Properties

Label 725.2.y.b.282.5
Level $725$
Weight $2$
Character 725.282
Analytic conductor $5.789$
Analytic rank $0$
Dimension $156$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [725,2,Mod(18,725)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("725.18"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(725, base_ring=CyclotomicField(28)) chi = DirichletCharacter(H, H._module([21, 11])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.y (of order \(28\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [156] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(13\) over \(\Q(\zeta_{28})\)
Twist minimal: no (minimal twist has level 145)
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 282.5
Character \(\chi\) \(=\) 725.282
Dual form 725.2.y.b.18.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.871464 + 0.419675i) q^{2} +(-2.22031 + 1.77064i) q^{3} +(-0.663657 + 0.832199i) q^{4} +(1.19183 - 2.47485i) q^{6} +(-0.156487 + 1.38886i) q^{7} +(0.659568 - 2.88975i) q^{8} +(1.12705 - 4.93793i) q^{9} +(4.68013 + 2.94072i) q^{11} -3.02283i q^{12} +(2.43545 - 3.87599i) q^{13} +(-0.446497 - 1.27601i) q^{14} +(0.164256 + 0.719651i) q^{16} +5.34543 q^{17} +(1.09014 + 4.77622i) q^{18} +(3.75785 - 0.423408i) q^{19} +(-2.11171 - 3.36077i) q^{21} +(-5.31271 - 0.598599i) q^{22} +(2.32115 - 0.812207i) q^{23} +(3.65226 + 7.58400i) q^{24} +(-0.495748 + 4.39988i) q^{26} +(2.54434 + 5.28338i) q^{27} +(-1.05195 - 1.05195i) q^{28} +(-3.20546 - 4.32724i) q^{29} +(1.32279 - 3.78032i) q^{31} +(3.25097 + 4.07659i) q^{32} +(-15.5983 + 1.75750i) q^{33} +(-4.65835 + 2.24334i) q^{34} +(3.36136 + 4.21502i) q^{36} +(3.61961 + 0.826152i) q^{37} +(-3.09714 + 1.94606i) q^{38} +(1.45553 + 12.9182i) q^{39} +(-5.71038 - 5.71038i) q^{41} +(3.25072 + 2.04256i) q^{42} +(-0.322307 + 0.669277i) q^{43} +(-5.55327 + 1.94317i) q^{44} +(-1.68194 + 1.68194i) q^{46} +(-0.0268913 + 0.00613776i) q^{47} +(-1.63894 - 1.30701i) q^{48} +(4.92005 + 1.12297i) q^{49} +(-11.8685 + 9.46480i) q^{51} +(1.60930 + 4.59910i) q^{52} +(0.574381 - 1.64149i) q^{53} +(-4.43460 - 3.53648i) q^{54} +(3.91025 + 1.36826i) q^{56} +(-7.59388 + 7.59388i) q^{57} +(4.60948 + 2.42578i) q^{58} +4.00143i q^{59} +(3.92555 + 0.442303i) q^{61} +(0.433740 + 3.84955i) q^{62} +(6.68171 + 2.33803i) q^{63} +(-5.87407 - 2.82880i) q^{64} +(12.8558 - 8.07781i) q^{66} +(-3.79538 - 6.04031i) q^{67} +(-3.54753 + 4.44846i) q^{68} +(-3.71555 + 5.91327i) q^{69} +(3.42315 - 0.781312i) q^{71} +(-13.5260 - 6.51379i) q^{72} +(2.88745 + 1.39052i) q^{73} +(-3.50108 + 0.799098i) q^{74} +(-2.14156 + 3.40828i) q^{76} +(-4.81662 + 6.03986i) q^{77} +(-6.68988 - 10.6469i) q^{78} +(7.95966 - 5.00139i) q^{79} +(-1.31416 - 0.632868i) q^{81} +(7.37289 + 2.57989i) q^{82} +(1.66068 + 14.7389i) q^{83} +(4.19829 + 0.473033i) q^{84} -0.718515i q^{86} +(14.7791 + 3.93209i) q^{87} +(11.5848 - 11.5848i) q^{88} +(-12.9395 - 4.52773i) q^{89} +(5.00209 + 3.98903i) q^{91} +(-0.864532 + 2.47069i) q^{92} +(3.75656 + 10.7356i) q^{93} +(0.0208589 - 0.0166344i) q^{94} +(-14.4363 - 3.29499i) q^{96} +(-6.87837 - 5.48532i) q^{97} +(-4.75893 + 1.08620i) q^{98} +(19.7958 - 19.7958i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q + 8 q^{2} + 14 q^{3} - 22 q^{4} - 28 q^{6} + 10 q^{7} - 4 q^{8} + 10 q^{9} - 20 q^{11} + 4 q^{14} - 34 q^{16} + 48 q^{17} + 94 q^{18} - 16 q^{21} + 6 q^{22} + 10 q^{23} + 56 q^{24} + 36 q^{26} + 56 q^{27}+ \cdots + 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/725\mathbb{Z}\right)^\times\).

\(n\) \(176\) \(552\)
\(\chi(n)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.871464 + 0.419675i −0.616218 + 0.296755i −0.715834 0.698271i \(-0.753953\pi\)
0.0996153 + 0.995026i \(0.468239\pi\)
\(3\) −2.22031 + 1.77064i −1.28189 + 1.02228i −0.283908 + 0.958851i \(0.591631\pi\)
−0.997987 + 0.0634256i \(0.979797\pi\)
\(4\) −0.663657 + 0.832199i −0.331828 + 0.416100i
\(5\) 0 0
\(6\) 1.19183 2.47485i 0.486561 1.01035i
\(7\) −0.156487 + 1.38886i −0.0591465 + 0.524939i 0.928849 + 0.370458i \(0.120799\pi\)
−0.987996 + 0.154481i \(0.950629\pi\)
\(8\) 0.659568 2.88975i 0.233192 1.02168i
\(9\) 1.12705 4.93793i 0.375683 1.64598i
\(10\) 0 0
\(11\) 4.68013 + 2.94072i 1.41111 + 0.886661i 0.999693 0.0247855i \(-0.00789028\pi\)
0.411419 + 0.911446i \(0.365033\pi\)
\(12\) 3.02283i 0.872617i
\(13\) 2.43545 3.87599i 0.675471 1.07501i −0.316506 0.948590i \(-0.602510\pi\)
0.991977 0.126416i \(-0.0403473\pi\)
\(14\) −0.446497 1.27601i −0.119331 0.341029i
\(15\) 0 0
\(16\) 0.164256 + 0.719651i 0.0410639 + 0.179913i
\(17\) 5.34543 1.29646 0.648228 0.761446i \(-0.275510\pi\)
0.648228 + 0.761446i \(0.275510\pi\)
\(18\) 1.09014 + 4.77622i 0.256949 + 1.12577i
\(19\) 3.75785 0.423408i 0.862110 0.0971365i 0.330173 0.943920i \(-0.392893\pi\)
0.531937 + 0.846784i \(0.321464\pi\)
\(20\) 0 0
\(21\) −2.11171 3.36077i −0.460814 0.733381i
\(22\) −5.31271 0.598599i −1.13267 0.127622i
\(23\) 2.32115 0.812207i 0.483994 0.169357i −0.0772424 0.997012i \(-0.524612\pi\)
0.561237 + 0.827655i \(0.310326\pi\)
\(24\) 3.65226 + 7.58400i 0.745515 + 1.54808i
\(25\) 0 0
\(26\) −0.495748 + 4.39988i −0.0972241 + 0.862888i
\(27\) 2.54434 + 5.28338i 0.489659 + 1.01679i
\(28\) −1.05195 1.05195i −0.198801 0.198801i
\(29\) −3.20546 4.32724i −0.595240 0.803548i
\(30\) 0 0
\(31\) 1.32279 3.78032i 0.237580 0.678965i −0.761930 0.647660i \(-0.775748\pi\)
0.999510 0.0313051i \(-0.00996635\pi\)
\(32\) 3.25097 + 4.07659i 0.574696 + 0.720646i
\(33\) −15.5983 + 1.75750i −2.71531 + 0.305942i
\(34\) −4.65835 + 2.24334i −0.798900 + 0.384730i
\(35\) 0 0
\(36\) 3.36136 + 4.21502i 0.560227 + 0.702503i
\(37\) 3.61961 + 0.826152i 0.595060 + 0.135819i 0.509436 0.860509i \(-0.329854\pi\)
0.0856247 + 0.996327i \(0.472711\pi\)
\(38\) −3.09714 + 1.94606i −0.502422 + 0.315693i
\(39\) 1.45553 + 12.9182i 0.233071 + 2.06856i
\(40\) 0 0
\(41\) −5.71038 5.71038i −0.891811 0.891811i 0.102882 0.994694i \(-0.467193\pi\)
−0.994694 + 0.102882i \(0.967193\pi\)
\(42\) 3.25072 + 2.04256i 0.501597 + 0.315174i
\(43\) −0.322307 + 0.669277i −0.0491513 + 0.102064i −0.924098 0.382155i \(-0.875182\pi\)
0.874947 + 0.484219i \(0.160896\pi\)
\(44\) −5.55327 + 1.94317i −0.837186 + 0.292944i
\(45\) 0 0
\(46\) −1.68194 + 1.68194i −0.247989 + 0.247989i
\(47\) −0.0268913 + 0.00613776i −0.00392249 + 0.000895284i −0.224482 0.974478i \(-0.572069\pi\)
0.220559 + 0.975374i \(0.429212\pi\)
\(48\) −1.63894 1.30701i −0.236560 0.188651i
\(49\) 4.92005 + 1.12297i 0.702865 + 0.160424i
\(50\) 0 0
\(51\) −11.8685 + 9.46480i −1.66192 + 1.32534i
\(52\) 1.60930 + 4.59910i 0.223169 + 0.637781i
\(53\) 0.574381 1.64149i 0.0788973 0.225476i −0.897678 0.440653i \(-0.854747\pi\)
0.976575 + 0.215177i \(0.0690328\pi\)
\(54\) −4.43460 3.53648i −0.603473 0.481254i
\(55\) 0 0
\(56\) 3.91025 + 1.36826i 0.522529 + 0.182841i
\(57\) −7.59388 + 7.59388i −1.00583 + 1.00583i
\(58\) 4.60948 + 2.42578i 0.605255 + 0.318521i
\(59\) 4.00143i 0.520942i 0.965482 + 0.260471i \(0.0838778\pi\)
−0.965482 + 0.260471i \(0.916122\pi\)
\(60\) 0 0
\(61\) 3.92555 + 0.442303i 0.502615 + 0.0566311i 0.359632 0.933094i \(-0.382902\pi\)
0.142983 + 0.989725i \(0.454331\pi\)
\(62\) 0.433740 + 3.84955i 0.0550851 + 0.488894i
\(63\) 6.68171 + 2.33803i 0.841817 + 0.294564i
\(64\) −5.87407 2.82880i −0.734258 0.353600i
\(65\) 0 0
\(66\) 12.8558 8.07781i 1.58243 0.994309i
\(67\) −3.79538 6.04031i −0.463679 0.737941i 0.530264 0.847832i \(-0.322093\pi\)
−0.993944 + 0.109891i \(0.964950\pi\)
\(68\) −3.54753 + 4.44846i −0.430201 + 0.539455i
\(69\) −3.71555 + 5.91327i −0.447300 + 0.711874i
\(70\) 0 0
\(71\) 3.42315 0.781312i 0.406253 0.0927247i −0.0145109 0.999895i \(-0.504619\pi\)
0.420764 + 0.907170i \(0.361762\pi\)
\(72\) −13.5260 6.51379i −1.59406 0.767658i
\(73\) 2.88745 + 1.39052i 0.337951 + 0.162748i 0.595160 0.803607i \(-0.297089\pi\)
−0.257209 + 0.966356i \(0.582803\pi\)
\(74\) −3.50108 + 0.799098i −0.406992 + 0.0928932i
\(75\) 0 0
\(76\) −2.14156 + 3.40828i −0.245654 + 0.390956i
\(77\) −4.81662 + 6.03986i −0.548905 + 0.688306i
\(78\) −6.68988 10.6469i −0.757479 1.20552i
\(79\) 7.95966 5.00139i 0.895532 0.562700i −0.00378707 0.999993i \(-0.501205\pi\)
0.899319 + 0.437293i \(0.144063\pi\)
\(80\) 0 0
\(81\) −1.31416 0.632868i −0.146018 0.0703186i
\(82\) 7.37289 + 2.57989i 0.814200 + 0.284901i
\(83\) 1.66068 + 14.7389i 0.182283 + 1.61780i 0.668325 + 0.743869i \(0.267011\pi\)
−0.486042 + 0.873935i \(0.661560\pi\)
\(84\) 4.19829 + 0.473033i 0.458071 + 0.0516122i
\(85\) 0 0
\(86\) 0.718515i 0.0774795i
\(87\) 14.7791 + 3.93209i 1.58448 + 0.421565i
\(88\) 11.5848 11.5848i 1.23495 1.23495i
\(89\) −12.9395 4.52773i −1.37159 0.479939i −0.458860 0.888509i \(-0.651742\pi\)
−0.912727 + 0.408570i \(0.866028\pi\)
\(90\) 0 0
\(91\) 5.00209 + 3.98903i 0.524361 + 0.418164i
\(92\) −0.864532 + 2.47069i −0.0901337 + 0.257587i
\(93\) 3.75656 + 10.7356i 0.389537 + 1.11323i
\(94\) 0.0208589 0.0166344i 0.00215143 0.00171571i
\(95\) 0 0
\(96\) −14.4363 3.29499i −1.47340 0.336294i
\(97\) −6.87837 5.48532i −0.698393 0.556950i 0.208649 0.977991i \(-0.433093\pi\)
−0.907042 + 0.421041i \(0.861665\pi\)
\(98\) −4.75893 + 1.08620i −0.480725 + 0.109722i
\(99\) 19.7958 19.7958i 1.98955 1.98955i
\(100\) 0 0
\(101\) 5.10791 1.78734i 0.508256 0.177847i −0.0639551 0.997953i \(-0.520371\pi\)
0.572211 + 0.820106i \(0.306086\pi\)
\(102\) 6.37082 13.2291i 0.630805 1.30988i
\(103\) 6.73869 + 4.23420i 0.663983 + 0.417208i 0.821422 0.570321i \(-0.193181\pi\)
−0.157439 + 0.987529i \(0.550324\pi\)
\(104\) −9.59432 9.59432i −0.940800 0.940800i
\(105\) 0 0
\(106\) 0.188339 + 1.67155i 0.0182931 + 0.162355i
\(107\) 9.64143 6.05811i 0.932072 0.585660i 0.0218417 0.999761i \(-0.493047\pi\)
0.910231 + 0.414102i \(0.135904\pi\)
\(108\) −6.08539 1.38895i −0.585567 0.133652i
\(109\) 4.37246 + 5.48290i 0.418806 + 0.525166i 0.945820 0.324690i \(-0.105260\pi\)
−0.527014 + 0.849856i \(0.676689\pi\)
\(110\) 0 0
\(111\) −9.49946 + 4.57470i −0.901649 + 0.434211i
\(112\) −1.02520 + 0.115512i −0.0968721 + 0.0109149i
\(113\) −9.20127 11.5380i −0.865583 1.08541i −0.995582 0.0938923i \(-0.970069\pi\)
0.130000 0.991514i \(-0.458502\pi\)
\(114\) 3.43083 9.80476i 0.321327 0.918300i
\(115\) 0 0
\(116\) 5.72845 + 0.204218i 0.531874 + 0.0189612i
\(117\) −16.3945 16.3945i −1.51567 1.51567i
\(118\) −1.67930 3.48710i −0.154592 0.321014i
\(119\) −0.836489 + 7.42404i −0.0766808 + 0.680561i
\(120\) 0 0
\(121\) 8.48306 + 17.6153i 0.771187 + 1.60139i
\(122\) −3.60660 + 1.26200i −0.326526 + 0.114256i
\(123\) 22.7898 + 2.56779i 2.05489 + 0.231530i
\(124\) 2.26810 + 3.60966i 0.203681 + 0.324157i
\(125\) 0 0
\(126\) −6.80409 + 0.766637i −0.606156 + 0.0682974i
\(127\) 0.164908 + 0.722509i 0.0146332 + 0.0641123i 0.981717 0.190344i \(-0.0609605\pi\)
−0.967084 + 0.254457i \(0.918103\pi\)
\(128\) −4.12209 −0.364345
\(129\) −0.469426 2.05669i −0.0413306 0.181081i
\(130\) 0 0
\(131\) −4.84709 13.8522i −0.423493 1.21027i −0.936126 0.351665i \(-0.885616\pi\)
0.512633 0.858608i \(-0.328670\pi\)
\(132\) 8.88930 14.1472i 0.773715 1.23136i
\(133\) 5.28538i 0.458301i
\(134\) 5.84251 + 3.67109i 0.504716 + 0.317134i
\(135\) 0 0
\(136\) 3.52567 15.4470i 0.302324 1.32457i
\(137\) 1.45940 6.39404i 0.124685 0.546280i −0.873542 0.486749i \(-0.838183\pi\)
0.998226 0.0595303i \(-0.0189603\pi\)
\(138\) 0.756320 6.71253i 0.0643822 0.571408i
\(139\) 1.98467 4.12120i 0.168337 0.349556i −0.799685 0.600420i \(-0.795000\pi\)
0.968022 + 0.250864i \(0.0807146\pi\)
\(140\) 0 0
\(141\) 0.0488391 0.0612423i 0.00411300 0.00515753i
\(142\) −2.65526 + 2.11750i −0.222824 + 0.177696i
\(143\) 22.7964 10.9782i 1.90633 0.918041i
\(144\) 3.73871 0.311559
\(145\) 0 0
\(146\) −3.09988 −0.256548
\(147\) −12.9124 + 6.21829i −1.06500 + 0.512876i
\(148\) −3.08970 + 2.46396i −0.253972 + 0.202536i
\(149\) −5.04369 + 6.32459i −0.413195 + 0.518130i −0.944260 0.329201i \(-0.893221\pi\)
0.531065 + 0.847331i \(0.321792\pi\)
\(150\) 0 0
\(151\) −4.21845 + 8.75970i −0.343292 + 0.712854i −0.999115 0.0420610i \(-0.986608\pi\)
0.655823 + 0.754915i \(0.272322\pi\)
\(152\) 1.25501 11.1385i 0.101795 0.903454i
\(153\) 6.02456 26.3953i 0.487057 2.13393i
\(154\) 1.66274 7.28494i 0.133987 0.587037i
\(155\) 0 0
\(156\) −11.7165 7.36194i −0.938068 0.589427i
\(157\) 4.05125i 0.323325i 0.986846 + 0.161663i \(0.0516856\pi\)
−0.986846 + 0.161663i \(0.948314\pi\)
\(158\) −4.83760 + 7.69900i −0.384859 + 0.612500i
\(159\) 1.63117 + 4.66163i 0.129360 + 0.369691i
\(160\) 0 0
\(161\) 0.764811 + 3.35086i 0.0602755 + 0.264084i
\(162\) 1.41084 0.110846
\(163\) −1.31164 5.74667i −0.102736 0.450114i −0.999963 0.00854627i \(-0.997280\pi\)
0.897228 0.441568i \(-0.145578\pi\)
\(164\) 8.54190 0.962441i 0.667011 0.0751540i
\(165\) 0 0
\(166\) −7.63277 12.1475i −0.592418 0.942827i
\(167\) −13.9385 1.57049i −1.07859 0.121528i −0.445254 0.895404i \(-0.646887\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(168\) −11.1046 + 3.88568i −0.856741 + 0.299787i
\(169\) −3.45141 7.16693i −0.265493 0.551302i
\(170\) 0 0
\(171\) 2.14453 19.0332i 0.163996 1.45550i
\(172\) −0.343071 0.712394i −0.0261589 0.0543195i
\(173\) −9.47799 9.47799i −0.720598 0.720598i 0.248129 0.968727i \(-0.420184\pi\)
−0.968727 + 0.248129i \(0.920184\pi\)
\(174\) −14.5296 + 2.77573i −1.10149 + 0.210428i
\(175\) 0 0
\(176\) −1.34756 + 3.85109i −0.101576 + 0.290287i
\(177\) −7.08507 8.88440i −0.532547 0.667792i
\(178\) 13.1765 1.48464i 0.987621 0.111278i
\(179\) 3.08837 1.48728i 0.230836 0.111165i −0.314891 0.949128i \(-0.601968\pi\)
0.545727 + 0.837963i \(0.316254\pi\)
\(180\) 0 0
\(181\) 11.0324 + 13.8343i 0.820036 + 1.02829i 0.999012 + 0.0444387i \(0.0141499\pi\)
−0.178977 + 0.983853i \(0.557279\pi\)
\(182\) −6.03324 1.37705i −0.447213 0.102074i
\(183\) −9.49908 + 5.96867i −0.702192 + 0.441217i
\(184\) −0.816121 7.24327i −0.0601652 0.533981i
\(185\) 0 0
\(186\) −7.77919 7.77919i −0.570398 0.570398i
\(187\) 25.0173 + 15.7194i 1.82945 + 1.14952i
\(188\) 0.0127387 0.0264523i 0.000929068 0.00192923i
\(189\) −7.73602 + 2.70695i −0.562713 + 0.196902i
\(190\) 0 0
\(191\) −16.2424 + 16.2424i −1.17526 + 1.17526i −0.194321 + 0.980938i \(0.562250\pi\)
−0.980938 + 0.194321i \(0.937750\pi\)
\(192\) 18.0510 4.12002i 1.30272 0.297337i
\(193\) 10.6262 + 8.47412i 0.764891 + 0.609980i 0.926248 0.376916i \(-0.123015\pi\)
−0.161356 + 0.986896i \(0.551587\pi\)
\(194\) 8.29631 + 1.89358i 0.595640 + 0.135951i
\(195\) 0 0
\(196\) −4.19976 + 3.34920i −0.299983 + 0.239228i
\(197\) 3.53390 + 10.0993i 0.251780 + 0.719545i 0.998518 + 0.0544269i \(0.0173332\pi\)
−0.746738 + 0.665118i \(0.768381\pi\)
\(198\) −8.94353 + 25.5591i −0.635589 + 1.81641i
\(199\) 8.87767 + 7.07970i 0.629321 + 0.501867i 0.885425 0.464782i \(-0.153867\pi\)
−0.256104 + 0.966649i \(0.582439\pi\)
\(200\) 0 0
\(201\) 19.1221 + 6.69111i 1.34877 + 0.471955i
\(202\) −3.70126 + 3.70126i −0.260420 + 0.260420i
\(203\) 6.51154 3.77478i 0.457020 0.264938i
\(204\) 16.1583i 1.13131i
\(205\) 0 0
\(206\) −7.64952 0.861893i −0.532967 0.0600510i
\(207\) −1.39456 12.3771i −0.0969288 0.860267i
\(208\) 3.18940 + 1.11602i 0.221145 + 0.0773819i
\(209\) 18.8324 + 9.06918i 1.30266 + 0.627329i
\(210\) 0 0
\(211\) 1.27617 0.801873i 0.0878554 0.0552032i −0.487388 0.873186i \(-0.662050\pi\)
0.575243 + 0.817982i \(0.304907\pi\)
\(212\) 0.984852 + 1.56738i 0.0676399 + 0.107648i
\(213\) −6.21703 + 7.79591i −0.425984 + 0.534167i
\(214\) −5.85972 + 9.32570i −0.400562 + 0.637492i
\(215\) 0 0
\(216\) 16.9458 3.86777i 1.15302 0.263169i
\(217\) 5.04333 + 2.42874i 0.342363 + 0.164873i
\(218\) −6.11148 2.94313i −0.413922 0.199334i
\(219\) −8.87314 + 2.02524i −0.599591 + 0.136853i
\(220\) 0 0
\(221\) 13.0185 20.7188i 0.875719 1.39370i
\(222\) 6.35855 7.97337i 0.426758 0.535138i
\(223\) 4.66654 + 7.42676i 0.312495 + 0.497333i 0.965634 0.259905i \(-0.0836913\pi\)
−0.653139 + 0.757238i \(0.726548\pi\)
\(224\) −6.17054 + 3.87721i −0.412287 + 0.259057i
\(225\) 0 0
\(226\) 12.8608 + 6.19344i 0.855488 + 0.411981i
\(227\) −19.5884 6.85426i −1.30013 0.454934i −0.410598 0.911816i \(-0.634680\pi\)
−0.889527 + 0.456883i \(0.848966\pi\)
\(228\) −1.27989 11.3594i −0.0847629 0.752292i
\(229\) 5.35144 + 0.602962i 0.353633 + 0.0398449i 0.286994 0.957932i \(-0.407344\pi\)
0.0666386 + 0.997777i \(0.478773\pi\)
\(230\) 0 0
\(231\) 21.9388i 1.44347i
\(232\) −14.6189 + 6.40890i −0.959777 + 0.420765i
\(233\) −13.8913 + 13.8913i −0.910051 + 0.910051i −0.996276 0.0862245i \(-0.972520\pi\)
0.0862245 + 0.996276i \(0.472520\pi\)
\(234\) 21.1676 + 7.40685i 1.38377 + 0.484201i
\(235\) 0 0
\(236\) −3.32999 2.65558i −0.216764 0.172863i
\(237\) −8.81726 + 25.1983i −0.572743 + 1.63680i
\(238\) −2.38672 6.82084i −0.154708 0.442129i
\(239\) −7.62904 + 6.08395i −0.493481 + 0.393538i −0.838367 0.545107i \(-0.816489\pi\)
0.344885 + 0.938645i \(0.387918\pi\)
\(240\) 0 0
\(241\) −19.6440 4.48362i −1.26538 0.288815i −0.463392 0.886153i \(-0.653368\pi\)
−0.801990 + 0.597338i \(0.796225\pi\)
\(242\) −14.7854 11.7909i −0.950439 0.757950i
\(243\) −13.1128 + 2.99292i −0.841188 + 0.191996i
\(244\) −2.97330 + 2.97330i −0.190346 + 0.190346i
\(245\) 0 0
\(246\) −20.9381 + 7.32657i −1.33497 + 0.467125i
\(247\) 7.51092 15.5966i 0.477908 0.992386i
\(248\) −10.0517 6.31591i −0.638285 0.401061i
\(249\) −29.7844 29.7844i −1.88751 1.88751i
\(250\) 0 0
\(251\) −2.78070 24.6794i −0.175516 1.55775i −0.704863 0.709344i \(-0.748991\pi\)
0.529347 0.848406i \(-0.322437\pi\)
\(252\) −6.38007 + 4.00887i −0.401907 + 0.252535i
\(253\) 13.2518 + 3.02463i 0.833132 + 0.190157i
\(254\) −0.446930 0.560433i −0.0280429 0.0351647i
\(255\) 0 0
\(256\) 15.3404 7.38754i 0.958774 0.461721i
\(257\) −1.02264 + 0.115223i −0.0637903 + 0.00718744i −0.143802 0.989606i \(-0.545933\pi\)
0.0800116 + 0.996794i \(0.474504\pi\)
\(258\) 1.27223 + 1.59532i 0.0792055 + 0.0993206i
\(259\) −1.71383 + 4.89785i −0.106492 + 0.304337i
\(260\) 0 0
\(261\) −24.9803 + 10.9513i −1.54624 + 0.677870i
\(262\) 10.0375 + 10.0375i 0.620118 + 0.620118i
\(263\) −1.72037 3.57239i −0.106083 0.220283i 0.841170 0.540771i \(-0.181867\pi\)
−0.947253 + 0.320488i \(0.896153\pi\)
\(264\) −5.20936 + 46.2344i −0.320614 + 2.84553i
\(265\) 0 0
\(266\) −2.21814 4.60602i −0.136003 0.282413i
\(267\) 36.7467 12.8582i 2.24886 0.786910i
\(268\) 7.54557 + 0.850182i 0.460919 + 0.0519331i
\(269\) 3.84254 + 6.11537i 0.234284 + 0.372861i 0.943087 0.332546i \(-0.107908\pi\)
−0.708803 + 0.705406i \(0.750765\pi\)
\(270\) 0 0
\(271\) 1.02753 0.115774i 0.0624178 0.00703279i −0.0807004 0.996738i \(-0.525716\pi\)
0.143118 + 0.989706i \(0.454287\pi\)
\(272\) 0.878017 + 3.84684i 0.0532376 + 0.233249i
\(273\) −18.1693 −1.09966
\(274\) 1.41161 + 6.18465i 0.0852782 + 0.373628i
\(275\) 0 0
\(276\) −2.45517 7.01646i −0.147784 0.422341i
\(277\) −8.85116 + 14.0865i −0.531815 + 0.846378i −0.999292 0.0376270i \(-0.988020\pi\)
0.467477 + 0.884005i \(0.345163\pi\)
\(278\) 4.42440i 0.265358i
\(279\) −17.1761 10.7924i −1.02830 0.646126i
\(280\) 0 0
\(281\) −3.44157 + 15.0785i −0.205307 + 0.899507i 0.762336 + 0.647182i \(0.224052\pi\)
−0.967642 + 0.252325i \(0.918805\pi\)
\(282\) −0.0168597 + 0.0738671i −0.00100398 + 0.00439872i
\(283\) −0.425710 + 3.77828i −0.0253059 + 0.224596i 0.974694 + 0.223545i \(0.0717630\pi\)
−0.999999 + 0.00105059i \(0.999666\pi\)
\(284\) −1.62159 + 3.36727i −0.0962237 + 0.199811i
\(285\) 0 0
\(286\) −15.2590 + 19.1342i −0.902283 + 1.13143i
\(287\) 8.82451 7.03731i 0.520894 0.415399i
\(288\) 23.7939 11.4585i 1.40207 0.675201i
\(289\) 11.5736 0.680799
\(290\) 0 0
\(291\) 24.9846 1.46462
\(292\) −3.07347 + 1.48011i −0.179861 + 0.0866166i
\(293\) 19.6561 15.6752i 1.14832 0.915755i 0.150972 0.988538i \(-0.451760\pi\)
0.997348 + 0.0727831i \(0.0231881\pi\)
\(294\) 8.64304 10.8380i 0.504072 0.632087i
\(295\) 0 0
\(296\) 4.77476 9.91488i 0.277527 0.576291i
\(297\) −3.62909 + 32.2091i −0.210581 + 1.86896i
\(298\) 1.74112 7.62836i 0.100861 0.441899i
\(299\) 2.50494 10.9749i 0.144864 0.634692i
\(300\) 0 0
\(301\) −0.879095 0.552372i −0.0506702 0.0318382i
\(302\) 9.40414i 0.541147i
\(303\) −8.17641 + 13.0127i −0.469723 + 0.747559i
\(304\) 0.921955 + 2.63479i 0.0528777 + 0.151116i
\(305\) 0 0
\(306\) 5.82727 + 25.5309i 0.333123 + 1.45951i
\(307\) 22.4912 1.28364 0.641820 0.766855i \(-0.278180\pi\)
0.641820 + 0.766855i \(0.278180\pi\)
\(308\) −1.82978 8.01678i −0.104261 0.456799i
\(309\) −22.4592 + 2.53054i −1.27766 + 0.143958i
\(310\) 0 0
\(311\) 16.9687 + 27.0055i 0.962205 + 1.53134i 0.842615 + 0.538517i \(0.181015\pi\)
0.119590 + 0.992823i \(0.461842\pi\)
\(312\) 38.2904 + 4.31429i 2.16777 + 0.244249i
\(313\) 24.1206 8.44016i 1.36338 0.477066i 0.453245 0.891386i \(-0.350266\pi\)
0.910131 + 0.414320i \(0.135981\pi\)
\(314\) −1.70021 3.53052i −0.0959484 0.199239i
\(315\) 0 0
\(316\) −1.12033 + 9.94323i −0.0630237 + 0.559351i
\(317\) 10.3085 + 21.4059i 0.578985 + 1.20228i 0.960595 + 0.277952i \(0.0896555\pi\)
−0.381610 + 0.924323i \(0.624630\pi\)
\(318\) −3.37788 3.37788i −0.189422 0.189422i
\(319\) −2.27678 29.6784i −0.127475 1.66167i
\(320\) 0 0
\(321\) −10.6802 + 30.5223i −0.596112 + 1.70359i
\(322\) −2.07278 2.59918i −0.115511 0.144847i
\(323\) 20.0873 2.26330i 1.11769 0.125933i
\(324\) 1.39883 0.673639i 0.0777125 0.0374244i
\(325\) 0 0
\(326\) 3.55478 + 4.45756i 0.196881 + 0.246881i
\(327\) −19.4164 4.43167i −1.07373 0.245072i
\(328\) −20.2680 + 12.7352i −1.11911 + 0.703184i
\(329\) −0.00431635 0.0383086i −0.000237968 0.00211202i
\(330\) 0 0
\(331\) 0.695071 + 0.695071i 0.0382046 + 0.0382046i 0.725951 0.687746i \(-0.241400\pi\)
−0.687746 + 0.725951i \(0.741400\pi\)
\(332\) −13.3678 8.39956i −0.733654 0.460986i
\(333\) 8.15896 16.9423i 0.447108 0.928430i
\(334\) 12.8060 4.48100i 0.700711 0.245189i
\(335\) 0 0
\(336\) 2.07172 2.07172i 0.113022 0.113022i
\(337\) −26.8681 + 6.13247i −1.46360 + 0.334057i −0.878827 0.477140i \(-0.841673\pi\)
−0.584772 + 0.811197i \(0.698816\pi\)
\(338\) 6.01556 + 4.79725i 0.327203 + 0.260936i
\(339\) 40.8593 + 9.32587i 2.21917 + 0.506512i
\(340\) 0 0
\(341\) 17.3077 13.8024i 0.937263 0.747443i
\(342\) 6.11888 + 17.4868i 0.330871 + 0.945575i
\(343\) −5.56087 + 15.8920i −0.300259 + 0.858090i
\(344\) 1.72146 + 1.37282i 0.0928151 + 0.0740176i
\(345\) 0 0
\(346\) 12.2374 + 4.28205i 0.657887 + 0.230205i
\(347\) −0.132362 + 0.132362i −0.00710559 + 0.00710559i −0.710651 0.703545i \(-0.751599\pi\)
0.703545 + 0.710651i \(0.251599\pi\)
\(348\) −13.0805 + 9.68958i −0.701189 + 0.519416i
\(349\) 32.4359i 1.73625i −0.496342 0.868127i \(-0.665324\pi\)
0.496342 0.868127i \(-0.334676\pi\)
\(350\) 0 0
\(351\) 26.6749 + 3.00554i 1.42380 + 0.160424i
\(352\) 3.22686 + 28.6392i 0.171992 + 1.52647i
\(353\) −18.4750 6.46469i −0.983326 0.344081i −0.209730 0.977759i \(-0.567258\pi\)
−0.773596 + 0.633679i \(0.781544\pi\)
\(354\) 9.90295 + 4.76901i 0.526336 + 0.253470i
\(355\) 0 0
\(356\) 12.3554 7.76340i 0.654834 0.411459i
\(357\) −11.2880 17.9648i −0.597425 0.950796i
\(358\) −2.06723 + 2.59223i −0.109257 + 0.137003i
\(359\) −8.60134 + 13.6890i −0.453962 + 0.722476i −0.992780 0.119946i \(-0.961728\pi\)
0.538819 + 0.842422i \(0.318871\pi\)
\(360\) 0 0
\(361\) −4.58146 + 1.04569i −0.241130 + 0.0550362i
\(362\) −15.4203 7.42601i −0.810472 0.390303i
\(363\) −50.0252 24.0909i −2.62564 1.26444i
\(364\) −6.63934 + 1.51539i −0.347996 + 0.0794278i
\(365\) 0 0
\(366\) 5.77321 9.18801i 0.301771 0.480265i
\(367\) 8.72758 10.9440i 0.455576 0.571274i −0.499997 0.866027i \(-0.666666\pi\)
0.955574 + 0.294752i \(0.0952372\pi\)
\(368\) 0.965769 + 1.53701i 0.0503442 + 0.0801223i
\(369\) −34.6333 + 21.7615i −1.80294 + 1.13286i
\(370\) 0 0
\(371\) 2.18991 + 1.05461i 0.113695 + 0.0547524i
\(372\) −11.4273 3.99857i −0.592476 0.207316i
\(373\) 2.24082 + 19.8878i 0.116025 + 1.02975i 0.907934 + 0.419112i \(0.137659\pi\)
−0.791909 + 0.610639i \(0.790913\pi\)
\(374\) −28.3987 3.19977i −1.46846 0.165456i
\(375\) 0 0
\(376\) 0.0817574i 0.00421632i
\(377\) −24.5791 + 1.88558i −1.26589 + 0.0971125i
\(378\) 5.60563 5.60563i 0.288322 0.288322i
\(379\) 28.3344 + 9.91464i 1.45544 + 0.509281i 0.938060 0.346474i \(-0.112621\pi\)
0.517382 + 0.855755i \(0.326907\pi\)
\(380\) 0 0
\(381\) −1.64545 1.31220i −0.0842988 0.0672260i
\(382\) 7.33814 20.9712i 0.375452 1.07298i
\(383\) 1.57738 + 4.50789i 0.0806003 + 0.230342i 0.977131 0.212640i \(-0.0682062\pi\)
−0.896530 + 0.442982i \(0.853920\pi\)
\(384\) 9.15232 7.29873i 0.467052 0.372462i
\(385\) 0 0
\(386\) −12.8167 2.92534i −0.652355 0.148896i
\(387\) 2.94159 + 2.34584i 0.149529 + 0.119246i
\(388\) 9.12976 2.08381i 0.463493 0.105789i
\(389\) 11.4859 11.4859i 0.582361 0.582361i −0.353191 0.935551i \(-0.614903\pi\)
0.935551 + 0.353191i \(0.114903\pi\)
\(390\) 0 0
\(391\) 12.4076 4.34159i 0.627477 0.219564i
\(392\) 6.49022 13.4771i 0.327806 0.680695i
\(393\) 35.2892 + 22.1737i 1.78011 + 1.11852i
\(394\) −7.31809 7.31809i −0.368680 0.368680i
\(395\) 0 0
\(396\) 3.33643 + 29.6117i 0.167662 + 1.48804i
\(397\) 0.0511183 0.0321198i 0.00256555 0.00161204i −0.530749 0.847529i \(-0.678089\pi\)
0.533314 + 0.845917i \(0.320946\pi\)
\(398\) −10.7077 2.44397i −0.536731 0.122505i
\(399\) −9.35849 11.7352i −0.468510 0.587493i
\(400\) 0 0
\(401\) −31.3147 + 15.0804i −1.56378 + 0.753078i −0.997468 0.0711105i \(-0.977346\pi\)
−0.566315 + 0.824189i \(0.691631\pi\)
\(402\) −19.4723 + 2.19400i −0.971191 + 0.109427i
\(403\) −11.4309 14.3339i −0.569413 0.714021i
\(404\) −1.90248 + 5.43698i −0.0946520 + 0.270500i
\(405\) 0 0
\(406\) −4.09039 + 6.02232i −0.203003 + 0.298883i
\(407\) 14.5108 + 14.5108i 0.719272 + 0.719272i
\(408\) 19.5229 + 40.5397i 0.966527 + 2.00701i
\(409\) 3.06651 27.2160i 0.151629 1.34575i −0.655421 0.755264i \(-0.727509\pi\)
0.807050 0.590483i \(-0.201063\pi\)
\(410\) 0 0
\(411\) 8.08120 + 16.7808i 0.398616 + 0.827735i
\(412\) −7.99588 + 2.79788i −0.393928 + 0.137842i
\(413\) −5.55742 0.626171i −0.273463 0.0308119i
\(414\) 6.40967 + 10.2009i 0.315018 + 0.501348i
\(415\) 0 0
\(416\) 23.7184 2.67242i 1.16289 0.131026i
\(417\) 2.89058 + 12.6645i 0.141552 + 0.620181i
\(418\) −20.2178 −0.988887
\(419\) −1.69231 7.41451i −0.0826749 0.362222i 0.916620 0.399759i \(-0.130906\pi\)
−0.999295 + 0.0375364i \(0.988049\pi\)
\(420\) 0 0
\(421\) −7.52865 21.5156i −0.366924 1.04861i −0.968332 0.249666i \(-0.919679\pi\)
0.601408 0.798942i \(-0.294607\pi\)
\(422\) −0.775613 + 1.23438i −0.0377563 + 0.0600888i
\(423\) 0.139705i 0.00679267i
\(424\) −4.36465 2.74249i −0.211966 0.133187i
\(425\) 0 0
\(426\) 2.14617 9.40298i 0.103982 0.455576i
\(427\) −1.22859 + 5.38282i −0.0594558 + 0.260493i
\(428\) −1.35704 + 12.0441i −0.0655952 + 0.582174i
\(429\) −31.1767 + 64.7390i −1.50522 + 3.12563i
\(430\) 0 0
\(431\) −20.2333 + 25.3717i −0.974602 + 1.22211i 0.000418849 1.00000i \(0.499867\pi\)
−0.975021 + 0.222113i \(0.928705\pi\)
\(432\) −3.38427 + 2.69886i −0.162826 + 0.129849i
\(433\) −29.1921 + 14.0582i −1.40288 + 0.675592i −0.973744 0.227646i \(-0.926897\pi\)
−0.429138 + 0.903239i \(0.641183\pi\)
\(434\) −5.41436 −0.259898
\(435\) 0 0
\(436\) −7.46468 −0.357493
\(437\) 8.37866 4.03495i 0.400806 0.193018i
\(438\) 6.88268 5.48876i 0.328867 0.262263i
\(439\) −10.5436 + 13.2212i −0.503218 + 0.631015i −0.966952 0.254959i \(-0.917938\pi\)
0.463734 + 0.885975i \(0.346509\pi\)
\(440\) 0 0
\(441\) 11.0903 23.0292i 0.528109 1.09663i
\(442\) −2.64998 + 23.5192i −0.126047 + 1.11870i
\(443\) −7.27982 + 31.8950i −0.345875 + 1.51538i 0.440571 + 0.897718i \(0.354776\pi\)
−0.786446 + 0.617659i \(0.788081\pi\)
\(444\) 2.49732 10.9415i 0.118518 0.519259i
\(445\) 0 0
\(446\) −7.18355 4.51373i −0.340151 0.213731i
\(447\) 22.9731i 1.08659i
\(448\) 4.84802 7.71558i 0.229047 0.364527i
\(449\) −1.53366 4.38294i −0.0723777 0.206844i 0.902011 0.431712i \(-0.142090\pi\)
−0.974389 + 0.224869i \(0.927805\pi\)
\(450\) 0 0
\(451\) −9.93268 43.5179i −0.467712 2.04918i
\(452\) 15.7084 0.738862
\(453\) −6.14398 26.9185i −0.288670 1.26474i
\(454\) 19.9471 2.24750i 0.936165 0.105480i
\(455\) 0 0
\(456\) 16.9358 + 26.9531i 0.793090 + 1.26220i
\(457\) 5.07881 + 0.572244i 0.237577 + 0.0267684i 0.229950 0.973202i \(-0.426144\pi\)
0.00762663 + 0.999971i \(0.497572\pi\)
\(458\) −4.91663 + 1.72040i −0.229739 + 0.0803892i
\(459\) 13.6006 + 28.2419i 0.634821 + 1.31822i
\(460\) 0 0
\(461\) 1.19509 10.6068i 0.0556611 0.494006i −0.934694 0.355453i \(-0.884326\pi\)
0.990355 0.138553i \(-0.0442450\pi\)
\(462\) 9.20718 + 19.1189i 0.428357 + 0.889492i
\(463\) 3.63850 + 3.63850i 0.169096 + 0.169096i 0.786582 0.617486i \(-0.211849\pi\)
−0.617486 + 0.786582i \(0.711849\pi\)
\(464\) 2.58759 3.01759i 0.120126 0.140088i
\(465\) 0 0
\(466\) 6.27595 17.9356i 0.290728 0.830853i
\(467\) −2.85976 3.58602i −0.132334 0.165941i 0.711250 0.702940i \(-0.248130\pi\)
−0.843583 + 0.536998i \(0.819558\pi\)
\(468\) 24.5238 2.76317i 1.13361 0.127727i
\(469\) 8.98307 4.32602i 0.414799 0.199757i
\(470\) 0 0
\(471\) −7.17330 8.99503i −0.330528 0.414469i
\(472\) 11.5631 + 2.63921i 0.532237 + 0.121480i
\(473\) −3.47660 + 2.18449i −0.159854 + 0.100443i
\(474\) −2.89116 25.6598i −0.132796 1.17859i
\(475\) 0 0
\(476\) −5.62314 5.62314i −0.257736 0.257736i
\(477\) −7.45819 4.68629i −0.341487 0.214570i
\(478\) 4.09515 8.50367i 0.187308 0.388949i
\(479\) −29.4941 + 10.3204i −1.34762 + 0.471553i −0.905097 0.425205i \(-0.860202\pi\)
−0.442523 + 0.896757i \(0.645916\pi\)
\(480\) 0 0
\(481\) 12.0175 12.0175i 0.547952 0.547952i
\(482\) 19.0007 4.33679i 0.865459 0.197535i
\(483\) −7.63126 6.08573i −0.347234 0.276910i
\(484\) −20.2892 4.63089i −0.922238 0.210495i
\(485\) 0 0
\(486\) 10.1713 8.11134i 0.461380 0.367938i
\(487\) −1.72349 4.92544i −0.0780986 0.223193i 0.898214 0.439559i \(-0.144865\pi\)
−0.976312 + 0.216366i \(0.930580\pi\)
\(488\) 3.86731 11.0521i 0.175065 0.500307i
\(489\) 13.0875 + 10.4369i 0.591838 + 0.471975i
\(490\) 0 0
\(491\) 2.20709 + 0.772293i 0.0996044 + 0.0348531i 0.379621 0.925142i \(-0.376054\pi\)
−0.280017 + 0.959995i \(0.590340\pi\)
\(492\) −17.2615 + 17.2615i −0.778209 + 0.778209i
\(493\) −17.1346 23.1309i −0.771702 1.04177i
\(494\) 16.7440i 0.753348i
\(495\) 0 0
\(496\) 2.93778 + 0.331009i 0.131910 + 0.0148627i
\(497\) 0.549454 + 4.87654i 0.0246464 + 0.218743i
\(498\) 38.4558 + 13.4563i 1.72325 + 0.602990i
\(499\) −20.3394 9.79495i −0.910517 0.438482i −0.0808412 0.996727i \(-0.525761\pi\)
−0.829676 + 0.558245i \(0.811475\pi\)
\(500\) 0 0
\(501\) 33.7284 21.1930i 1.50687 0.946832i
\(502\) 12.7806 + 20.3402i 0.570426 + 0.907828i
\(503\) −7.03932 + 8.82703i −0.313868 + 0.393578i −0.913594 0.406627i \(-0.866705\pi\)
0.599726 + 0.800205i \(0.295276\pi\)
\(504\) 11.1634 17.7664i 0.497257 0.791379i
\(505\) 0 0
\(506\) −12.8178 + 2.92558i −0.569821 + 0.130058i
\(507\) 20.3532 + 9.80159i 0.903918 + 0.435304i
\(508\) −0.710714 0.342262i −0.0315328 0.0151854i
\(509\) 33.9185 7.74166i 1.50341 0.343143i 0.610005 0.792398i \(-0.291167\pi\)
0.893404 + 0.449254i \(0.148310\pi\)
\(510\) 0 0
\(511\) −2.38309 + 3.79266i −0.105422 + 0.167778i
\(512\) −5.12807 + 6.43039i −0.226631 + 0.284186i
\(513\) 11.7983 + 18.7768i 0.520907 + 0.829018i
\(514\) 0.842835 0.529588i 0.0371758 0.0233591i
\(515\) 0 0
\(516\) 2.02311 + 0.974280i 0.0890626 + 0.0428903i
\(517\) −0.143904 0.0503542i −0.00632889 0.00221458i
\(518\) −0.561962 4.98755i −0.0246912 0.219140i
\(519\) 37.8261 + 4.26198i 1.66038 + 0.187080i
\(520\) 0 0
\(521\) 7.44577i 0.326205i 0.986609 + 0.163102i \(0.0521501\pi\)
−0.986609 + 0.163102i \(0.947850\pi\)
\(522\) 17.1734 20.0273i 0.751661 0.876571i
\(523\) 27.9535 27.9535i 1.22232 1.22232i 0.255514 0.966805i \(-0.417755\pi\)
0.966805 0.255514i \(-0.0822448\pi\)
\(524\) 14.7446 + 5.15936i 0.644121 + 0.225388i
\(525\) 0 0
\(526\) 2.99848 + 2.39121i 0.130740 + 0.104262i
\(527\) 7.07087 20.2074i 0.308012 0.880248i
\(528\) −3.82689 10.9366i −0.166544 0.475956i
\(529\) −13.2540 + 10.5697i −0.576263 + 0.459554i
\(530\) 0 0
\(531\) 19.7588 + 4.50981i 0.857457 + 0.195709i
\(532\) −4.39849 3.50768i −0.190699 0.152077i
\(533\) −36.0407 + 8.22605i −1.56110 + 0.356310i
\(534\) −26.6271 + 26.6271i −1.15227 + 1.15227i
\(535\) 0 0
\(536\) −19.9583 + 6.98372i −0.862068 + 0.301651i
\(537\) −4.22370 + 8.77060i −0.182266 + 0.378480i
\(538\) −5.91511 3.71671i −0.255018 0.160239i
\(539\) 19.7242 + 19.7242i 0.849579 + 0.849579i
\(540\) 0 0
\(541\) 1.67468 + 14.8632i 0.0720000 + 0.639018i 0.976945 + 0.213490i \(0.0684830\pi\)
−0.904945 + 0.425528i \(0.860088\pi\)
\(542\) −0.846865 + 0.532120i −0.0363760 + 0.0228565i
\(543\) −48.9908 11.1818i −2.10240 0.479859i
\(544\) 17.3778 + 21.7911i 0.745068 + 0.934286i
\(545\) 0 0
\(546\) 15.8339 7.62520i 0.677628 0.326328i
\(547\) −20.2804 + 2.28505i −0.867127 + 0.0977017i −0.534309 0.845289i \(-0.679428\pi\)
−0.332818 + 0.942991i \(0.607999\pi\)
\(548\) 4.35257 + 5.45796i 0.185933 + 0.233152i
\(549\) 6.60835 18.8856i 0.282037 0.806017i
\(550\) 0 0
\(551\) −13.8778 14.9039i −0.591216 0.634928i
\(552\) 14.6372 + 14.6372i 0.623002 + 0.623002i
\(553\) 5.70064 + 11.8375i 0.242416 + 0.503382i
\(554\) 1.80170 15.9905i 0.0765469 0.679372i
\(555\) 0 0
\(556\) 2.11253 + 4.38670i 0.0895910 + 0.186038i
\(557\) 29.0790 10.1752i 1.23212 0.431137i 0.365830 0.930682i \(-0.380785\pi\)
0.866288 + 0.499545i \(0.166499\pi\)
\(558\) 19.4976 + 2.19686i 0.825401 + 0.0930004i
\(559\) 1.80915 + 2.87925i 0.0765189 + 0.121779i
\(560\) 0 0
\(561\) −83.3794 + 9.39460i −3.52028 + 0.396640i
\(562\) −3.32886 14.5847i −0.140420 0.615219i
\(563\) −12.4601 −0.525130 −0.262565 0.964914i \(-0.584568\pi\)
−0.262565 + 0.964914i \(0.584568\pi\)
\(564\) 0.0185534 + 0.0812878i 0.000781239 + 0.00342283i
\(565\) 0 0
\(566\) −1.21466 3.47130i −0.0510560 0.145910i
\(567\) 1.08461 1.72615i 0.0455495 0.0724915i
\(568\) 10.4074i 0.436685i
\(569\) 3.79658 + 2.38555i 0.159161 + 0.100007i 0.609258 0.792972i \(-0.291468\pi\)
−0.450097 + 0.892980i \(0.648610\pi\)
\(570\) 0 0
\(571\) −1.25968 + 5.51903i −0.0527160 + 0.230964i −0.994422 0.105472i \(-0.966365\pi\)
0.941706 + 0.336436i \(0.109222\pi\)
\(572\) −5.99296 + 26.2569i −0.250578 + 1.09786i
\(573\) 7.30374 64.8225i 0.305118 2.70800i
\(574\) −4.73686 + 9.83619i −0.197713 + 0.410555i
\(575\) 0 0
\(576\) −20.5888 + 25.8175i −0.857865 + 1.07573i
\(577\) 36.9281 29.4491i 1.53734 1.22598i 0.654736 0.755857i \(-0.272780\pi\)
0.882599 0.470127i \(-0.155792\pi\)
\(578\) −10.0860 + 4.85714i −0.419521 + 0.202030i
\(579\) −38.5980 −1.60408
\(580\) 0 0
\(581\) −20.7301 −0.860031
\(582\) −21.7732 + 10.4854i −0.902528 + 0.434634i
\(583\) 7.51533 5.99328i 0.311253 0.248216i
\(584\) 5.92274 7.42688i 0.245085 0.307327i
\(585\) 0 0
\(586\) −10.5511 + 21.9095i −0.435861 + 0.905075i
\(587\) 1.55975 13.8431i 0.0643776 0.571367i −0.919572 0.392921i \(-0.871464\pi\)
0.983950 0.178446i \(-0.0571070\pi\)
\(588\) 3.39455 14.8725i 0.139989 0.613332i
\(589\) 3.37023 14.7659i 0.138868 0.608420i
\(590\) 0 0
\(591\) −25.7285 16.1663i −1.05833 0.664993i
\(592\) 2.74056i 0.112636i
\(593\) 11.3359 18.0409i 0.465508 0.740852i −0.528643 0.848844i \(-0.677299\pi\)
0.994152 + 0.107992i \(0.0344420\pi\)
\(594\) −10.3547 29.5921i −0.424860 1.21418i
\(595\) 0 0
\(596\) −1.91604 8.39471i −0.0784840 0.343861i
\(597\) −32.2467 −1.31977
\(598\) 2.42291 + 10.6155i 0.0990801 + 0.434098i
\(599\) 9.52133 1.07280i 0.389031 0.0438332i 0.0847169 0.996405i \(-0.473001\pi\)
0.304314 + 0.952572i \(0.401573\pi\)
\(600\) 0 0
\(601\) −18.7867 29.8988i −0.766324 1.21960i −0.970603 0.240685i \(-0.922628\pi\)
0.204279 0.978913i \(-0.434515\pi\)
\(602\) 0.997916 + 0.112438i 0.0406720 + 0.00458264i
\(603\) −34.1042 + 11.9336i −1.38883 + 0.485973i
\(604\) −4.49021 9.32402i −0.182704 0.379389i
\(605\) 0 0
\(606\) 1.66435 14.7715i 0.0676096 0.600052i
\(607\) −13.3355 27.6914i −0.541270 1.12396i −0.974854 0.222846i \(-0.928465\pi\)
0.433583 0.901113i \(-0.357249\pi\)
\(608\) 13.9427 + 13.9427i 0.565452 + 0.565452i
\(609\) −7.77385 + 19.9107i −0.315012 + 0.806824i
\(610\) 0 0
\(611\) −0.0417023 + 0.119178i −0.00168710 + 0.00482144i
\(612\) 17.9679 + 22.5311i 0.726310 + 0.910764i
\(613\) 5.43065 0.611887i 0.219342 0.0247139i −0.00160954 0.999999i \(-0.500512\pi\)
0.220951 + 0.975285i \(0.429084\pi\)
\(614\) −19.6003 + 9.43899i −0.791003 + 0.380927i
\(615\) 0 0
\(616\) 14.2768 + 17.9026i 0.575229 + 0.721315i
\(617\) 8.50028 + 1.94013i 0.342208 + 0.0781068i 0.390171 0.920742i \(-0.372416\pi\)
−0.0479630 + 0.998849i \(0.515273\pi\)
\(618\) 18.5104 11.6308i 0.744596 0.467861i
\(619\) 0.314355 + 2.78998i 0.0126350 + 0.112139i 0.998447 0.0557167i \(-0.0177444\pi\)
−0.985812 + 0.167855i \(0.946316\pi\)
\(620\) 0 0
\(621\) 10.1970 + 10.1970i 0.409192 + 0.409192i
\(622\) −26.1211 16.4130i −1.04736 0.658101i
\(623\) 8.31325 17.2626i 0.333063 0.691613i
\(624\) −9.05750 + 3.16936i −0.362590 + 0.126876i
\(625\) 0 0
\(626\) −17.4781 + 17.4781i −0.698566 + 0.698566i
\(627\) −57.8718 + 13.2089i −2.31118 + 0.527511i
\(628\) −3.37145 2.68864i −0.134536 0.107289i
\(629\) 19.3484 + 4.41614i 0.771470 + 0.176083i
\(630\) 0 0
\(631\) 34.6785 27.6552i 1.38053 1.10093i 0.397476 0.917613i \(-0.369886\pi\)
0.983053 0.183322i \(-0.0586851\pi\)
\(632\) −9.20285 26.3002i −0.366070 1.04617i
\(633\) −1.41367 + 4.04004i −0.0561884 + 0.160577i
\(634\) −17.9670 14.3282i −0.713563 0.569047i
\(635\) 0 0
\(636\) −4.96194 1.73626i −0.196754 0.0688471i
\(637\) 16.3351 16.3351i 0.647222 0.647222i
\(638\) 14.4394 + 24.9082i 0.571662 + 0.986124i
\(639\) 17.7838i 0.703518i
\(640\) 0 0
\(641\) 19.6936 + 2.21894i 0.777852 + 0.0876428i 0.491959 0.870619i \(-0.336281\pi\)
0.285893 + 0.958261i \(0.407710\pi\)
\(642\) −3.50203 31.0813i −0.138214 1.22668i
\(643\) 28.6585 + 10.0280i 1.13018 + 0.395467i 0.829638 0.558302i \(-0.188547\pi\)
0.300542 + 0.953769i \(0.402833\pi\)
\(644\) −3.29615 1.58734i −0.129887 0.0625501i
\(645\) 0 0
\(646\) −16.5555 + 10.4025i −0.651368 + 0.409282i
\(647\) 2.55620 + 4.06817i 0.100495 + 0.159936i 0.893187 0.449686i \(-0.148464\pi\)
−0.792692 + 0.609622i \(0.791321\pi\)
\(648\) −2.69561 + 3.38019i −0.105894 + 0.132786i
\(649\) −11.7671 + 18.7272i −0.461898 + 0.735107i
\(650\) 0 0
\(651\) −15.4981 + 3.53735i −0.607420 + 0.138640i
\(652\) 5.65286 + 2.72227i 0.221383 + 0.106612i
\(653\) −28.0887 13.5268i −1.09920 0.529345i −0.205791 0.978596i \(-0.565977\pi\)
−0.893406 + 0.449251i \(0.851691\pi\)
\(654\) 18.7806 4.28655i 0.734379 0.167617i
\(655\) 0 0
\(656\) 3.17152 5.04744i 0.123827 0.197070i
\(657\) 10.1206 12.6908i 0.394842 0.495117i
\(658\) 0.0198387 + 0.0315732i 0.000773394 + 0.00123085i
\(659\) −11.5058 + 7.22958i −0.448203 + 0.281624i −0.737161 0.675717i \(-0.763834\pi\)
0.288958 + 0.957342i \(0.406691\pi\)
\(660\) 0 0
\(661\) −20.4402 9.84350i −0.795033 0.382868i −0.00814767 0.999967i \(-0.502594\pi\)
−0.786886 + 0.617099i \(0.788308\pi\)
\(662\) −0.897434 0.314026i −0.0348797 0.0122050i
\(663\) 7.78042 + 69.0531i 0.302166 + 2.68180i
\(664\) 43.6871 + 4.92236i 1.69539 + 0.191025i
\(665\) 0 0
\(666\) 18.1887i 0.704797i
\(667\) −10.9550 7.44069i −0.424179 0.288105i
\(668\) 10.5573 10.5573i 0.408475 0.408475i
\(669\) −23.5113 8.22694i −0.908997 0.318072i
\(670\) 0 0
\(671\) 17.0714 + 13.6140i 0.659034 + 0.525562i
\(672\) 6.83538 19.5344i 0.263680 0.753555i
\(673\) −3.92195 11.2083i −0.151180 0.432048i 0.843240 0.537537i \(-0.180645\pi\)
−0.994421 + 0.105489i \(0.966359\pi\)
\(674\) 20.8410 16.6201i 0.802764 0.640183i
\(675\) 0 0
\(676\) 8.25486 + 1.88412i 0.317495 + 0.0724661i
\(677\) 0.860917 + 0.686559i 0.0330877 + 0.0263866i 0.639894 0.768463i \(-0.278978\pi\)
−0.606806 + 0.794850i \(0.707550\pi\)
\(678\) −39.5212 + 9.02047i −1.51780 + 0.346429i
\(679\) 8.69471 8.69471i 0.333672 0.333672i
\(680\) 0 0
\(681\) 55.6286 19.4653i 2.13169 0.745911i
\(682\) −9.29049 + 19.2919i −0.355751 + 0.738725i
\(683\) 0.322462 + 0.202616i 0.0123387 + 0.00775289i 0.538187 0.842825i \(-0.319109\pi\)
−0.525849 + 0.850578i \(0.676252\pi\)
\(684\) 14.4162 + 14.4162i 0.551216 + 0.551216i
\(685\) 0 0
\(686\) −1.82340 16.1831i −0.0696177 0.617874i
\(687\) −12.9495 + 8.13668i −0.494053 + 0.310434i
\(688\) −0.534587 0.122016i −0.0203809 0.00465182i
\(689\) −4.96351 6.22405i −0.189095 0.237117i
\(690\) 0 0
\(691\) −9.56118 + 4.60442i −0.363724 + 0.175160i −0.606815 0.794843i \(-0.707553\pi\)
0.243091 + 0.970004i \(0.421839\pi\)
\(692\) 14.1777 1.59744i 0.538956 0.0607257i
\(693\) 24.3958 + 30.5914i 0.926719 + 1.16207i
\(694\) 0.0597999 0.170898i 0.00226997 0.00648722i
\(695\) 0 0
\(696\) 21.1106 40.1144i 0.800195 1.52053i
\(697\) −30.5244 30.5244i −1.15619 1.15619i
\(698\) 13.6125 + 28.2667i 0.515242 + 1.06991i
\(699\) 6.24653 55.4395i 0.236266 2.09691i
\(700\) 0 0
\(701\) −7.04923 14.6379i −0.266246 0.552865i 0.724391 0.689389i \(-0.242121\pi\)
−0.990637 + 0.136524i \(0.956407\pi\)
\(702\) −24.5076 + 8.57558i −0.924979 + 0.323664i
\(703\) 13.9518 + 1.57199i 0.526200 + 0.0592885i
\(704\) −19.1727 30.5131i −0.722597 1.15001i
\(705\) 0 0
\(706\) 18.8134 2.11976i 0.708052 0.0797782i
\(707\) 1.68304 + 7.37386i 0.0632971 + 0.277323i
\(708\) 12.0956 0.454582
\(709\) 5.20526 + 22.8057i 0.195488 + 0.856488i 0.973582 + 0.228340i \(0.0733296\pi\)
−0.778094 + 0.628148i \(0.783813\pi\)
\(710\) 0 0
\(711\) −15.7256 44.9410i −0.589754 1.68542i
\(712\) −21.6185 + 34.4057i −0.810189 + 1.28941i
\(713\) 9.84907i 0.368851i
\(714\) 17.3765 + 10.9184i 0.650298 + 0.408609i
\(715\) 0 0
\(716\) −0.811905 + 3.55719i −0.0303423 + 0.132938i
\(717\) 6.16634 27.0165i 0.230286 1.00895i
\(718\) 1.75085 15.5392i 0.0653411 0.579918i
\(719\) 14.4691 30.0454i 0.539606 1.12050i −0.435790 0.900048i \(-0.643531\pi\)
0.975397 0.220456i \(-0.0707546\pi\)
\(720\) 0 0
\(721\) −6.93522 + 8.69649i −0.258281 + 0.323874i
\(722\) 3.55373 2.83401i 0.132256 0.105471i
\(723\) 51.5546 24.8274i 1.91734 0.923340i
\(724\) −18.8346 −0.699983
\(725\) 0 0
\(726\) 53.7055 1.99320
\(727\) 13.9547 6.72024i 0.517552 0.249240i −0.156826 0.987626i \(-0.550126\pi\)
0.674378 + 0.738386i \(0.264412\pi\)
\(728\) 14.8265 11.8238i 0.549508 0.438218i
\(729\) 26.5434 33.2844i 0.983089 1.23275i
\(730\) 0 0
\(731\) −1.72287 + 3.57757i −0.0637226 + 0.132321i
\(732\) 1.33701 11.8663i 0.0494173 0.438590i
\(733\) 6.90248 30.2417i 0.254949 1.11700i −0.671625 0.740891i \(-0.734403\pi\)
0.926574 0.376113i \(-0.122739\pi\)
\(734\) −3.01284 + 13.2001i −0.111206 + 0.487224i
\(735\) 0 0
\(736\) 10.8570 + 6.82193i 0.400196 + 0.251460i
\(737\) 39.4306i 1.45244i
\(738\) 21.0489 33.4991i 0.774821 1.23312i
\(739\) −3.03598 8.67634i −0.111680 0.319164i 0.874455 0.485107i \(-0.161219\pi\)
−0.986135 + 0.165942i \(0.946933\pi\)
\(740\) 0 0
\(741\) 10.9393 + 47.9283i 0.401866 + 1.76069i
\(742\) −2.35102 −0.0863087
\(743\) 4.77394 + 20.9160i 0.175139 + 0.767334i 0.983831 + 0.179101i \(0.0573189\pi\)
−0.808692 + 0.588233i \(0.799824\pi\)
\(744\) 33.5011 3.77466i 1.22821 0.138386i
\(745\) 0 0
\(746\) −10.2992 16.3911i −0.377081 0.600120i
\(747\) 74.6513 + 8.41118i 2.73135 + 0.307749i
\(748\) −29.6846 + 10.3871i −1.08538 + 0.379789i
\(749\) 6.90511 + 14.3386i 0.252307 + 0.523921i
\(750\) 0 0
\(751\) −4.39473 + 39.0043i −0.160366 + 1.42329i 0.613378 + 0.789790i \(0.289810\pi\)
−0.773744 + 0.633499i \(0.781618\pi\)
\(752\) −0.00883409 0.0183442i −0.000322146 0.000668943i
\(753\) 49.8722 + 49.8722i 1.81744 + 1.81744i
\(754\) 20.6284 11.9584i 0.751244 0.435501i
\(755\) 0 0
\(756\) 2.88134 8.23440i 0.104793 0.299482i
\(757\) −26.9647 33.8127i −0.980049 1.22894i −0.973435 0.228965i \(-0.926466\pi\)
−0.00661456 0.999978i \(-0.502105\pi\)
\(758\) −28.8534 + 3.25099i −1.04800 + 0.118081i
\(759\) −34.7785 + 16.7485i −1.26238 + 0.607931i
\(760\) 0 0
\(761\) −10.1735 12.7572i −0.368791 0.462449i 0.562462 0.826823i \(-0.309854\pi\)
−0.931253 + 0.364374i \(0.881283\pi\)
\(762\) 1.98464 + 0.452982i 0.0718961 + 0.0164098i
\(763\) −8.29920 + 5.21473i −0.300451 + 0.188786i
\(764\) −2.73753 24.2963i −0.0990405 0.879009i
\(765\) 0 0
\(766\) −3.26648 3.26648i −0.118023 0.118023i
\(767\) 15.5095 + 9.74526i 0.560015 + 0.351881i
\(768\) −20.9797 + 43.5649i −0.757041 + 1.57201i
\(769\) −35.8462 + 12.5431i −1.29265 + 0.452317i −0.887024 0.461723i \(-0.847232\pi\)
−0.405624 + 0.914040i \(0.632946\pi\)
\(770\) 0 0
\(771\) 2.06655 2.06655i 0.0744249 0.0744249i
\(772\) −14.1043 + 3.21922i −0.507625 + 0.115862i
\(773\) −41.9634 33.4647i −1.50932 1.20364i −0.917604 0.397496i \(-0.869879\pi\)
−0.591716 0.806147i \(-0.701549\pi\)
\(774\) −3.54798 0.809802i −0.127529 0.0291077i
\(775\) 0 0
\(776\) −20.3880 + 16.2589i −0.731886 + 0.583659i
\(777\) −4.86707 13.9093i −0.174605 0.498993i
\(778\) −5.18923 + 14.8300i −0.186043 + 0.531680i
\(779\) −23.8766 19.0409i −0.855467 0.682212i
\(780\) 0 0
\(781\) 18.3184 + 6.40989i 0.655484 + 0.229364i
\(782\) −8.99069 + 8.99069i −0.321506 + 0.321506i
\(783\) 14.7067 27.9456i 0.525573 0.998696i
\(784\) 3.72518i 0.133042i
\(785\) 0 0
\(786\) −40.0591 4.51357i −1.42886 0.160994i
\(787\) 4.82326 + 42.8076i 0.171931 + 1.52593i 0.722637 + 0.691227i \(0.242930\pi\)
−0.550707 + 0.834699i \(0.685642\pi\)
\(788\) −10.7499 3.76156i −0.382950 0.134000i
\(789\) 10.1452 + 4.88565i 0.361177 + 0.173934i
\(790\) 0 0
\(791\) 17.4646 10.9737i 0.620969 0.390180i
\(792\) −44.1483 70.2617i −1.56874 2.49664i
\(793\) 11.2748 14.1382i 0.400381 0.502062i
\(794\) −0.0310679 + 0.0494443i −0.00110256 + 0.00175471i
\(795\) 0 0
\(796\) −11.7834 + 2.68949i −0.417653 + 0.0953266i
\(797\) 26.8505 + 12.9305i 0.951095 + 0.458023i 0.844070 0.536233i \(-0.180153\pi\)
0.107025 + 0.994256i \(0.465868\pi\)
\(798\) 13.0805 + 6.29926i 0.463046 + 0.222991i
\(799\) −0.143745 + 0.0328089i −0.00508534 + 0.00116070i
\(800\) 0 0
\(801\) −36.9411 + 58.7914i −1.30525 + 2.07729i
\(802\) 20.9608 26.2840i 0.740152 0.928121i
\(803\) 9.42451 + 14.9990i 0.332584 + 0.529304i
\(804\) −18.2588 + 11.4728i −0.643940 + 0.404614i
\(805\) 0 0
\(806\) 15.9772 + 7.69420i 0.562772 + 0.271017i
\(807\) −19.3597 6.77426i −0.681494 0.238465i
\(808\) −1.79595 15.9395i −0.0631812 0.560749i
\(809\) −22.8571 2.57537i −0.803612 0.0905453i −0.299403 0.954127i \(-0.596787\pi\)
−0.504209 + 0.863582i \(0.668216\pi\)
\(810\) 0 0
\(811\) 19.6076i 0.688516i 0.938875 + 0.344258i \(0.111869\pi\)
−0.938875 + 0.344258i \(0.888131\pi\)
\(812\) −1.18006 + 7.92406i −0.0414119 + 0.278080i
\(813\) −2.07643 + 2.07643i −0.0728236 + 0.0728236i
\(814\) −18.7354 6.55581i −0.656676 0.229781i
\(815\) 0 0
\(816\) −8.76082 6.98652i −0.306690 0.244577i
\(817\) −0.927804 + 2.65151i −0.0324598 + 0.0927646i
\(818\) 8.74954 + 25.0047i 0.305920 + 0.874270i
\(819\) 25.3351 20.2041i 0.885282 0.705988i
\(820\) 0 0
\(821\) −3.20785 0.732172i −0.111955 0.0255530i 0.166176 0.986096i \(-0.446858\pi\)
−0.278131 + 0.960543i \(0.589715\pi\)
\(822\) −14.0850 11.2324i −0.491269 0.391774i
\(823\) −16.4779 + 3.76096i −0.574382 + 0.131099i −0.499838 0.866119i \(-0.666607\pi\)
−0.0745439 + 0.997218i \(0.523750\pi\)
\(824\) 16.6804 16.6804i 0.581090 0.581090i
\(825\) 0 0
\(826\) 5.10588 1.78663i 0.177656 0.0621646i
\(827\) −0.0579057 + 0.120242i −0.00201358 + 0.00418124i −0.901973 0.431792i \(-0.857881\pi\)
0.899960 + 0.435973i \(0.143596\pi\)
\(828\) 11.2257 + 7.05358i 0.390120 + 0.245129i
\(829\) 28.0352 + 28.0352i 0.973704 + 0.973704i 0.999663 0.0259593i \(-0.00826403\pi\)
−0.0259593 + 0.999663i \(0.508264\pi\)
\(830\) 0 0
\(831\) −5.28984 46.9486i −0.183502 1.62863i
\(832\) −25.2704 + 15.8784i −0.876092 + 0.550485i
\(833\) 26.2998 + 6.00275i 0.911234 + 0.207983i
\(834\) −7.83400 9.82352i −0.271269 0.340161i
\(835\) 0 0
\(836\) −20.0456 + 9.65345i −0.693291 + 0.333871i
\(837\) 23.3385 2.62961i 0.806695 0.0908927i
\(838\) 4.58647 + 5.75126i 0.158437 + 0.198674i
\(839\) −0.960023 + 2.74359i −0.0331437 + 0.0947192i −0.959266 0.282503i \(-0.908835\pi\)
0.926123 + 0.377223i \(0.123121\pi\)
\(840\) 0 0
\(841\) −8.45001 + 27.7416i −0.291380 + 0.956607i
\(842\) 15.5905 + 15.5905i 0.537285 + 0.537285i
\(843\) −19.0572 39.5726i −0.656364 1.36295i
\(844\) −0.179623 + 1.59420i −0.00618288 + 0.0548746i
\(845\) 0 0
\(846\) −0.0586305 0.121748i −0.00201576 0.00418577i
\(847\) −25.7926 + 9.02522i −0.886244 + 0.310110i
\(848\) 1.27564 + 0.143731i 0.0438058 + 0.00493573i
\(849\) −5.74476 9.14273i −0.197160 0.313778i
\(850\) 0 0
\(851\) 9.07268 1.02225i 0.311007 0.0350421i
\(852\) −2.36177 10.3476i −0.0809131 0.354503i
\(853\) 19.9191 0.682018 0.341009 0.940060i \(-0.389231\pi\)
0.341009 + 0.940060i \(0.389231\pi\)
\(854\) −1.18836 5.20655i −0.0406648 0.178164i
\(855\) 0 0
\(856\) −11.1473 31.8571i −0.381006 1.08885i
\(857\) −17.6888 + 28.1515i −0.604237 + 0.961638i 0.394843 + 0.918749i \(0.370799\pi\)
−0.999080 + 0.0428889i \(0.986344\pi\)
\(858\) 69.5018i 2.37275i
\(859\) 14.3941 + 9.04440i 0.491120 + 0.308591i 0.754727 0.656039i \(-0.227769\pi\)
−0.263607 + 0.964630i \(0.584912\pi\)
\(860\) 0 0
\(861\) −7.13260 + 31.2500i −0.243078 + 1.06500i
\(862\) 6.98469 30.6019i 0.237900 1.04231i
\(863\) −1.07928 + 9.57890i −0.0367392 + 0.326070i 0.961877 + 0.273482i \(0.0881754\pi\)
−0.998616 + 0.0525876i \(0.983253\pi\)
\(864\) −13.2666 + 27.5483i −0.451338 + 0.937214i
\(865\) 0 0
\(866\) 19.5400 24.5024i 0.663996 0.832625i
\(867\) −25.6969 + 20.4926i −0.872712 + 0.695965i
\(868\) −5.36823 + 2.58520i −0.182210 + 0.0877475i
\(869\) 51.9599 1.76262
\(870\) 0 0
\(871\) −32.6556 −1.10649
\(872\) 18.7282 9.01901i 0.634216 0.305422i
\(873\) −34.8384 + 27.7827i −1.17910 + 0.940301i
\(874\) −5.60833 + 7.03263i −0.189705 + 0.237882i
\(875\) 0 0
\(876\) 4.20332 8.72828i 0.142017 0.294901i
\(877\) −2.98854 + 26.5240i −0.100916 + 0.895652i 0.836625 + 0.547776i \(0.184525\pi\)
−0.937541 + 0.347876i \(0.886903\pi\)
\(878\) 3.63974 15.9467i 0.122835 0.538176i
\(879\) −15.8875 + 69.6075i −0.535871 + 2.34780i
\(880\) 0 0
\(881\) 19.0940 + 11.9976i 0.643294 + 0.404209i 0.813798 0.581148i \(-0.197396\pi\)
−0.170503 + 0.985357i \(0.554539\pi\)
\(882\) 24.7235i 0.832482i
\(883\) −1.27154 + 2.02364i −0.0427907 + 0.0681010i −0.867435 0.497551i \(-0.834233\pi\)
0.824644 + 0.565652i \(0.191376\pi\)
\(884\) 8.60237 + 24.5842i 0.289329 + 0.826855i
\(885\) 0 0
\(886\) −7.04143 30.8505i −0.236561 1.03644i
\(887\) −24.2760 −0.815109 −0.407554 0.913181i \(-0.633618\pi\)
−0.407554 + 0.913181i \(0.633618\pi\)
\(888\) 6.95422 + 30.4684i 0.233368 + 1.02245i
\(889\) −1.02927 + 0.115971i −0.0345206 + 0.00388953i
\(890\) 0 0
\(891\) −4.28937 6.82649i −0.143699 0.228696i
\(892\) −9.27753 1.04533i −0.310635 0.0350001i
\(893\) −0.0984546 + 0.0344507i −0.00329466 + 0.00115285i
\(894\) 9.64122 + 20.0202i 0.322451 + 0.669576i
\(895\) 0 0
\(896\) 0.645054 5.72501i 0.0215497 0.191259i
\(897\) 13.8707 + 28.8029i 0.463130 + 0.961700i
\(898\) 3.17594 + 3.17594i 0.105982 + 0.105982i
\(899\) −20.5985 + 6.39363i −0.686998 + 0.213240i
\(900\) 0 0
\(901\) 3.07031 8.77445i 0.102287 0.292319i
\(902\) 26.9194 + 33.7558i 0.896317 + 1.12395i
\(903\) 2.92991 0.330122i 0.0975013 0.0109858i
\(904\) −39.4109 + 18.9793i −1.31079 + 0.631242i
\(905\) 0 0
\(906\) 16.6513 + 20.8801i 0.553203 + 0.693694i
\(907\) 37.8499 + 8.63900i 1.25679 + 0.286853i 0.798523 0.601964i \(-0.205615\pi\)
0.458262 + 0.888817i \(0.348472\pi\)
\(908\) 18.7041 11.7525i 0.620716 0.390022i
\(909\) −3.06886 27.2369i −0.101788 0.903391i
\(910\) 0 0
\(911\) 42.3681 + 42.3681i 1.40372 + 1.40372i 0.787850 + 0.615867i \(0.211194\pi\)
0.615867 + 0.787850i \(0.288806\pi\)
\(912\) −6.71228 4.21761i −0.222266 0.139659i
\(913\) −35.5708 + 73.8635i −1.17722 + 2.44453i
\(914\) −4.66615 + 1.63276i −0.154343 + 0.0540068i
\(915\) 0 0
\(916\) −4.05330 + 4.05330i −0.133925 + 0.133925i
\(917\) 19.9973 4.56424i 0.660368 0.150725i
\(918\) −23.7048 18.9040i −0.782376 0.623924i
\(919\) −35.7935 8.16963i −1.18072 0.269491i −0.413274 0.910607i \(-0.635615\pi\)
−0.767444 + 0.641115i \(0.778472\pi\)
\(920\) 0 0
\(921\) −49.9374 + 39.8237i −1.64549 + 1.31224i
\(922\) 3.40991 + 9.74496i 0.112299 + 0.320933i
\(923\) 5.30854 15.1709i 0.174733 0.499358i
\(924\) 18.2575 + 14.5598i 0.600627 + 0.478984i
\(925\) 0 0
\(926\) −4.69781 1.64384i −0.154380 0.0540198i
\(927\) 28.5030 28.5030i 0.936161 0.936161i
\(928\) 7.21951 27.1351i 0.236992 0.890753i
\(929\) 28.6797i 0.940951i −0.882413 0.470476i \(-0.844082\pi\)
0.882413 0.470476i \(-0.155918\pi\)
\(930\) 0 0
\(931\) 18.9643 + 2.13676i 0.621530 + 0.0700296i
\(932\) −2.34128 20.7794i −0.0766912 0.680653i
\(933\) −85.4925 29.9151i −2.79890 0.979377i
\(934\) 3.99714 + 1.92492i 0.130790 + 0.0629854i
\(935\) 0 0
\(936\) −58.1893 + 36.5628i −1.90198 + 1.19509i
\(937\) 11.0928 + 17.6540i 0.362385 + 0.576732i 0.977300 0.211861i \(-0.0679525\pi\)
−0.614915 + 0.788594i \(0.710810\pi\)
\(938\) −6.01290 + 7.53994i −0.196328 + 0.246188i
\(939\) −38.6107 + 61.4485i −1.26001 + 2.00530i
\(940\) 0 0
\(941\) 25.0472 5.71686i 0.816515 0.186364i 0.206187 0.978513i \(-0.433895\pi\)
0.610328 + 0.792148i \(0.291037\pi\)
\(942\) 10.0263 + 4.82839i 0.326673 + 0.157318i
\(943\) −17.8927 8.61666i −0.582666 0.280597i
\(944\) −2.87963 + 0.657257i −0.0937241 + 0.0213919i
\(945\) 0 0
\(946\) 2.11295 3.36275i 0.0686980 0.109332i
\(947\) −35.0919 + 44.0039i −1.14033 + 1.42993i −0.253809 + 0.967254i \(0.581683\pi\)
−0.886526 + 0.462680i \(0.846888\pi\)
\(948\) −15.1184 24.0607i −0.491021 0.781456i
\(949\) 12.4219 7.80519i 0.403232 0.253367i
\(950\) 0 0
\(951\) −60.7902 29.2750i −1.97126 0.949307i
\(952\) 20.9019 + 7.31391i 0.677436 + 0.237045i
\(953\) 1.11505 + 9.89638i 0.0361202 + 0.320575i 0.998760 + 0.0497894i \(0.0158550\pi\)
−0.962640 + 0.270786i \(0.912716\pi\)
\(954\) 8.46626 + 0.953919i 0.274105 + 0.0308843i
\(955\) 0 0
\(956\) 10.3865i 0.335925i
\(957\) 57.6048 + 61.8638i 1.86210 + 1.99977i
\(958\) 21.3718 21.3718i 0.690493 0.690493i
\(959\) 8.65204 + 3.02748i 0.279389 + 0.0977624i
\(960\) 0 0
\(961\) 11.6958 + 9.32706i 0.377283 + 0.300873i
\(962\) −5.42939 + 15.5163i −0.175050 + 0.500265i
\(963\) −19.0481 54.4365i −0.613818 1.75419i
\(964\) 16.7681 13.3721i 0.540065 0.430688i
\(965\) 0 0
\(966\) 9.20440 + 2.10084i 0.296147 + 0.0675935i
\(967\) 27.7417 + 22.1233i 0.892114 + 0.711437i 0.958115 0.286383i \(-0.0924528\pi\)
−0.0660016 + 0.997820i \(0.521024\pi\)
\(968\) 56.4989 12.8955i 1.81594 0.414477i
\(969\) −40.5925 + 40.5925i −1.30402 + 1.30402i
\(970\) 0 0
\(971\) −21.6352 + 7.57047i −0.694306 + 0.242948i −0.654282 0.756251i \(-0.727029\pi\)
−0.0400236 + 0.999199i \(0.512743\pi\)
\(972\) 6.21171 12.8987i 0.199241 0.413727i
\(973\) 5.41320 + 3.40134i 0.173539 + 0.109042i
\(974\) 3.56904 + 3.56904i 0.114359 + 0.114359i
\(975\) 0 0
\(976\) 0.326490 + 2.89768i 0.0104507 + 0.0927524i
\(977\) 0.884054 0.555488i 0.0282834 0.0177716i −0.517816 0.855492i \(-0.673255\pi\)
0.546100 + 0.837720i \(0.316112\pi\)
\(978\) −15.7854 3.60292i −0.504762 0.115209i
\(979\) −47.2438 59.2419i −1.50992 1.89338i
\(980\) 0 0
\(981\) 32.0021 15.4114i 1.02175 0.492048i
\(982\) −2.24751 + 0.253233i −0.0717209 + 0.00808100i
\(983\) 16.0672 + 20.1477i 0.512465 + 0.642611i 0.968990 0.247100i \(-0.0794776\pi\)
−0.456525 + 0.889710i \(0.650906\pi\)
\(984\) 22.4517 64.1633i 0.715734 2.04545i
\(985\) 0 0
\(986\) 24.6396 + 12.9668i 0.784686 + 0.412948i
\(987\) 0.0774143 + 0.0774143i 0.00246412 + 0.00246412i
\(988\) 7.99479 + 16.6014i 0.254348 + 0.528159i
\(989\) −0.204532 + 1.81528i −0.00650375 + 0.0577224i
\(990\) 0 0
\(991\) −10.0068 20.7794i −0.317877 0.660078i 0.679405 0.733764i \(-0.262238\pi\)
−0.997282 + 0.0736856i \(0.976524\pi\)
\(992\) 19.7111 6.89723i 0.625830 0.218987i
\(993\) −2.77399 0.312553i −0.0880299 0.00991858i
\(994\) −2.52539 4.01914i −0.0801005 0.127479i
\(995\) 0 0
\(996\) 44.5532 5.01994i 1.41172 0.159063i
\(997\) 1.39888 + 6.12892i 0.0443031 + 0.194105i 0.992237 0.124363i \(-0.0396888\pi\)
−0.947934 + 0.318468i \(0.896832\pi\)
\(998\) 21.8358 0.691199
\(999\) 4.84465 + 21.2258i 0.153278 + 0.671554i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.y.b.282.5 156
5.2 odd 4 145.2.t.a.108.5 yes 156
5.3 odd 4 725.2.bd.b.543.9 156
5.4 even 2 145.2.o.a.137.9 yes 156
29.18 odd 28 725.2.bd.b.482.9 156
145.18 even 28 inner 725.2.y.b.18.5 156
145.47 even 28 145.2.o.a.18.9 156
145.134 odd 28 145.2.t.a.47.5 yes 156
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.o.a.18.9 156 145.47 even 28
145.2.o.a.137.9 yes 156 5.4 even 2
145.2.t.a.47.5 yes 156 145.134 odd 28
145.2.t.a.108.5 yes 156 5.2 odd 4
725.2.y.b.18.5 156 145.18 even 28 inner
725.2.y.b.282.5 156 1.1 even 1 trivial
725.2.bd.b.482.9 156 29.18 odd 28
725.2.bd.b.543.9 156 5.3 odd 4