227\pi\)
−0.520996 0.853559i \(-0.674439\pi\)
\(398\) 0 0
\(399\) −3.11410 + 5.39378i −0.155900 + 0.270027i
\(400\) 0 0
\(401\) −7.67955 + 4.43379i −0.383498 + 0.221413i −0.679339 0.733824i \(-0.737733\pi\)
0.295841 + 0.955237i \(0.404400\pi\)
\(402\) 0 0
\(403\) 28.4801 + 18.2011i 1.41870 + 0.906663i
\(404\) 0 0
\(405\) 14.9693 8.64254i 0.743831 0.429451i
\(406\) 0 0
\(407\) −13.3905 + 23.1931i −0.663743 + 1.14964i
\(408\) 0 0
\(409\) −0.543638 0.313869i −0.0268811 0.0155198i 0.486499 0.873681i \(-0.338274\pi\)
−0.513380 + 0.858161i \(0.671607\pi\)
\(410\) 0 0
\(411\) 30.8395i 1.52120i
\(412\) 0 0
\(413\) −1.82647 3.16353i −0.0898746 0.155667i
\(414\) 0 0
\(415\) −5.30097 −0.260215
\(416\) 0 0
\(417\) −62.1495 −3.04348
\(418\) 0 0
\(419\) −2.43213 4.21258i −0.118817 0.205798i 0.800482 0.599357i \(-0.204577\pi\)
−0.919299 + 0.393559i \(0.871244\pi\)
\(420\) 0 0
\(421\) 8.51783i 0.415133i 0.978221 + 0.207567i \(0.0665544\pi\)
−0.978221 + 0.207567i \(0.933446\pi\)
\(422\) 0 0
\(423\) 31.2206 + 18.0252i 1.51800 + 0.876416i
\(424\) 0 0
\(425\) −17.4903 + 30.2941i −0.848403 + 1.46948i
\(426\) 0 0
\(427\) 7.59824 4.38685i 0.367705 0.212294i
\(428\) 0 0
\(429\) −26.6960 + 13.8486i −1.28889 + 0.668615i
\(430\) 0 0
\(431\) −9.91454 + 5.72416i −0.477567 + 0.275723i −0.719402 0.694594i \(-0.755584\pi\)
0.241835 + 0.970317i \(0.422251\pi\)
\(432\) 0 0
\(433\) −15.8045 + 27.3742i −0.759516 + 1.31552i 0.183581 + 0.983005i \(0.441231\pi\)
−0.943098 + 0.332516i \(0.892102\pi\)
\(434\) 0 0
\(435\) −11.7516 6.78480i −0.563447 0.325306i
\(436\) 0 0
\(437\) 6.12603i 0.293048i
\(438\) 0 0
\(439\) −1.38800 2.40408i −0.0662456 0.114741i 0.831000 0.556272i \(-0.187769\pi\)
−0.897246 + 0.441531i \(0.854435\pi\)
\(440\) 0 0
\(441\) −7.88599 −0.375523
\(442\) 0 0
\(443\) 17.0948 0.812199 0.406099 0.913829i \(-0.366889\pi\)
0.406099 + 0.913829i \(0.366889\pi\)
\(444\) 0 0
\(445\) 5.03716 + 8.72461i 0.238784 + 0.413586i
\(446\) 0 0
\(447\) 32.6563i 1.54459i
\(448\) 0 0
\(449\) −28.4358 16.4174i −1.34197 0.774787i −0.354874 0.934914i \(-0.615476\pi\)
−0.987096 + 0.160128i \(0.948809\pi\)
\(450\) 0 0
\(451\) −6.40455 + 11.0930i −0.301578 + 0.522349i
\(452\) 0 0
\(453\) 27.3299 15.7789i 1.28407 0.741359i
\(454\) 0 0
\(455\) −0.971803 1.87335i −0.0455588 0.0878241i
\(456\) 0 0
\(457\) 20.9275 12.0825i 0.978947 0.565196i 0.0769952 0.997031i \(-0.475467\pi\)
0.901952 + 0.431836i \(0.142134\pi\)
\(458\) 0 0
\(459\) 60.5396 104.858i 2.82575 4.89434i
\(460\) 0 0
\(461\) 0.126087 + 0.0727962i 0.00587245 + 0.00339046i 0.502933 0.864325i \(-0.332254\pi\)
−0.497061 + 0.867716i \(0.665587\pi\)
\(462\) 0 0
\(463\) 21.9805i 1.02152i −0.859724 0.510759i \(-0.829364\pi\)
0.859724 0.510759i \(-0.170636\pi\)
\(464\) 0 0
\(465\) −9.05184 15.6782i −0.419769 0.727061i
\(466\) 0 0
\(467\) 8.81976 0.408130 0.204065 0.978957i \(-0.434585\pi\)
0.204065 + 0.978957i \(0.434585\pi\)
\(468\) 0 0
\(469\) −1.19873 −0.0553522
\(470\) 0 0
\(471\) 10.1700 + 17.6150i 0.468609 + 0.811655i
\(472\) 0 0
\(473\) 14.2613i 0.655734i
\(474\) 0 0
\(475\) −7.61381 4.39584i −0.349346 0.201695i
\(476\) 0 0
\(477\) 5.36721 9.29628i 0.245748 0.425647i
\(478\) 0 0
\(479\) 19.8624 11.4676i 0.907536 0.523966i 0.0278984 0.999611i \(-0.491119\pi\)
0.879638 + 0.475645i \(0.157785\pi\)
\(480\) 0 0
\(481\) 1.72062 38.1566i 0.0784534 1.73979i
\(482\) 0 0
\(483\) −9.27289 + 5.35370i −0.421931 + 0.243602i
\(484\) 0 0
\(485\) 0.870811 1.50829i 0.0395415 0.0684879i
\(486\) 0 0
\(487\) −11.4857 6.63130i −0.520469 0.300493i 0.216658 0.976248i \(-0.430484\pi\)
−0.737126 + 0.675755i \(0.763818\pi\)
\(488\) 0 0
\(489\) 35.9273i 1.62469i
\(490\) 0 0
\(491\) −11.4044 19.7530i −0.514674 0.891442i −0.999855 0.0170278i \(-0.994580\pi\)
0.485181 0.874414i \(-0.338754\pi\)
\(492\) 0 0
\(493\) −52.7741 −2.37683
\(494\) 0 0
\(495\) 11.6692 0.524490
\(496\) 0 0
\(497\) 1.28181 + 2.22017i 0.0574972 + 0.0995880i
\(498\) 0 0
\(499\) 2.60213i 0.116487i −0.998302 0.0582437i \(-0.981450\pi\)
0.998302 0.0582437i \(-0.0185500\pi\)
\(500\) 0 0
\(501\) −35.6959 20.6090i −1.59477 0.920743i
\(502\) 0 0
\(503\) −5.81082 + 10.0646i −0.259092 + 0.448760i −0.965999 0.258546i \(-0.916757\pi\)
0.706907 + 0.707306i \(0.250090\pi\)
\(504\) 0 0
\(505\) 0.800378 0.462098i 0.0356163 0.0205631i
\(506\) 0 0
\(507\) 24.7023 35.0646i 1.09707 1.55728i
\(508\) 0 0
\(509\) −21.5515 + 12.4428i −0.955255 + 0.551517i −0.894709 0.446649i \(-0.852617\pi\)
−0.0605454 + 0.998165i \(0.519284\pi\)
\(510\) 0 0
\(511\) −3.37865 + 5.85199i −0.149463 + 0.258877i
\(512\) 0 0
\(513\) 26.3539 + 15.2154i 1.16355 + 0.671778i
\(514\) 0 0
\(515\) 10.5912i 0.466702i
\(516\) 0 0
\(517\) 5.77847 + 10.0086i 0.254137 + 0.440178i
\(518\) 0 0
\(519\) −12.3081 −0.540265
\(520\) 0 0
\(521\) 20.2180 0.885768 0.442884 0.896579i \(-0.353955\pi\)
0.442884 + 0.896579i \(0.353955\pi\)
\(522\) 0 0
\(523\) 11.6131 + 20.1145i 0.507806 + 0.879547i 0.999959 + 0.00903773i \(0.00287684\pi\)
−0.492153 + 0.870509i \(0.663790\pi\)
\(524\) 0 0
\(525\) 15.3666i 0.670652i
\(526\) 0 0
\(527\) −60.9749 35.2039i −2.65611 1.53351i
\(528\) 0 0
\(529\) 6.23412 10.7978i 0.271049 0.469470i
\(530\) 0 0
\(531\) −24.9476 + 14.4035i −1.08263 + 0.625058i
\(532\) 0 0
\(533\) 0.822954 18.2499i 0.0356461 0.790492i
\(534\) 0 0
\(535\) −7.53518 + 4.35044i −0.325774 + 0.188086i
\(536\) 0 0
\(537\) 20.0519 34.7309i 0.865304 1.49875i
\(538\) 0 0
\(539\) −2.18937 1.26403i −0.0943028 0.0544457i
\(540\) 0 0
\(541\) 4.74987i 0.204213i −0.994773 0.102107i \(-0.967442\pi\)
0.994773 0.102107i \(-0.0325583\pi\)
\(542\) 0 0
\(543\) 22.2165 + 38.4801i 0.953400 + 1.65134i
\(544\) 0 0
\(545\) 2.13307 0.0913707
\(546\) 0 0
\(547\) 19.9348 0.852350 0.426175 0.904641i \(-0.359861\pi\)
0.426175 + 0.904641i \(0.359861\pi\)
\(548\) 0 0
\(549\) −34.5946 59.9196i −1.47646 2.55731i
\(550\) 0 0
\(551\) 13.2637i 0.565054i
\(552\) 0 0
\(553\) 2.74418 + 1.58436i 0.116695 + 0.0673737i
\(554\) 0 0
\(555\) −10.2291 + 17.7174i −0.434203 + 0.752061i
\(556\) 0 0
\(557\) −25.1098 + 14.4971i −1.06393 + 0.614263i −0.926518 0.376250i \(-0.877213\pi\)
−0.137417 + 0.990513i \(0.543880\pi\)
\(558\) 0 0
\(559\) −9.36596 18.0548i −0.396138 0.763638i
\(560\) 0 0
\(561\) 54.2546 31.3239i 2.29063 1.32250i
\(562\) 0 0
\(563\) 8.40607 14.5597i 0.354274 0.613620i −0.632720 0.774381i \(-0.718062\pi\)
0.986993 + 0.160761i \(0.0513949\pi\)
\(564\) 0 0
\(565\) 2.67061 + 1.54188i 0.112353 + 0.0648672i
\(566\) 0 0
\(567\) 29.5308i 1.24018i
\(568\) 0 0
\(569\) 15.4299 + 26.7253i 0.646853 + 1.12038i 0.983870 + 0.178884i \(0.0572486\pi\)
−0.337017 + 0.941498i \(0.609418\pi\)
\(570\) 0 0
\(571\) −29.4285 −1.23155 −0.615773 0.787924i \(-0.711156\pi\)
−0.615773 + 0.787924i \(0.711156\pi\)
\(572\) 0 0
\(573\) 47.8424 1.99865
\(574\) 0 0
\(575\) −7.55725 13.0895i −0.315159 0.545872i
\(576\) 0 0
\(577\) 42.6627i 1.77607i 0.459776 + 0.888035i \(0.347930\pi\)
−0.459776 + 0.888035i \(0.652070\pi\)
\(578\) 0 0
\(579\) 13.8100 + 7.97318i 0.573922 + 0.331354i
\(580\) 0 0
\(581\) 4.52824 7.84315i 0.187863 0.325389i
\(582\) 0 0
\(583\) 2.98017 1.72060i 0.123426 0.0712601i
\(584\) 0 0
\(585\) −14.7732 + 7.66362i −0.610797 + 0.316852i
\(586\) 0 0
\(587\) 37.3134 21.5429i 1.54009 0.889170i 0.541256 0.840858i \(-0.317949\pi\)
0.998832 0.0483120i \(-0.0153842\pi\)
\(588\) 0 0
\(589\) 8.84780 15.3248i 0.364567 0.631449i
\(590\) 0 0
\(591\) −6.23697 3.60092i −0.256555 0.148122i
\(592\) 0 0
\(593\) 28.4634i 1.16885i −0.811447 0.584426i \(-0.801320\pi\)
0.811447 0.584426i \(-0.198680\pi\)
\(594\) 0 0
\(595\) 2.19811 + 3.80724i 0.0901137 + 0.156082i
\(596\) 0 0
\(597\) 62.0090 2.53786
\(598\) 0 0
\(599\) 2.12689 0.0869025 0.0434513 0.999056i \(-0.486165\pi\)
0.0434513 + 0.999056i \(0.486165\pi\)
\(600\) 0 0
\(601\) −8.28457 14.3493i −0.337935 0.585320i 0.646109 0.763245i \(-0.276395\pi\)
−0.984044 + 0.177925i \(0.943062\pi\)
\(602\) 0 0
\(603\) 9.45317i 0.384963i
\(604\) 0 0
\(605\) −2.33627 1.34884i −0.0949828 0.0548383i
\(606\) 0 0
\(607\) 19.0553 33.0048i 0.773432 1.33962i −0.162239 0.986751i \(-0.551872\pi\)
0.935671 0.352872i \(-0.114795\pi\)
\(608\) 0 0
\(609\) 20.0771 11.5915i 0.813567 0.469713i
\(610\) 0 0
\(611\) −13.8886 8.87597i −0.561873 0.359083i
\(612\) 0 0
\(613\) 8.54900 4.93577i 0.345291 0.199354i −0.317318 0.948319i \(-0.602782\pi\)
0.662609 + 0.748965i \(0.269449\pi\)
\(614\) 0 0
\(615\) −4.89249 + 8.47404i −0.197284 + 0.341706i
\(616\) 0 0
\(617\) −41.0736 23.7139i −1.65356 0.954684i −0.975591 0.219595i \(-0.929526\pi\)
−0.677970 0.735089i \(-0.737140\pi\)
\(618\) 0 0
\(619\) 12.1183i 0.487076i 0.969891 + 0.243538i \(0.0783080\pi\)
−0.969891 + 0.243538i \(0.921692\pi\)
\(620\) 0 0
\(621\) 26.1581 + 45.3072i 1.04969 + 1.81812i
\(622\) 0 0
\(623\) −17.2115 −0.689565
\(624\) 0 0
\(625\) 19.9783 0.799133
\(626\) 0 0
\(627\) 7.87264 + 13.6358i 0.314403 + 0.544562i
\(628\) 0 0
\(629\) 79.5651i 3.17247i
\(630\) 0 0
\(631\) −9.39978 5.42697i −0.374199 0.216044i 0.301092 0.953595i \(-0.402649\pi\)
−0.675291 + 0.737551i \(0.735982\pi\)
\(632\) 0 0
\(633\) 10.5345 18.2463i 0.418709 0.725225i
\(634\) 0 0
\(635\) 0.230708 0.133199i 0.00915536 0.00528585i
\(636\) 0 0
\(637\) 3.60189 + 0.162422i 0.142712 + 0.00643540i
\(638\) 0 0
\(639\) 17.5082 10.1084i 0.692613 0.399881i
\(640\) 0 0
\(641\) 18.5825 32.1858i 0.733965 1.27126i −0.221211 0.975226i \(-0.571001\pi\)
0.955176 0.296038i \(-0.0956657\pi\)
\(642\) 0 0
\(643\) 8.43885 + 4.87217i 0.332796 + 0.192140i 0.657082 0.753819i \(-0.271791\pi\)
−0.324286 + 0.945959i \(0.605124\pi\)
\(644\) 0 0
\(645\) 10.8943i 0.428963i
\(646\) 0 0
\(647\) 6.55650 + 11.3562i 0.257763 + 0.446458i 0.965642 0.259875i \(-0.0836814\pi\)
−0.707880 + 0.706333i \(0.750348\pi\)
\(648\) 0 0
\(649\) −9.23485 −0.362500
\(650\) 0 0
\(651\) 30.9294 1.21222
\(652\) 0 0
\(653\) −0.810078 1.40310i −0.0317008 0.0549074i 0.849740 0.527202i \(-0.176759\pi\)
−0.881441 + 0.472295i \(0.843426\pi\)
\(654\) 0 0
\(655\) 7.07795i 0.276558i
\(656\) 0 0
\(657\) 46.1487 + 26.6440i 1.80043 + 1.03948i
\(658\) 0 0
\(659\) −19.2587 + 33.3570i −0.750211 + 1.29940i 0.197509 + 0.980301i \(0.436715\pi\)
−0.947720 + 0.319103i \(0.896619\pi\)
\(660\) 0 0
\(661\) −19.1051 + 11.0303i −0.743102 + 0.429030i −0.823196 0.567757i \(-0.807811\pi\)
0.0800942 + 0.996787i \(0.474478\pi\)
\(662\) 0 0
\(663\) −48.1148 + 75.2874i −1.86862 + 2.92392i
\(664\) 0 0
\(665\) −0.956874 + 0.552452i −0.0371060 + 0.0214232i
\(666\) 0 0
\(667\) 11.4014 19.7478i 0.441464 0.764638i
\(668\) 0 0
\(669\) 34.7033 + 20.0360i 1.34171 + 0.774635i
\(670\) 0 0
\(671\) 22.1805i 0.856267i
\(672\) 0 0
\(673\) −0.460408 0.797449i −0.0177474 0.0307394i 0.857015 0.515291i \(-0.172316\pi\)
−0.874763 + 0.484552i \(0.838983\pi\)
\(674\) 0 0
\(675\) −75.0809 −2.88986
\(676\) 0 0
\(677\) −34.4678 −1.32470 −0.662352 0.749193i \(-0.730442\pi\)
−0.662352 + 0.749193i \(0.730442\pi\)
\(678\) 0 0
\(679\) 1.48774 + 2.57685i 0.0570944 + 0.0988904i
\(680\) 0 0
\(681\) 40.2611i 1.54281i
\(682\) 0 0
\(683\) −4.33833 2.50474i −0.166002 0.0958410i 0.414698 0.909959i \(-0.363887\pi\)
−0.580699 + 0.814118i \(0.697221\pi\)
\(684\) 0 0
\(685\) −2.73551 + 4.73805i −0.104519 + 0.181031i
\(686\) 0 0
\(687\) 46.6722 26.9462i 1.78066 1.02806i
\(688\) 0 0
\(689\) −2.64292 + 4.13549i −0.100687 + 0.157550i
\(690\) 0 0
\(691\) 13.6764 7.89606i 0.520274 0.300380i −0.216773 0.976222i \(-0.569553\pi\)
0.737047 + 0.675842i \(0.236220\pi\)
\(692\) 0 0
\(693\) −9.96814 + 17.2653i −0.378658 + 0.655856i
\(694\) 0 0
\(695\) −9.54840 5.51277i −0.362191 0.209111i
\(696\) 0 0
\(697\) 38.0552i 1.44144i
\(698\) 0 0
\(699\) −25.1716 43.5985i −0.952077 1.64905i
\(700\) 0 0
\(701\) 14.6605 0.553718 0.276859 0.960911i \(-0.410707\pi\)
0.276859 + 0.960911i \(0.410707\pi\)
\(702\) 0 0
\(703\) −19.9971 −0.754206
\(704\) 0 0
\(705\) 4.41422 + 7.64566i 0.166249 + 0.287952i
\(706\) 0 0
\(707\) 1.57895i 0.0593825i
\(708\) 0 0
\(709\) −13.3762 7.72273i −0.502353 0.290033i 0.227332 0.973817i \(-0.427000\pi\)
−0.729685 + 0.683784i \(0.760333\pi\)
\(710\) 0 0
\(711\) 12.4942 21.6406i 0.468569 0.811586i
\(712\) 0 0
\(713\) 26.3462 15.2110i 0.986673 0.569656i
\(714\) 0 0
\(715\) −5.32985 0.240342i −0.199325 0.00898827i
\(716\) 0 0
\(717\) 27.8420 16.0746i 1.03978 0.600317i
\(718\) 0 0
\(719\) 5.03616 8.72288i 0.187817 0.325309i −0.756705 0.653756i \(-0.773192\pi\)
0.944522 + 0.328448i \(0.106525\pi\)
\(720\) 0 0
\(721\) −15.6703 9.04728i −0.583594 0.336938i
\(722\) 0 0
\(723\) 76.4961i 2.84492i
\(724\) 0 0
\(725\) 16.3625 + 28.3407i 0.607689 + 1.05255i
\(726\) 0 0
\(727\) 4.62399 0.171494 0.0857472 0.996317i \(-0.472672\pi\)
0.0857472 + 0.996317i \(0.472672\pi\)
\(728\) 0 0
\(729\) 73.3132 2.71530
\(730\) 0 0
\(731\) 21.1848 + 36.6931i 0.783547 + 1.35714i
\(732\) 0 0
\(733\) 32.4005i 1.19674i −0.801219 0.598371i \(-0.795815\pi\)
0.801219 0.598371i \(-0.204185\pi\)
\(734\) 0 0
\(735\) −1.67248 0.965606i −0.0616903 0.0356169i
\(736\) 0 0
\(737\) −1.51523 + 2.62446i −0.0558144 + 0.0966733i
\(738\) 0 0
\(739\) 39.0930 22.5704i 1.43806 0.830264i 0.440344 0.897829i \(-0.354856\pi\)
0.997715 + 0.0675652i \(0.0215231\pi\)
\(740\) 0 0
\(741\) −18.9220 12.0927i −0.695117 0.444237i
\(742\) 0 0
\(743\) 25.1291 14.5083i 0.921898 0.532258i 0.0376577 0.999291i \(-0.488010\pi\)
0.884240 + 0.467033i \(0.154677\pi\)
\(744\) 0 0
\(745\) −2.89667 + 5.01718i −0.106126 + 0.183815i
\(746\) 0 0
\(747\) −61.8509 35.7097i −2.26301 1.30655i
\(748\) 0 0
\(749\) 14.8651i 0.543158i
\(750\) 0 0
\(751\) 18.0850 + 31.3242i 0.659933 + 1.14304i 0.980633 + 0.195856i \(0.0627486\pi\)
−0.320700 + 0.947181i \(0.603918\pi\)
\(752\) 0 0
\(753\) −3.54143 −0.129057
\(754\) 0 0
\(755\) 5.59847 0.203749
\(756\) 0 0
\(757\) −5.68024 9.83846i −0.206452 0.357585i 0.744143 0.668021i \(-0.232858\pi\)
−0.950594 + 0.310436i \(0.899525\pi\)
\(758\) 0 0
\(759\) 27.0690i 0.982543i
\(760\) 0 0
\(761\) −39.2057 22.6354i −1.42121 0.820533i −0.424803 0.905286i \(-0.639657\pi\)
−0.996402 + 0.0847524i \(0.972990\pi\)
\(762\) 0 0
\(763\) −1.82213 + 3.15602i −0.0659656 + 0.114256i
\(764\) 0 0
\(765\) 30.0238 17.3343i 1.08551 0.626722i
\(766\) 0 0
\(767\) 11.6914 6.06491i 0.422151 0.218991i
\(768\) 0 0
\(769\) 6.11442 3.53016i 0.220492 0.127301i −0.385686 0.922630i \(-0.626035\pi\)
0.606178 + 0.795329i \(0.292702\pi\)
\(770\) 0 0
\(771\) −32.8501 + 56.8980i −1.18307 + 2.04913i
\(772\) 0 0
\(773\) 10.5780 + 6.10722i 0.380465 + 0.219662i 0.678021 0.735043i \(-0.262838\pi\)
−0.297556 + 0.954705i \(0.596171\pi\)
\(774\) 0 0
\(775\) 43.6596i 1.56830i
\(776\) 0 0
\(777\) −17.4760 30.2694i −0.626949 1.08591i
\(778\) 0 0
\(779\) −9.56442 −0.342681
\(780\) 0 0
\(781\) 6.48101 0.231909
\(782\) 0 0
\(783\) −56.6361 98.0966i −2.02401 3.50569i
\(784\) 0 0
\(785\) 3.60839i 0.128789i
\(786\) 0 0
\(787\) −15.6804 9.05306i −0.558944 0.322707i 0.193777 0.981046i \(-0.437926\pi\)
−0.752722 + 0.658339i \(0.771259\pi\)
\(788\) 0 0
\(789\) −29.1309 + 50.4562i −1.03709 + 1.79629i
\(790\) 0 0
\(791\) −4.56262 + 2.63423i −0.162228 + 0.0936625i
\(792\) 0 0
\(793\) 14.5668 + 28.0806i 0.517283 + 0.997170i
\(794\) 0 0
\(795\) 2.27658 1.31438i 0.0807420 0.0466164i
\(796\) 0 0
\(797\) 7.20159 12.4735i 0.255094 0.441835i −0.709827 0.704376i \(-0.751227\pi\)
0.964921 + 0.262541i \(0.0845604\pi\)
\(798\) 0 0
\(799\) 29.7350 + 17.1675i 1.05195 + 0.607344i
\(800\) 0 0
\(801\) 135.730i 4.79578i
\(802\) 0 0
\(803\) 8.54144 + 14.7942i 0.301421 + 0.522077i
\(804\) 0 0
\(805\) −1.89953 −0.0669497
\(806\) 0 0
\(807\) 1.43723 0.0505928
\(808\) 0 0
\(809\) 20.6173 + 35.7102i 0.724866 + 1.25550i 0.959029 + 0.283308i \(0.0914317\pi\)
−0.234163 + 0.972197i \(0.575235\pi\)
\(810\) 0 0
\(811\) 21.6479i 0.760159i 0.924954 + 0.380080i \(0.124103\pi\)
−0.924954 + 0.380080i \(0.875897\pi\)
\(812\) 0 0
\(813\) 0.113998 + 0.0658170i 0.00399810 + 0.00230830i
\(814\) 0 0
\(815\) 3.18681 5.51972i 0.111629 0.193347i
\(816\) 0 0
\(817\) −9.22208 + 5.32437i −0.322640 + 0.186276i
\(818\) 0 0
\(819\) 1.28086 28.4045i 0.0447568 0.992532i
\(820\) 0 0
\(821\) −20.1432 + 11.6297i −0.703001 + 0.405878i −0.808464 0.588545i \(-0.799701\pi\)
0.105463 + 0.994423i \(0.466367\pi\)
\(822\) 0 0
\(823\) 25.9735 44.9875i 0.905380 1.56816i 0.0849736 0.996383i \(-0.472919\pi\)
0.820406 0.571781i \(-0.193747\pi\)
\(824\) 0 0
\(825\) −33.6431 19.4239i −1.17130 0.676252i
\(826\) 0 0
\(827\) 8.56814i 0.297944i 0.988841 + 0.148972i \(0.0475963\pi\)
−0.988841 + 0.148972i \(0.952404\pi\)
\(828\) 0 0
\(829\) 9.04823 + 15.6720i 0.314258 + 0.544311i 0.979280 0.202513i \(-0.0649109\pi\)
−0.665021 + 0.746824i \(0.731578\pi\)
\(830\) 0 0
\(831\) 63.5513 2.20457
\(832\) 0 0
\(833\) −7.51075 −0.260232
\(834\) 0 0
\(835\) −3.65611 6.33257i −0.126525 0.219148i
\(836\) 0 0
\(837\) 151.120i 5.22348i
\(838\) 0 0
\(839\) 41.4439 + 23.9277i 1.43080 + 0.826075i 0.997182 0.0750200i \(-0.0239021\pi\)
0.433622 + 0.901095i \(0.357235\pi\)
\(840\) 0 0
\(841\) −10.1857 + 17.6421i −0.351230 + 0.608348i
\(842\) 0 0
\(843\) −40.8883 + 23.6069i −1.40827 + 0.813063i
\(844\) 0 0
\(845\) 6.90545 3.19605i 0.237555 0.109948i
\(846\) 0 0
\(847\) 3.99141 2.30444i 0.137147 0.0791816i
\(848\) 0 0
\(849\) 17.9168 31.0327i 0.614902 1.06504i
\(850\) 0 0
\(851\) −29.7728 17.1894i −1.02060 0.589244i
\(852\) 0 0
\(853\) 23.9983i 0.821687i 0.911706 + 0.410843i \(0.134766\pi\)
−0.911706 + 0.410843i \(0.865234\pi\)
\(854\) 0 0
\(855\) 4.35663 + 7.54590i 0.148993 + 0.258064i
\(856\) 0 0
\(857\) 36.7162 1.25420 0.627101 0.778938i \(-0.284241\pi\)
0.627101 + 0.778938i \(0.284241\pi\)
\(858\) 0 0
\(859\) 11.0247 0.376157 0.188079 0.982154i \(-0.439774\pi\)
0.188079 + 0.982154i \(0.439774\pi\)
\(860\) 0 0
\(861\) −8.35861 14.4775i −0.284861 0.493393i
\(862\) 0 0
\(863\) 32.0149i 1.08980i 0.838501 + 0.544900i \(0.183432\pi\)
−0.838501 + 0.544900i \(0.816568\pi\)
\(864\) 0 0
\(865\) −1.89096 1.09175i −0.0642947 0.0371206i
\(866\) 0 0
\(867\) 65.0169 112.613i 2.20809 3.82452i
\(868\) 0 0
\(869\) 6.93748 4.00535i 0.235338 0.135872i
\(870\) 0 0
\(871\) 0.194700 4.31769i 0.00659717 0.146300i
\(872\) 0 0
\(873\) 20.3210 11.7323i 0.687761 0.397079i
\(874\) 0 0
\(875\) 2.82635 4.89538i 0.0955481 0.165494i
\(876\) 0 0
\(877\) −31.0099 17.9036i −1.04713 0.604561i −0.125286 0.992121i \(-0.539985\pi\)
−0.921845 + 0.387560i \(0.873318\pi\)
\(878\) 0 0
\(879\) 2.87231i 0.0968806i
\(880\) 0 0
\(881\) 9.48732 + 16.4325i 0.319636 + 0.553625i 0.980412 0.196958i \(-0.0631061\pi\)
−0.660776 + 0.750583i \(0.729773\pi\)
\(882\) 0 0
\(883\) 7.52168 0.253125 0.126562 0.991959i \(-0.459606\pi\)
0.126562 + 0.991959i \(0.459606\pi\)
\(884\) 0 0
\(885\) −7.05459 −0.237137
\(886\) 0 0
\(887\) −21.1477 36.6288i −0.710069 1.22988i −0.964831 0.262872i \(-0.915330\pi\)
0.254761 0.967004i \(-0.418003\pi\)
\(888\) 0 0
\(889\) 0.455130i 0.0152646i
\(890\) 0 0
\(891\) 64.6538 + 37.3279i 2.16598 + 1.25053i
\(892\) 0 0
\(893\) −4.31472 + 7.47332i −0.144387 + 0.250085i
\(894\) 0 0
\(895\) 6.16138 3.55728i 0.205952 0.118907i
\(896\) 0 0
\(897\) −17.7773 34.2695i −0.593568 1.14423i
\(898\) 0 0
\(899\) −57.0433 + 32.9340i −1.90250 + 1.09841i
\(900\) 0 0
\(901\) 5.11183 8.85394i 0.170300 0.294968i
\(902\) 0 0
\(903\) −16.1189 9.30623i −0.536402 0.309692i
\(904\) 0 0
\(905\) 7.88256i 0.262025i
\(906\) 0 0
\(907\) 8.47904 + 14.6861i 0.281542 + 0.487645i 0.971765 0.235952i \(-0.0758209\pi\)
−0.690223 + 0.723597i \(0.742488\pi\)
\(908\) 0 0
\(909\) 12.4516 0.412993
\(910\) 0 0
\(911\) 45.7607 1.51612 0.758060 0.652185i \(-0.226147\pi\)
0.758060 + 0.652185i \(0.226147\pi\)
\(912\) 0 0
\(913\) −11.4477 19.8280i −0.378863 0.656211i
\(914\) 0 0
\(915\) 16.9439i 0.560146i
\(916\) 0 0
\(917\) 10.4723 + 6.04619i 0.345826 + 0.199663i
\(918\) 0 0
\(919\) 12.7996 22.1695i 0.422219 0.731305i −0.573937 0.818899i \(-0.694585\pi\)
0.996156 + 0.0875945i \(0.0279180\pi\)
\(920\) 0 0
\(921\) −90.1803 + 52.0656i −2.97154 + 1.71562i
\(922\) 0 0
\(923\) −8.20499 + 4.25635i −0.270070 + 0.140099i
\(924\) 0 0
\(925\) 42.7280 24.6690i 1.40489 0.811113i
\(926\) 0 0
\(927\) −71.3467 + 123.576i −2.34333 + 4.05877i
\(928\) 0 0
\(929\) 22.6286 + 13.0646i 0.742419 + 0.428636i 0.822948 0.568117i \(-0.192328\pi\)
−0.0805293 + 0.996752i \(0.525661\pi\)
\(930\) 0 0
\(931\) 1.88768i 0.0618662i
\(932\) 0 0
\(933\) −41.5363 71.9430i −1.35984 2.35531i
\(934\) 0 0
\(935\) 11.1139 0.363464
\(936\) 0 0
\(937\) 0.603992 0.0197315 0.00986577 0.999951i \(-0.496860\pi\)
0.00986577 + 0.999951i \(0.496860\pi\)
\(938\) 0 0
\(939\) −0.824310 1.42775i −0.0269003 0.0465928i
\(940\) 0 0
\(941\) 35.5175i 1.15784i −0.815385 0.578919i \(-0.803475\pi\)
0.815385 0.578919i \(-0.196525\pi\)
\(942\) 0 0
\(943\) −14.2400 8.22150i −0.463720 0.267729i
\(944\) 0 0
\(945\) −4.71793 + 8.17170i −0.153474 + 0.265826i
\(946\) 0 0
\(947\) −7.74967 + 4.47428i −0.251831 + 0.145394i −0.620602 0.784126i \(-0.713112\pi\)
0.368772 + 0.929520i \(0.379778\pi\)
\(948\) 0 0
\(949\) −20.5295 13.1200i −0.666415 0.425894i
\(950\) 0 0
\(951\) −10.9440 + 6.31853i −0.354884 + 0.204892i
\(952\) 0 0
\(953\) 16.8494 29.1840i 0.545805 0.945363i −0.452750 0.891637i \(-0.649557\pi\)
0.998556 0.0537254i \(-0.0171095\pi\)
\(954\) 0 0
\(955\) 7.35032 + 4.24371i 0.237851 + 0.137323i
\(956\) 0 0
\(957\) 58.6084i 1.89454i
\(958\) 0 0
\(959\) −4.67351 8.09475i −0.150915 0.261393i
\(960\) 0 0
\(961\) −56.8767 −1.83473
\(962\) 0 0
\(963\) −117.226 −3.77755
\(964\) 0 0
\(965\) 1.41447 + 2.44993i 0.0455334 + 0.0788662i
\(966\) 0 0
\(967\) 17.6070i 0.566203i 0.959090 + 0.283102i \(0.0913633\pi\)
−0.959090 + 0.283102i \(0.908637\pi\)
\(968\) 0 0
\(969\) 40.5113 + 23.3892i 1.30141 + 0.751370i
\(970\) 0 0
\(971\) 0.444682 0.770212i 0.0142705 0.0247173i −0.858802 0.512308i \(-0.828791\pi\)
0.873072 + 0.487590i \(0.162124\pi\)
\(972\) 0 0
\(973\) 16.3130 9.41833i 0.522972 0.301938i
\(974\) 0 0
\(975\) 55.3487 + 2.49587i 1.77258 + 0.0799319i
\(976\) 0 0
\(977\) −10.5022 + 6.06342i −0.335994 + 0.193986i −0.658499 0.752582i \(-0.728808\pi\)
0.322505 + 0.946568i \(0.395475\pi\)
\(978\) 0 0
\(979\) −21.7559 + 37.6824i −0.695323 + 1.20433i
\(980\) 0 0
\(981\) 24.8883 + 14.3693i 0.794624 + 0.458776i
\(982\) 0 0
\(983\) 59.4878i 1.89737i −0.316226 0.948684i \(-0.602416\pi\)
0.316226 0.948684i \(-0.397584\pi\)
\(984\) 0 0
\(985\) −0.638815 1.10646i −0.0203543 0.0352548i
\(986\) 0 0
\(987\) −15.0830 −0.480098
\(988\) 0 0
\(989\) −18.3071 −0.582133
\(990\) 0 0
\(991\) −13.5333 23.4404i −0.429900 0.744609i 0.566964 0.823743i \(-0.308118\pi\)
−0.996864 + 0.0791336i \(0.974785\pi\)
\(992\) 0 0
\(993\) 67.2344i 2.13362i
\(994\) 0 0
\(995\) 9.52680 + 5.50030i 0.302020 + 0.174371i
\(996\) 0 0
\(997\) −22.1640 + 38.3891i −0.701940 + 1.21580i 0.265844 + 0.964016i \(0.414349\pi\)
−0.967785 + 0.251780i \(0.918984\pi\)
\(998\) 0 0
\(999\) −147.896 + 85.3877i −4.67922 + 2.70155i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.bm.c.673.12 yes 24
4.3 odd 2 1456.2.cc.g.673.1 24
13.2 odd 12 9464.2.a.bl.1.1 12
13.4 even 6 inner 728.2.bm.c.225.12 24
13.11 odd 12 9464.2.a.bm.1.1 12
52.43 odd 6 1456.2.cc.g.225.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.bm.c.225.12 24 13.4 even 6 inner
728.2.bm.c.673.12 yes 24 1.1 even 1 trivial
1456.2.cc.g.225.1 24 52.43 odd 6
1456.2.cc.g.673.1 24 4.3 odd 2
9464.2.a.bl.1.1 12 13.2 odd 12
9464.2.a.bm.1.1 12 13.11 odd 12