Properties

Label 7260.2.a.bg
Level $7260$
Weight $2$
Character orbit 7260.a
Self dual yes
Analytic conductor $57.971$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7260,2,Mod(1,7260)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7260, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7260.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7260 = 2^{2} \cdot 3 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7260.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,-4,0,4,0,4,0,0,0,-1,0,-4,0,2,0,7,0,4,0,15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.9713918674\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.2525.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 4x^{2} + 5x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 660)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} - q^{5} + (\beta_{2} + \beta_1 + 1) q^{7} + q^{9} + ( - \beta_{3} - \beta_{2} - 2 \beta_1) q^{13} - q^{15} + ( - 2 \beta_{3} + 2 \beta_{2} + 1) q^{17} + (\beta_{3} - \beta_{2} + 3 \beta_1) q^{19}+ \cdots + (6 \beta_{3} - 3 \beta_{2} - \beta_1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 4 q^{5} + 4 q^{7} + 4 q^{9} - q^{13} - 4 q^{15} + 2 q^{17} + 7 q^{19} + 4 q^{21} + 15 q^{23} + 4 q^{25} + 4 q^{27} + 15 q^{29} - 7 q^{31} - 4 q^{35} - q^{37} - q^{39} + 10 q^{41} + 4 q^{43}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 4x^{2} + 5x + 5 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 3\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 4\beta _1 + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.777484
−1.46673
1.77748
2.46673
0 1.00000 0 −1.00000 0 −1.39552 0 1.00000 0
1.2 0 1.00000 0 −1.00000 0 0.151302 0 1.00000 0
1.3 0 1.00000 0 −1.00000 0 1.15945 0 1.00000 0
1.4 0 1.00000 0 −1.00000 0 4.08477 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7260.2.a.bg 4
11.b odd 2 1 7260.2.a.be 4
11.d odd 10 2 660.2.y.b 8
33.f even 10 2 1980.2.z.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
660.2.y.b 8 11.d odd 10 2
1980.2.z.b 8 33.f even 10 2
7260.2.a.be 4 11.b odd 2 1
7260.2.a.bg 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7260))\):

\( T_{7}^{4} - 4T_{7}^{3} - 2T_{7}^{2} + 7T_{7} - 1 \) Copy content Toggle raw display
\( T_{13}^{4} + T_{13}^{3} - 32T_{13}^{2} + 72T_{13} - 41 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T - 1)^{4} \) Copy content Toggle raw display
$5$ \( (T + 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 4 T^{3} + \cdots - 1 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + T^{3} + \cdots - 41 \) Copy content Toggle raw display
$17$ \( T^{4} - 2 T^{3} + \cdots + 55 \) Copy content Toggle raw display
$19$ \( T^{4} - 7 T^{3} + \cdots - 109 \) Copy content Toggle raw display
$23$ \( T^{4} - 15 T^{3} + \cdots - 125 \) Copy content Toggle raw display
$29$ \( T^{4} - 15 T^{3} + \cdots - 1375 \) Copy content Toggle raw display
$31$ \( T^{4} + 7 T^{3} + \cdots + 109 \) Copy content Toggle raw display
$37$ \( T^{4} + T^{3} - 11 T^{2} + \cdots - 5 \) Copy content Toggle raw display
$41$ \( T^{4} - 10 T^{3} + \cdots - 625 \) Copy content Toggle raw display
$43$ \( T^{4} - 4 T^{3} + \cdots + 479 \) Copy content Toggle raw display
$47$ \( T^{4} - 4 T^{3} + \cdots + 725 \) Copy content Toggle raw display
$53$ \( T^{4} + 16 T^{3} + \cdots + 1291 \) Copy content Toggle raw display
$59$ \( T^{4} + 5 T^{3} + \cdots + 451 \) Copy content Toggle raw display
$61$ \( T^{4} - 11 T^{3} + \cdots + 275 \) Copy content Toggle raw display
$67$ \( T^{4} - 9 T^{3} + \cdots - 29 \) Copy content Toggle raw display
$71$ \( T^{4} + 5 T^{3} + \cdots + 125 \) Copy content Toggle raw display
$73$ \( T^{4} + 5 T^{3} + \cdots + 241 \) Copy content Toggle raw display
$79$ \( (T^{2} + 5 T - 95)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} - 11 T^{3} + \cdots + 319 \) Copy content Toggle raw display
$89$ \( T^{4} - 16 T^{3} + \cdots - 769 \) Copy content Toggle raw display
$97$ \( T^{4} + 2 T^{3} + \cdots + 5255 \) Copy content Toggle raw display
show more
show less