Properties

Label 728.1.l.e
Level $728$
Weight $1$
Character orbit 728.l
Analytic conductor $0.363$
Analytic rank $0$
Dimension $4$
Projective image $D_{4}$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,1,Mod(181,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.181"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 728.l (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.363319329197\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.75712.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{8}^{2} q^{2} + ( - \zeta_{8}^{3} + \zeta_{8}) q^{3} - q^{4} + ( - \zeta_{8}^{3} - \zeta_{8}) q^{5} + (\zeta_{8}^{3} + \zeta_{8}) q^{6} + \zeta_{8}^{2} q^{7} - \zeta_{8}^{2} q^{8} + q^{9} + ( - \zeta_{8}^{3} + \zeta_{8}) q^{10} + \cdots - \zeta_{8}^{2} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 4 q^{9} - 4 q^{14} + 4 q^{16} - 8 q^{23} - 4 q^{25} + 8 q^{30} - 4 q^{36} + 4 q^{39} - 4 q^{49} + 4 q^{56} - 4 q^{64} - 4 q^{65} + 4 q^{78} - 4 q^{81} + 8 q^{92} + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
181.1
−0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i
0.707107 + 0.707107i
1.00000i −1.41421 −1.00000 1.41421i 1.41421i 1.00000i 1.00000i 1.00000 −1.41421
181.2 1.00000i 1.41421 −1.00000 1.41421i 1.41421i 1.00000i 1.00000i 1.00000 1.41421
181.3 1.00000i −1.41421 −1.00000 1.41421i 1.41421i 1.00000i 1.00000i 1.00000 −1.41421
181.4 1.00000i 1.41421 −1.00000 1.41421i 1.41421i 1.00000i 1.00000i 1.00000 1.41421
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
56.h odd 2 1 CM by \(\Q(\sqrt{-14}) \)
7.b odd 2 1 inner
8.b even 2 1 inner
13.b even 2 1 inner
91.b odd 2 1 inner
104.e even 2 1 inner
728.l odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 728.1.l.e 4
4.b odd 2 1 2912.1.l.e 4
7.b odd 2 1 inner 728.1.l.e 4
8.b even 2 1 inner 728.1.l.e 4
8.d odd 2 1 2912.1.l.e 4
13.b even 2 1 inner 728.1.l.e 4
28.d even 2 1 2912.1.l.e 4
52.b odd 2 1 2912.1.l.e 4
56.e even 2 1 2912.1.l.e 4
56.h odd 2 1 CM 728.1.l.e 4
91.b odd 2 1 inner 728.1.l.e 4
104.e even 2 1 inner 728.1.l.e 4
104.h odd 2 1 2912.1.l.e 4
364.h even 2 1 2912.1.l.e 4
728.b even 2 1 2912.1.l.e 4
728.l odd 2 1 inner 728.1.l.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
728.1.l.e 4 1.a even 1 1 trivial
728.1.l.e 4 7.b odd 2 1 inner
728.1.l.e 4 8.b even 2 1 inner
728.1.l.e 4 13.b even 2 1 inner
728.1.l.e 4 56.h odd 2 1 CM
728.1.l.e 4 91.b odd 2 1 inner
728.1.l.e 4 104.e even 2 1 inner
728.1.l.e 4 728.l odd 2 1 inner
2912.1.l.e 4 4.b odd 2 1
2912.1.l.e 4 8.d odd 2 1
2912.1.l.e 4 28.d even 2 1
2912.1.l.e 4 52.b odd 2 1
2912.1.l.e 4 56.e even 2 1
2912.1.l.e 4 104.h odd 2 1
2912.1.l.e 4 364.h even 2 1
2912.1.l.e 4 728.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(728, [\chi])\):

\( T_{3}^{2} - 2 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 1 \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$23$ \( (T + 2)^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less