Properties

Label 725.2.a.l.1.5
Level $725$
Weight $2$
Character 725.1
Self dual yes
Analytic conductor $5.789$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [725,2,Mod(1,725)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(725, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("725.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.337383424.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 13x^{4} + 41x^{2} - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 145)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(2.30229\) of defining polynomial
Character \(\chi\) \(=\) 725.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.30229 q^{2} +2.89028 q^{3} +3.30056 q^{4} +6.65427 q^{6} -3.91261 q^{7} +2.99427 q^{8} +5.35371 q^{9} +2.65427 q^{11} +9.53954 q^{12} -5.62692 q^{13} -9.00799 q^{14} +0.292570 q^{16} +1.86794 q^{17} +12.3258 q^{18} +1.69944 q^{19} -11.3085 q^{21} +6.11092 q^{22} -0.691975 q^{23} +8.65427 q^{24} -12.9548 q^{26} +6.80289 q^{27} -12.9138 q^{28} -1.00000 q^{29} -0.654273 q^{31} -5.31495 q^{32} +7.67159 q^{33} +4.30056 q^{34} +17.6703 q^{36} +3.91261 q^{37} +3.91261 q^{38} -16.2634 q^{39} -26.0356 q^{42} -10.7155 q^{43} +8.76059 q^{44} -1.59313 q^{46} +4.93495 q^{47} +0.845610 q^{48} +8.30855 q^{49} +5.39888 q^{51} -18.5720 q^{52} +7.67159 q^{53} +15.6623 q^{54} -11.7154 q^{56} +4.91186 q^{57} -2.30229 q^{58} +10.0000 q^{59} -4.70743 q^{61} -1.50633 q^{62} -20.9470 q^{63} -12.8217 q^{64} +17.6623 q^{66} -6.47253 q^{67} +6.16526 q^{68} -2.00000 q^{69} +2.00000 q^{71} +16.0305 q^{72} -10.5619 q^{73} +9.00799 q^{74} +5.60911 q^{76} -10.3851 q^{77} -37.4431 q^{78} -2.05316 q^{79} +3.60112 q^{81} +1.86794 q^{83} -37.3245 q^{84} -24.6703 q^{86} -2.89028 q^{87} +7.94761 q^{88} +3.30855 q^{89} +22.0160 q^{91} -2.28390 q^{92} -1.89103 q^{93} +11.3617 q^{94} -15.3617 q^{96} +0.384703 q^{97} +19.1287 q^{98} +14.2102 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 14 q^{4} + 14 q^{6} + 12 q^{9} - 10 q^{11} - 8 q^{14} + 42 q^{16} + 16 q^{19} - 16 q^{21} + 26 q^{24} - 46 q^{26} - 6 q^{29} + 22 q^{31} + 20 q^{34} - 12 q^{36} - 14 q^{39} - 2 q^{44} - 44 q^{46}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.30229 1.62797 0.813984 0.580887i \(-0.197294\pi\)
0.813984 + 0.580887i \(0.197294\pi\)
\(3\) 2.89028 1.66870 0.834352 0.551232i \(-0.185842\pi\)
0.834352 + 0.551232i \(0.185842\pi\)
\(4\) 3.30056 1.65028
\(5\) 0 0
\(6\) 6.65427 2.71660
\(7\) −3.91261 −1.47883 −0.739415 0.673250i \(-0.764898\pi\)
−0.739415 + 0.673250i \(0.764898\pi\)
\(8\) 2.99427 1.05863
\(9\) 5.35371 1.78457
\(10\) 0 0
\(11\) 2.65427 0.800294 0.400147 0.916451i \(-0.368959\pi\)
0.400147 + 0.916451i \(0.368959\pi\)
\(12\) 9.53954 2.75383
\(13\) −5.62692 −1.56063 −0.780314 0.625388i \(-0.784941\pi\)
−0.780314 + 0.625388i \(0.784941\pi\)
\(14\) −9.00799 −2.40749
\(15\) 0 0
\(16\) 0.292570 0.0731426
\(17\) 1.86794 0.453043 0.226522 0.974006i \(-0.427265\pi\)
0.226522 + 0.974006i \(0.427265\pi\)
\(18\) 12.3258 2.90523
\(19\) 1.69944 0.389879 0.194939 0.980815i \(-0.437549\pi\)
0.194939 + 0.980815i \(0.437549\pi\)
\(20\) 0 0
\(21\) −11.3085 −2.46773
\(22\) 6.11092 1.30285
\(23\) −0.691975 −0.144287 −0.0721433 0.997394i \(-0.522984\pi\)
−0.0721433 + 0.997394i \(0.522984\pi\)
\(24\) 8.65427 1.76655
\(25\) 0 0
\(26\) −12.9548 −2.54065
\(27\) 6.80289 1.30922
\(28\) −12.9138 −2.44048
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −0.654273 −0.117511 −0.0587555 0.998272i \(-0.518713\pi\)
−0.0587555 + 0.998272i \(0.518713\pi\)
\(32\) −5.31495 −0.939560
\(33\) 7.67159 1.33545
\(34\) 4.30056 0.737540
\(35\) 0 0
\(36\) 17.6703 2.94504
\(37\) 3.91261 0.643230 0.321615 0.946871i \(-0.395774\pi\)
0.321615 + 0.946871i \(0.395774\pi\)
\(38\) 3.91261 0.634710
\(39\) −16.2634 −2.60422
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) −26.0356 −4.01738
\(43\) −10.7155 −1.63410 −0.817050 0.576567i \(-0.804392\pi\)
−0.817050 + 0.576567i \(0.804392\pi\)
\(44\) 8.76059 1.32071
\(45\) 0 0
\(46\) −1.59313 −0.234894
\(47\) 4.93495 0.719836 0.359918 0.932984i \(-0.382805\pi\)
0.359918 + 0.932984i \(0.382805\pi\)
\(48\) 0.845610 0.122053
\(49\) 8.30855 1.18694
\(50\) 0 0
\(51\) 5.39888 0.755995
\(52\) −18.5720 −2.57547
\(53\) 7.67159 1.05377 0.526887 0.849935i \(-0.323359\pi\)
0.526887 + 0.849935i \(0.323359\pi\)
\(54\) 15.6623 2.13136
\(55\) 0 0
\(56\) −11.7154 −1.56554
\(57\) 4.91186 0.650592
\(58\) −2.30229 −0.302306
\(59\) 10.0000 1.30189 0.650945 0.759125i \(-0.274373\pi\)
0.650945 + 0.759125i \(0.274373\pi\)
\(60\) 0 0
\(61\) −4.70743 −0.602725 −0.301362 0.953510i \(-0.597441\pi\)
−0.301362 + 0.953510i \(0.597441\pi\)
\(62\) −1.50633 −0.191304
\(63\) −20.9470 −2.63908
\(64\) −12.8217 −1.60272
\(65\) 0 0
\(66\) 17.6623 2.17407
\(67\) −6.47253 −0.790746 −0.395373 0.918521i \(-0.629385\pi\)
−0.395373 + 0.918521i \(0.629385\pi\)
\(68\) 6.16526 0.747648
\(69\) −2.00000 −0.240772
\(70\) 0 0
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) 16.0305 1.88921
\(73\) −10.5619 −1.23617 −0.618087 0.786110i \(-0.712092\pi\)
−0.618087 + 0.786110i \(0.712092\pi\)
\(74\) 9.00799 1.04716
\(75\) 0 0
\(76\) 5.60911 0.643409
\(77\) −10.3851 −1.18350
\(78\) −37.4431 −4.23959
\(79\) −2.05316 −0.230998 −0.115499 0.993308i \(-0.536847\pi\)
−0.115499 + 0.993308i \(0.536847\pi\)
\(80\) 0 0
\(81\) 3.60112 0.400124
\(82\) 0 0
\(83\) 1.86794 0.205034 0.102517 0.994731i \(-0.467310\pi\)
0.102517 + 0.994731i \(0.467310\pi\)
\(84\) −37.3245 −4.07244
\(85\) 0 0
\(86\) −24.6703 −2.66026
\(87\) −2.89028 −0.309870
\(88\) 7.94761 0.847218
\(89\) 3.30855 0.350705 0.175353 0.984506i \(-0.443893\pi\)
0.175353 + 0.984506i \(0.443893\pi\)
\(90\) 0 0
\(91\) 22.0160 2.30790
\(92\) −2.28390 −0.238113
\(93\) −1.89103 −0.196091
\(94\) 11.3617 1.17187
\(95\) 0 0
\(96\) −15.3617 −1.56785
\(97\) 0.384703 0.0390607 0.0195303 0.999809i \(-0.493783\pi\)
0.0195303 + 0.999809i \(0.493783\pi\)
\(98\) 19.1287 1.93229
\(99\) 14.2102 1.42818
\(100\) 0 0
\(101\) 11.9097 1.18506 0.592528 0.805550i \(-0.298130\pi\)
0.592528 + 0.805550i \(0.298130\pi\)
\(102\) 12.4298 1.23074
\(103\) 14.9585 1.47390 0.736951 0.675946i \(-0.236265\pi\)
0.736951 + 0.675946i \(0.236265\pi\)
\(104\) −16.8485 −1.65213
\(105\) 0 0
\(106\) 17.6623 1.71551
\(107\) 3.91261 0.378247 0.189123 0.981953i \(-0.439435\pi\)
0.189123 + 0.981953i \(0.439435\pi\)
\(108\) 22.4533 2.16057
\(109\) −7.55595 −0.723729 −0.361864 0.932231i \(-0.617860\pi\)
−0.361864 + 0.932231i \(0.617860\pi\)
\(110\) 0 0
\(111\) 11.3085 1.07336
\(112\) −1.14472 −0.108165
\(113\) 18.6944 1.75862 0.879309 0.476251i \(-0.158005\pi\)
0.879309 + 0.476251i \(0.158005\pi\)
\(114\) 11.3085 1.05914
\(115\) 0 0
\(116\) −3.30056 −0.306449
\(117\) −30.1249 −2.78505
\(118\) 23.0229 2.11943
\(119\) −7.30855 −0.669973
\(120\) 0 0
\(121\) −3.95483 −0.359530
\(122\) −10.8379 −0.981216
\(123\) 0 0
\(124\) −2.15947 −0.193926
\(125\) 0 0
\(126\) −48.2262 −4.29633
\(127\) −4.98929 −0.442728 −0.221364 0.975191i \(-0.571051\pi\)
−0.221364 + 0.975191i \(0.571051\pi\)
\(128\) −18.8895 −1.66961
\(129\) −30.9708 −2.72683
\(130\) 0 0
\(131\) 19.7154 1.72254 0.861272 0.508144i \(-0.169668\pi\)
0.861272 + 0.508144i \(0.169668\pi\)
\(132\) 25.3205 2.20387
\(133\) −6.64926 −0.576564
\(134\) −14.9017 −1.28731
\(135\) 0 0
\(136\) 5.59313 0.479607
\(137\) 6.26455 0.535217 0.267608 0.963528i \(-0.413767\pi\)
0.267608 + 0.963528i \(0.413767\pi\)
\(138\) −4.60459 −0.391969
\(139\) 21.9097 1.85835 0.929177 0.369636i \(-0.120518\pi\)
0.929177 + 0.369636i \(0.120518\pi\)
\(140\) 0 0
\(141\) 14.2634 1.20119
\(142\) 4.60459 0.386408
\(143\) −14.9354 −1.24896
\(144\) 1.56634 0.130528
\(145\) 0 0
\(146\) −24.3165 −2.01245
\(147\) 24.0140 1.98064
\(148\) 12.9138 1.06151
\(149\) 4.24740 0.347961 0.173980 0.984749i \(-0.444337\pi\)
0.173980 + 0.984749i \(0.444337\pi\)
\(150\) 0 0
\(151\) −11.3085 −0.920277 −0.460138 0.887847i \(-0.652200\pi\)
−0.460138 + 0.887847i \(0.652200\pi\)
\(152\) 5.08858 0.412739
\(153\) 10.0004 0.808488
\(154\) −23.9097 −1.92670
\(155\) 0 0
\(156\) −53.6782 −4.29770
\(157\) 4.12059 0.328859 0.164430 0.986389i \(-0.447422\pi\)
0.164430 + 0.986389i \(0.447422\pi\)
\(158\) −4.72697 −0.376057
\(159\) 22.1730 1.75844
\(160\) 0 0
\(161\) 2.70743 0.213375
\(162\) 8.29083 0.651389
\(163\) −3.19755 −0.250452 −0.125226 0.992128i \(-0.539966\pi\)
−0.125226 + 0.992128i \(0.539966\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 4.30056 0.333788
\(167\) −14.6050 −1.13017 −0.565086 0.825032i \(-0.691157\pi\)
−0.565086 + 0.825032i \(0.691157\pi\)
\(168\) −33.8608 −2.61242
\(169\) 18.6623 1.43556
\(170\) 0 0
\(171\) 9.09832 0.695766
\(172\) −35.3672 −2.69672
\(173\) 9.00120 0.684348 0.342174 0.939637i \(-0.388837\pi\)
0.342174 + 0.939637i \(0.388837\pi\)
\(174\) −6.65427 −0.504459
\(175\) 0 0
\(176\) 0.776562 0.0585356
\(177\) 28.9028 2.17247
\(178\) 7.61725 0.570937
\(179\) −21.3085 −1.59268 −0.796338 0.604852i \(-0.793232\pi\)
−0.796338 + 0.604852i \(0.793232\pi\)
\(180\) 0 0
\(181\) −16.9708 −1.26143 −0.630715 0.776014i \(-0.717238\pi\)
−0.630715 + 0.776014i \(0.717238\pi\)
\(182\) 50.6873 3.75719
\(183\) −13.6058 −1.00577
\(184\) −2.07196 −0.152747
\(185\) 0 0
\(186\) −4.35371 −0.319230
\(187\) 4.95804 0.362568
\(188\) 16.2881 1.18793
\(189\) −26.6171 −1.93611
\(190\) 0 0
\(191\) −8.40687 −0.608300 −0.304150 0.952624i \(-0.598372\pi\)
−0.304150 + 0.952624i \(0.598372\pi\)
\(192\) −37.0584 −2.67446
\(193\) −0.791267 −0.0569567 −0.0284783 0.999594i \(-0.509066\pi\)
−0.0284783 + 0.999594i \(0.509066\pi\)
\(194\) 0.885700 0.0635895
\(195\) 0 0
\(196\) 27.4228 1.95877
\(197\) −24.5062 −1.74599 −0.872997 0.487726i \(-0.837826\pi\)
−0.872997 + 0.487726i \(0.837826\pi\)
\(198\) 32.7161 2.32503
\(199\) 19.3085 1.36875 0.684373 0.729132i \(-0.260076\pi\)
0.684373 + 0.729132i \(0.260076\pi\)
\(200\) 0 0
\(201\) −18.7074 −1.31952
\(202\) 27.4196 1.92923
\(203\) 3.91261 0.274612
\(204\) 17.8193 1.24760
\(205\) 0 0
\(206\) 34.4388 2.39947
\(207\) −3.70463 −0.257490
\(208\) −1.64627 −0.114148
\(209\) 4.51078 0.312017
\(210\) 0 0
\(211\) 19.2554 1.32560 0.662798 0.748798i \(-0.269369\pi\)
0.662798 + 0.748798i \(0.269369\pi\)
\(212\) 25.3205 1.73902
\(213\) 5.78056 0.396077
\(214\) 9.00799 0.615773
\(215\) 0 0
\(216\) 20.3697 1.38598
\(217\) 2.55992 0.173779
\(218\) −17.3960 −1.17821
\(219\) −30.5268 −2.06281
\(220\) 0 0
\(221\) −10.5108 −0.707032
\(222\) 26.0356 1.74740
\(223\) −10.8691 −0.727852 −0.363926 0.931428i \(-0.618564\pi\)
−0.363926 + 0.931428i \(0.618564\pi\)
\(224\) 20.7954 1.38945
\(225\) 0 0
\(226\) 43.0399 2.86297
\(227\) −17.3104 −1.14893 −0.574467 0.818528i \(-0.694790\pi\)
−0.574467 + 0.818528i \(0.694790\pi\)
\(228\) 16.2119 1.07366
\(229\) 18.7074 1.23622 0.618111 0.786091i \(-0.287898\pi\)
0.618111 + 0.786091i \(0.287898\pi\)
\(230\) 0 0
\(231\) −30.0160 −1.97491
\(232\) −2.99427 −0.196583
\(233\) −14.6281 −0.958320 −0.479160 0.877728i \(-0.659059\pi\)
−0.479160 + 0.877728i \(0.659059\pi\)
\(234\) −69.3565 −4.53397
\(235\) 0 0
\(236\) 33.0056 2.14848
\(237\) −5.93419 −0.385467
\(238\) −16.8264 −1.09070
\(239\) −2.00000 −0.129369 −0.0646846 0.997906i \(-0.520604\pi\)
−0.0646846 + 0.997906i \(0.520604\pi\)
\(240\) 0 0
\(241\) −5.55595 −0.357890 −0.178945 0.983859i \(-0.557268\pi\)
−0.178945 + 0.983859i \(0.557268\pi\)
\(242\) −9.10519 −0.585304
\(243\) −10.0004 −0.641529
\(244\) −15.5371 −0.994664
\(245\) 0 0
\(246\) 0 0
\(247\) −9.56263 −0.608455
\(248\) −1.95907 −0.124401
\(249\) 5.39888 0.342140
\(250\) 0 0
\(251\) −9.27137 −0.585204 −0.292602 0.956234i \(-0.594521\pi\)
−0.292602 + 0.956234i \(0.594521\pi\)
\(252\) −69.1369 −4.35521
\(253\) −1.83669 −0.115472
\(254\) −11.4868 −0.720747
\(255\) 0 0
\(256\) −17.8457 −1.11536
\(257\) 14.1129 0.880337 0.440168 0.897915i \(-0.354919\pi\)
0.440168 + 0.897915i \(0.354919\pi\)
\(258\) −71.3039 −4.43919
\(259\) −15.3085 −0.951227
\(260\) 0 0
\(261\) −5.35371 −0.331387
\(262\) 45.3907 2.80425
\(263\) −6.97962 −0.430382 −0.215191 0.976572i \(-0.569037\pi\)
−0.215191 + 0.976572i \(0.569037\pi\)
\(264\) 22.9708 1.41376
\(265\) 0 0
\(266\) −15.3085 −0.938627
\(267\) 9.56263 0.585223
\(268\) −21.3630 −1.30495
\(269\) −7.29257 −0.444636 −0.222318 0.974974i \(-0.571362\pi\)
−0.222318 + 0.974974i \(0.571362\pi\)
\(270\) 0 0
\(271\) −23.3617 −1.41912 −0.709561 0.704644i \(-0.751107\pi\)
−0.709561 + 0.704644i \(0.751107\pi\)
\(272\) 0.546506 0.0331368
\(273\) 63.6323 3.85120
\(274\) 14.4228 0.871316
\(275\) 0 0
\(276\) −6.60112 −0.397341
\(277\) −2.91337 −0.175047 −0.0875236 0.996162i \(-0.527895\pi\)
−0.0875236 + 0.996162i \(0.527895\pi\)
\(278\) 50.4425 3.02534
\(279\) −3.50279 −0.209707
\(280\) 0 0
\(281\) 30.1730 1.79997 0.899986 0.435918i \(-0.143576\pi\)
0.899986 + 0.435918i \(0.143576\pi\)
\(282\) 32.8385 1.95550
\(283\) −2.01341 −0.119685 −0.0598425 0.998208i \(-0.519060\pi\)
−0.0598425 + 0.998208i \(0.519060\pi\)
\(284\) 6.60112 0.391704
\(285\) 0 0
\(286\) −34.3857 −2.03327
\(287\) 0 0
\(288\) −28.4547 −1.67671
\(289\) −13.5108 −0.794752
\(290\) 0 0
\(291\) 1.11190 0.0651807
\(292\) −34.8601 −2.04003
\(293\) −10.8691 −0.634982 −0.317491 0.948261i \(-0.602840\pi\)
−0.317491 + 0.948261i \(0.602840\pi\)
\(294\) 55.2873 3.22442
\(295\) 0 0
\(296\) 11.7154 0.680945
\(297\) 18.0567 1.04776
\(298\) 9.77877 0.566469
\(299\) 3.89369 0.225178
\(300\) 0 0
\(301\) 41.9256 2.41655
\(302\) −26.0356 −1.49818
\(303\) 34.4223 1.97751
\(304\) 0.497206 0.0285167
\(305\) 0 0
\(306\) 23.0240 1.31619
\(307\) −9.02429 −0.515043 −0.257522 0.966273i \(-0.582906\pi\)
−0.257522 + 0.966273i \(0.582906\pi\)
\(308\) −34.2768 −1.95310
\(309\) 43.2342 2.45951
\(310\) 0 0
\(311\) −11.1143 −0.630234 −0.315117 0.949053i \(-0.602044\pi\)
−0.315117 + 0.949053i \(0.602044\pi\)
\(312\) −48.6969 −2.75692
\(313\) −25.7365 −1.45471 −0.727356 0.686260i \(-0.759251\pi\)
−0.727356 + 0.686260i \(0.759251\pi\)
\(314\) 9.48682 0.535372
\(315\) 0 0
\(316\) −6.77656 −0.381211
\(317\) 0.837444 0.0470355 0.0235178 0.999723i \(-0.492513\pi\)
0.0235178 + 0.999723i \(0.492513\pi\)
\(318\) 51.0489 2.86268
\(319\) −2.65427 −0.148611
\(320\) 0 0
\(321\) 11.3085 0.631182
\(322\) 6.23330 0.347368
\(323\) 3.17446 0.176632
\(324\) 11.8857 0.660317
\(325\) 0 0
\(326\) −7.36170 −0.407727
\(327\) −21.8388 −1.20769
\(328\) 0 0
\(329\) −19.3085 −1.06451
\(330\) 0 0
\(331\) 22.0691 1.21303 0.606515 0.795072i \(-0.292567\pi\)
0.606515 + 0.795072i \(0.292567\pi\)
\(332\) 6.16526 0.338363
\(333\) 20.9470 1.14789
\(334\) −33.6251 −1.83988
\(335\) 0 0
\(336\) −3.30855 −0.180496
\(337\) 7.74780 0.422049 0.211025 0.977481i \(-0.432320\pi\)
0.211025 + 0.977481i \(0.432320\pi\)
\(338\) 42.9660 2.33704
\(339\) 54.0320 2.93461
\(340\) 0 0
\(341\) −1.73662 −0.0940433
\(342\) 20.9470 1.13269
\(343\) −5.11984 −0.276445
\(344\) −32.0851 −1.72991
\(345\) 0 0
\(346\) 20.7234 1.11410
\(347\) 9.33972 0.501383 0.250691 0.968067i \(-0.419342\pi\)
0.250691 + 0.968067i \(0.419342\pi\)
\(348\) −9.53954 −0.511373
\(349\) −21.6623 −1.15955 −0.579777 0.814775i \(-0.696860\pi\)
−0.579777 + 0.814775i \(0.696860\pi\)
\(350\) 0 0
\(351\) −38.2794 −2.04320
\(352\) −14.1073 −0.751924
\(353\) −20.5623 −1.09442 −0.547211 0.836995i \(-0.684310\pi\)
−0.547211 + 0.836995i \(0.684310\pi\)
\(354\) 66.5427 3.53671
\(355\) 0 0
\(356\) 10.9201 0.578762
\(357\) −21.1237 −1.11799
\(358\) −49.0585 −2.59282
\(359\) 30.5639 1.61310 0.806551 0.591164i \(-0.201331\pi\)
0.806551 + 0.591164i \(0.201331\pi\)
\(360\) 0 0
\(361\) −16.1119 −0.847995
\(362\) −39.0718 −2.05357
\(363\) −11.4306 −0.599949
\(364\) 72.6650 3.80868
\(365\) 0 0
\(366\) −31.3245 −1.63736
\(367\) 13.7825 0.719441 0.359721 0.933060i \(-0.382872\pi\)
0.359721 + 0.933060i \(0.382872\pi\)
\(368\) −0.202451 −0.0105535
\(369\) 0 0
\(370\) 0 0
\(371\) −30.0160 −1.55835
\(372\) −6.24147 −0.323605
\(373\) 27.2659 1.41178 0.705888 0.708324i \(-0.250548\pi\)
0.705888 + 0.708324i \(0.250548\pi\)
\(374\) 11.4149 0.590248
\(375\) 0 0
\(376\) 14.7766 0.762043
\(377\) 5.62692 0.289801
\(378\) −61.2804 −3.15192
\(379\) 16.4069 0.842764 0.421382 0.906883i \(-0.361545\pi\)
0.421382 + 0.906883i \(0.361545\pi\)
\(380\) 0 0
\(381\) −14.4204 −0.738782
\(382\) −19.3551 −0.990293
\(383\) 11.7378 0.599776 0.299888 0.953974i \(-0.403051\pi\)
0.299888 + 0.953974i \(0.403051\pi\)
\(384\) −54.5959 −2.78608
\(385\) 0 0
\(386\) −1.82173 −0.0927236
\(387\) −57.3678 −2.91617
\(388\) 1.26974 0.0644610
\(389\) −12.0000 −0.608424 −0.304212 0.952604i \(-0.598393\pi\)
−0.304212 + 0.952604i \(0.598393\pi\)
\(390\) 0 0
\(391\) −1.29257 −0.0653681
\(392\) 24.8780 1.25653
\(393\) 56.9831 2.87442
\(394\) −56.4204 −2.84242
\(395\) 0 0
\(396\) 46.9017 2.35690
\(397\) −6.03349 −0.302812 −0.151406 0.988472i \(-0.548380\pi\)
−0.151406 + 0.988472i \(0.548380\pi\)
\(398\) 44.4540 2.22828
\(399\) −19.2182 −0.962114
\(400\) 0 0
\(401\) −21.4656 −1.07194 −0.535971 0.844237i \(-0.680054\pi\)
−0.535971 + 0.844237i \(0.680054\pi\)
\(402\) −43.0700 −2.14814
\(403\) 3.68155 0.183391
\(404\) 39.3085 1.95567
\(405\) 0 0
\(406\) 9.00799 0.447059
\(407\) 10.3851 0.514773
\(408\) 16.1657 0.800322
\(409\) −4.49481 −0.222254 −0.111127 0.993806i \(-0.535446\pi\)
−0.111127 + 0.993806i \(0.535446\pi\)
\(410\) 0 0
\(411\) 18.1063 0.893119
\(412\) 49.3713 2.43235
\(413\) −39.1261 −1.92527
\(414\) −8.52916 −0.419185
\(415\) 0 0
\(416\) 29.9068 1.46630
\(417\) 63.3251 3.10104
\(418\) 10.3851 0.507954
\(419\) 4.19665 0.205020 0.102510 0.994732i \(-0.467313\pi\)
0.102510 + 0.994732i \(0.467313\pi\)
\(420\) 0 0
\(421\) −18.5108 −0.902160 −0.451080 0.892483i \(-0.648961\pi\)
−0.451080 + 0.892483i \(0.648961\pi\)
\(422\) 44.3316 2.15803
\(423\) 26.4203 1.28460
\(424\) 22.9708 1.11556
\(425\) 0 0
\(426\) 13.3085 0.644801
\(427\) 18.4184 0.891327
\(428\) 12.9138 0.624213
\(429\) −43.1675 −2.08414
\(430\) 0 0
\(431\) 37.1279 1.78839 0.894193 0.447681i \(-0.147750\pi\)
0.894193 + 0.447681i \(0.147750\pi\)
\(432\) 1.99033 0.0957596
\(433\) 16.8577 0.810128 0.405064 0.914288i \(-0.367249\pi\)
0.405064 + 0.914288i \(0.367249\pi\)
\(434\) 5.89369 0.282906
\(435\) 0 0
\(436\) −24.9389 −1.19435
\(437\) −1.17597 −0.0562543
\(438\) −70.2816 −3.35818
\(439\) −9.21821 −0.439961 −0.219981 0.975504i \(-0.570599\pi\)
−0.219981 + 0.975504i \(0.570599\pi\)
\(440\) 0 0
\(441\) 44.4816 2.11817
\(442\) −24.1989 −1.15102
\(443\) −18.9023 −0.898078 −0.449039 0.893512i \(-0.648234\pi\)
−0.449039 + 0.893512i \(0.648234\pi\)
\(444\) 37.3245 1.77134
\(445\) 0 0
\(446\) −25.0240 −1.18492
\(447\) 12.2762 0.580643
\(448\) 50.1665 2.37014
\(449\) −31.3245 −1.47830 −0.739148 0.673543i \(-0.764772\pi\)
−0.739148 + 0.673543i \(0.764772\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 61.7019 2.90221
\(453\) −32.6849 −1.53567
\(454\) −39.8537 −1.87043
\(455\) 0 0
\(456\) 14.7074 0.688738
\(457\) 36.6287 1.71342 0.856710 0.515799i \(-0.172505\pi\)
0.856710 + 0.515799i \(0.172505\pi\)
\(458\) 43.0700 2.01253
\(459\) 12.7074 0.593132
\(460\) 0 0
\(461\) 28.8297 1.34273 0.671367 0.741125i \(-0.265707\pi\)
0.671367 + 0.741125i \(0.265707\pi\)
\(462\) −69.1056 −3.21508
\(463\) 29.6409 1.37753 0.688766 0.724984i \(-0.258153\pi\)
0.688766 + 0.724984i \(0.258153\pi\)
\(464\) −0.292570 −0.0135822
\(465\) 0 0
\(466\) −33.6782 −1.56011
\(467\) −26.4746 −1.22510 −0.612550 0.790432i \(-0.709856\pi\)
−0.612550 + 0.790432i \(0.709856\pi\)
\(468\) −99.4291 −4.59611
\(469\) 25.3245 1.16938
\(470\) 0 0
\(471\) 11.9097 0.548768
\(472\) 29.9427 1.37822
\(473\) −28.4419 −1.30776
\(474\) −13.6623 −0.627528
\(475\) 0 0
\(476\) −24.1223 −1.10564
\(477\) 41.0715 1.88054
\(478\) −4.60459 −0.210609
\(479\) 27.1810 1.24193 0.620967 0.783837i \(-0.286740\pi\)
0.620967 + 0.783837i \(0.286740\pi\)
\(480\) 0 0
\(481\) −22.0160 −1.00384
\(482\) −12.7914 −0.582634
\(483\) 7.82523 0.356060
\(484\) −13.0532 −0.593325
\(485\) 0 0
\(486\) −23.0240 −1.04439
\(487\) −32.0922 −1.45424 −0.727118 0.686513i \(-0.759141\pi\)
−0.727118 + 0.686513i \(0.759141\pi\)
\(488\) −14.0953 −0.638065
\(489\) −9.24182 −0.417929
\(490\) 0 0
\(491\) −10.0691 −0.454414 −0.227207 0.973847i \(-0.572959\pi\)
−0.227207 + 0.973847i \(0.572959\pi\)
\(492\) 0 0
\(493\) −1.86794 −0.0841280
\(494\) −22.0160 −0.990546
\(495\) 0 0
\(496\) −0.191421 −0.00859506
\(497\) −7.82523 −0.351009
\(498\) 12.4298 0.556993
\(499\) −29.9416 −1.34037 −0.670185 0.742194i \(-0.733785\pi\)
−0.670185 + 0.742194i \(0.733785\pi\)
\(500\) 0 0
\(501\) −42.2126 −1.88592
\(502\) −21.3454 −0.952693
\(503\) 24.0140 1.07073 0.535366 0.844620i \(-0.320174\pi\)
0.535366 + 0.844620i \(0.320174\pi\)
\(504\) −62.7210 −2.79382
\(505\) 0 0
\(506\) −4.22860 −0.187984
\(507\) 53.9391 2.39552
\(508\) −16.4674 −0.730625
\(509\) −21.0771 −0.934227 −0.467113 0.884197i \(-0.654706\pi\)
−0.467113 + 0.884197i \(0.654706\pi\)
\(510\) 0 0
\(511\) 41.3245 1.82809
\(512\) −3.30707 −0.146153
\(513\) 11.5611 0.510436
\(514\) 32.4920 1.43316
\(515\) 0 0
\(516\) −102.221 −4.50003
\(517\) 13.0987 0.576080
\(518\) −35.2448 −1.54857
\(519\) 26.0160 1.14197
\(520\) 0 0
\(521\) 11.6623 0.510933 0.255466 0.966818i \(-0.417771\pi\)
0.255466 + 0.966818i \(0.417771\pi\)
\(522\) −12.3258 −0.539487
\(523\) 36.3895 1.59120 0.795601 0.605821i \(-0.207155\pi\)
0.795601 + 0.605821i \(0.207155\pi\)
\(524\) 65.0719 2.84268
\(525\) 0 0
\(526\) −16.0691 −0.700647
\(527\) −1.22215 −0.0532376
\(528\) 2.24448 0.0976785
\(529\) −22.5212 −0.979181
\(530\) 0 0
\(531\) 53.5371 2.32331
\(532\) −21.9463 −0.951491
\(533\) 0 0
\(534\) 22.0160 0.952724
\(535\) 0 0
\(536\) −19.3805 −0.837110
\(537\) −61.5877 −2.65770
\(538\) −16.7896 −0.723853
\(539\) 22.0532 0.949897
\(540\) 0 0
\(541\) 9.92564 0.426737 0.213368 0.976972i \(-0.431557\pi\)
0.213368 + 0.976972i \(0.431557\pi\)
\(542\) −53.7855 −2.31029
\(543\) −49.0504 −2.10495
\(544\) −9.92804 −0.425661
\(545\) 0 0
\(546\) 146.500 6.26964
\(547\) −9.03245 −0.386200 −0.193100 0.981179i \(-0.561854\pi\)
−0.193100 + 0.981179i \(0.561854\pi\)
\(548\) 20.6765 0.883258
\(549\) −25.2022 −1.07561
\(550\) 0 0
\(551\) −1.69944 −0.0723986
\(552\) −5.98854 −0.254889
\(553\) 8.03321 0.341607
\(554\) −6.70743 −0.284971
\(555\) 0 0
\(556\) 72.3141 3.06680
\(557\) −13.7145 −0.581101 −0.290550 0.956860i \(-0.593838\pi\)
−0.290550 + 0.956860i \(0.593838\pi\)
\(558\) −8.06446 −0.341396
\(559\) 60.2953 2.55022
\(560\) 0 0
\(561\) 14.3301 0.605018
\(562\) 69.4672 2.93030
\(563\) 20.2781 0.854621 0.427311 0.904105i \(-0.359461\pi\)
0.427311 + 0.904105i \(0.359461\pi\)
\(564\) 47.0771 1.98230
\(565\) 0 0
\(566\) −4.63547 −0.194843
\(567\) −14.0898 −0.591715
\(568\) 5.98854 0.251273
\(569\) 13.3085 0.557923 0.278962 0.960302i \(-0.410010\pi\)
0.278962 + 0.960302i \(0.410010\pi\)
\(570\) 0 0
\(571\) −16.4204 −0.687174 −0.343587 0.939121i \(-0.611642\pi\)
−0.343587 + 0.939121i \(0.611642\pi\)
\(572\) −49.2951 −2.06113
\(573\) −24.2982 −1.01507
\(574\) 0 0
\(575\) 0 0
\(576\) −68.6439 −2.86016
\(577\) 14.7505 0.614071 0.307036 0.951698i \(-0.400663\pi\)
0.307036 + 0.951698i \(0.400663\pi\)
\(578\) −31.1058 −1.29383
\(579\) −2.28698 −0.0950438
\(580\) 0 0
\(581\) −7.30855 −0.303210
\(582\) 2.55992 0.106112
\(583\) 20.3625 0.843329
\(584\) −31.6251 −1.30866
\(585\) 0 0
\(586\) −25.0240 −1.03373
\(587\) 6.36385 0.262664 0.131332 0.991338i \(-0.458075\pi\)
0.131332 + 0.991338i \(0.458075\pi\)
\(588\) 79.2597 3.26861
\(589\) −1.11190 −0.0458150
\(590\) 0 0
\(591\) −70.8297 −2.91355
\(592\) 1.14472 0.0470475
\(593\) −30.0706 −1.23485 −0.617426 0.786629i \(-0.711824\pi\)
−0.617426 + 0.786629i \(0.711824\pi\)
\(594\) 41.5719 1.70572
\(595\) 0 0
\(596\) 14.0188 0.574233
\(597\) 55.8071 2.28403
\(598\) 8.96442 0.366582
\(599\) −25.0587 −1.02387 −0.511936 0.859023i \(-0.671072\pi\)
−0.511936 + 0.859023i \(0.671072\pi\)
\(600\) 0 0
\(601\) 40.0320 1.63294 0.816469 0.577390i \(-0.195929\pi\)
0.816469 + 0.577390i \(0.195929\pi\)
\(602\) 96.5252 3.93407
\(603\) −34.6521 −1.41114
\(604\) −37.3245 −1.51871
\(605\) 0 0
\(606\) 79.2502 3.21932
\(607\) 41.3557 1.67858 0.839288 0.543687i \(-0.182972\pi\)
0.839288 + 0.543687i \(0.182972\pi\)
\(608\) −9.03245 −0.366314
\(609\) 11.3085 0.458245
\(610\) 0 0
\(611\) −27.7686 −1.12340
\(612\) 33.0071 1.33423
\(613\) −40.5183 −1.63652 −0.818258 0.574851i \(-0.805060\pi\)
−0.818258 + 0.574851i \(0.805060\pi\)
\(614\) −20.7766 −0.838474
\(615\) 0 0
\(616\) −31.0959 −1.25289
\(617\) −1.76865 −0.0712033 −0.0356016 0.999366i \(-0.511335\pi\)
−0.0356016 + 0.999366i \(0.511335\pi\)
\(618\) 99.5378 4.00400
\(619\) −0.249804 −0.0100405 −0.00502023 0.999987i \(-0.501598\pi\)
−0.00502023 + 0.999987i \(0.501598\pi\)
\(620\) 0 0
\(621\) −4.70743 −0.188903
\(622\) −25.5884 −1.02600
\(623\) −12.9451 −0.518633
\(624\) −4.75818 −0.190480
\(625\) 0 0
\(626\) −59.2530 −2.36823
\(627\) 13.0374 0.520664
\(628\) 13.6003 0.542709
\(629\) 7.30855 0.291411
\(630\) 0 0
\(631\) 9.48922 0.377760 0.188880 0.982000i \(-0.439514\pi\)
0.188880 + 0.982000i \(0.439514\pi\)
\(632\) −6.14770 −0.244542
\(633\) 55.6535 2.21203
\(634\) 1.92804 0.0765723
\(635\) 0 0
\(636\) 73.1834 2.90191
\(637\) −46.7516 −1.85236
\(638\) −6.11092 −0.241934
\(639\) 10.7074 0.423579
\(640\) 0 0
\(641\) −49.9416 −1.97258 −0.986288 0.165035i \(-0.947226\pi\)
−0.986288 + 0.165035i \(0.947226\pi\)
\(642\) 26.0356 1.02754
\(643\) −25.8589 −1.01977 −0.509887 0.860241i \(-0.670313\pi\)
−0.509887 + 0.860241i \(0.670313\pi\)
\(644\) 8.93603 0.352129
\(645\) 0 0
\(646\) 7.30855 0.287551
\(647\) 32.1384 1.26349 0.631745 0.775177i \(-0.282339\pi\)
0.631745 + 0.775177i \(0.282339\pi\)
\(648\) 10.7827 0.423585
\(649\) 26.5427 1.04189
\(650\) 0 0
\(651\) 7.39888 0.289985
\(652\) −10.5537 −0.413315
\(653\) 9.79247 0.383209 0.191604 0.981472i \(-0.438631\pi\)
0.191604 + 0.981472i \(0.438631\pi\)
\(654\) −50.2794 −1.96608
\(655\) 0 0
\(656\) 0 0
\(657\) −56.5452 −2.20604
\(658\) −44.4540 −1.73300
\(659\) −7.55835 −0.294432 −0.147216 0.989104i \(-0.547031\pi\)
−0.147216 + 0.989104i \(0.547031\pi\)
\(660\) 0 0
\(661\) −10.9041 −0.424119 −0.212060 0.977257i \(-0.568017\pi\)
−0.212060 + 0.977257i \(0.568017\pi\)
\(662\) 50.8096 1.97477
\(663\) −30.3791 −1.17983
\(664\) 5.59313 0.217056
\(665\) 0 0
\(666\) 48.2262 1.86873
\(667\) 0.691975 0.0267934
\(668\) −48.2048 −1.86510
\(669\) −31.4149 −1.21457
\(670\) 0 0
\(671\) −12.4948 −0.482357
\(672\) 60.1044 2.31858
\(673\) −12.6296 −0.486836 −0.243418 0.969921i \(-0.578269\pi\)
−0.243418 + 0.969921i \(0.578269\pi\)
\(674\) 17.8377 0.687083
\(675\) 0 0
\(676\) 61.5959 2.36907
\(677\) 8.87065 0.340927 0.170463 0.985364i \(-0.445474\pi\)
0.170463 + 0.985364i \(0.445474\pi\)
\(678\) 124.397 4.77746
\(679\) −1.50519 −0.0577641
\(680\) 0 0
\(681\) −50.0320 −1.91723
\(682\) −3.99821 −0.153099
\(683\) −24.4749 −0.936507 −0.468254 0.883594i \(-0.655117\pi\)
−0.468254 + 0.883594i \(0.655117\pi\)
\(684\) 30.0296 1.14821
\(685\) 0 0
\(686\) −11.7874 −0.450044
\(687\) 54.0697 2.06289
\(688\) −3.13504 −0.119522
\(689\) −43.1675 −1.64455
\(690\) 0 0
\(691\) −3.30855 −0.125863 −0.0629315 0.998018i \(-0.520045\pi\)
−0.0629315 + 0.998018i \(0.520045\pi\)
\(692\) 29.7090 1.12937
\(693\) −55.5991 −2.11204
\(694\) 21.5028 0.816235
\(695\) 0 0
\(696\) −8.65427 −0.328039
\(697\) 0 0
\(698\) −49.8729 −1.88772
\(699\) −42.2794 −1.59915
\(700\) 0 0
\(701\) −10.8485 −0.409743 −0.204871 0.978789i \(-0.565678\pi\)
−0.204871 + 0.978789i \(0.565678\pi\)
\(702\) −88.1303 −3.32627
\(703\) 6.64926 0.250781
\(704\) −34.0324 −1.28264
\(705\) 0 0
\(706\) −47.3405 −1.78168
\(707\) −46.5979 −1.75250
\(708\) 95.3954 3.58518
\(709\) −31.1675 −1.17052 −0.585259 0.810846i \(-0.699007\pi\)
−0.585259 + 0.810846i \(0.699007\pi\)
\(710\) 0 0
\(711\) −10.9920 −0.412233
\(712\) 9.90668 0.371269
\(713\) 0.452741 0.0169553
\(714\) −48.6331 −1.82005
\(715\) 0 0
\(716\) −70.3301 −2.62836
\(717\) −5.78056 −0.215879
\(718\) 70.3672 2.62608
\(719\) −13.0056 −0.485027 −0.242513 0.970148i \(-0.577972\pi\)
−0.242513 + 0.970148i \(0.577972\pi\)
\(720\) 0 0
\(721\) −58.5268 −2.17965
\(722\) −37.0943 −1.38051
\(723\) −16.0582 −0.597213
\(724\) −56.0132 −2.08171
\(725\) 0 0
\(726\) −26.3165 −0.976698
\(727\) −1.19089 −0.0441677 −0.0220839 0.999756i \(-0.507030\pi\)
−0.0220839 + 0.999756i \(0.507030\pi\)
\(728\) 65.9218 2.44322
\(729\) −39.7074 −1.47065
\(730\) 0 0
\(731\) −20.0160 −0.740318
\(732\) −44.9067 −1.65980
\(733\) 34.5990 1.27794 0.638971 0.769231i \(-0.279360\pi\)
0.638971 + 0.769231i \(0.279360\pi\)
\(734\) 31.7314 1.17123
\(735\) 0 0
\(736\) 3.67781 0.135566
\(737\) −17.1799 −0.632829
\(738\) 0 0
\(739\) −41.7821 −1.53698 −0.768491 0.639861i \(-0.778992\pi\)
−0.768491 + 0.639861i \(0.778992\pi\)
\(740\) 0 0
\(741\) −27.6387 −1.01533
\(742\) −69.1056 −2.53695
\(743\) −4.02130 −0.147527 −0.0737636 0.997276i \(-0.523501\pi\)
−0.0737636 + 0.997276i \(0.523501\pi\)
\(744\) −5.66226 −0.207589
\(745\) 0 0
\(746\) 62.7742 2.29833
\(747\) 10.0004 0.365897
\(748\) 16.3643 0.598338
\(749\) −15.3085 −0.559362
\(750\) 0 0
\(751\) −0.497206 −0.0181433 −0.00907166 0.999959i \(-0.502888\pi\)
−0.00907166 + 0.999959i \(0.502888\pi\)
\(752\) 1.44382 0.0526507
\(753\) −26.7968 −0.976531
\(754\) 12.9548 0.471787
\(755\) 0 0
\(756\) −87.8513 −3.19512
\(757\) −18.6944 −0.679458 −0.339729 0.940523i \(-0.610335\pi\)
−0.339729 + 0.940523i \(0.610335\pi\)
\(758\) 37.7734 1.37199
\(759\) −5.30855 −0.192688
\(760\) 0 0
\(761\) −3.38291 −0.122630 −0.0613151 0.998118i \(-0.519529\pi\)
−0.0613151 + 0.998118i \(0.519529\pi\)
\(762\) −33.2001 −1.20271
\(763\) 29.5635 1.07027
\(764\) −27.7474 −1.00386
\(765\) 0 0
\(766\) 27.0240 0.976416
\(767\) −56.2692 −2.03176
\(768\) −51.5790 −1.86120
\(769\) −7.41486 −0.267387 −0.133693 0.991023i \(-0.542684\pi\)
−0.133693 + 0.991023i \(0.542684\pi\)
\(770\) 0 0
\(771\) 40.7901 1.46902
\(772\) −2.61162 −0.0939944
\(773\) −33.2775 −1.19691 −0.598455 0.801156i \(-0.704218\pi\)
−0.598455 + 0.801156i \(0.704218\pi\)
\(774\) −132.077 −4.74743
\(775\) 0 0
\(776\) 1.15190 0.0413510
\(777\) −44.2460 −1.58732
\(778\) −27.6275 −0.990495
\(779\) 0 0
\(780\) 0 0
\(781\) 5.30855 0.189955
\(782\) −2.97588 −0.106417
\(783\) −6.80289 −0.243116
\(784\) 2.43084 0.0868156
\(785\) 0 0
\(786\) 131.192 4.67946
\(787\) 18.2878 0.651890 0.325945 0.945389i \(-0.394318\pi\)
0.325945 + 0.945389i \(0.394318\pi\)
\(788\) −80.8841 −2.88138
\(789\) −20.1730 −0.718179
\(790\) 0 0
\(791\) −73.1439 −2.60070
\(792\) 42.5492 1.51192
\(793\) 26.4883 0.940629
\(794\) −13.8909 −0.492968
\(795\) 0 0
\(796\) 63.7290 2.25881
\(797\) −44.5845 −1.57926 −0.789632 0.613581i \(-0.789729\pi\)
−0.789632 + 0.613581i \(0.789729\pi\)
\(798\) −44.2460 −1.56629
\(799\) 9.21821 0.326117
\(800\) 0 0
\(801\) 17.7130 0.625859
\(802\) −49.4202 −1.74509
\(803\) −28.0341 −0.989302
\(804\) −61.7450 −2.17758
\(805\) 0 0
\(806\) 8.47600 0.298554
\(807\) −21.0776 −0.741965
\(808\) 35.6607 1.25454
\(809\) 14.1063 0.495952 0.247976 0.968766i \(-0.420235\pi\)
0.247976 + 0.968766i \(0.420235\pi\)
\(810\) 0 0
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) 12.9138 0.453186
\(813\) −67.5218 −2.36809
\(814\) 23.9097 0.838033
\(815\) 0 0
\(816\) 1.57955 0.0552954
\(817\) −18.2104 −0.637100
\(818\) −10.3484 −0.361822
\(819\) 117.867 4.11862
\(820\) 0 0
\(821\) 18.1571 0.633686 0.316843 0.948478i \(-0.397377\pi\)
0.316843 + 0.948478i \(0.397377\pi\)
\(822\) 41.6861 1.45397
\(823\) 3.25189 0.113354 0.0566770 0.998393i \(-0.481949\pi\)
0.0566770 + 0.998393i \(0.481949\pi\)
\(824\) 44.7897 1.56032
\(825\) 0 0
\(826\) −90.0799 −3.13428
\(827\) 10.7155 0.372615 0.186307 0.982492i \(-0.440348\pi\)
0.186307 + 0.982492i \(0.440348\pi\)
\(828\) −12.2274 −0.424930
\(829\) 52.3461 1.81805 0.909027 0.416736i \(-0.136826\pi\)
0.909027 + 0.416736i \(0.136826\pi\)
\(830\) 0 0
\(831\) −8.42045 −0.292102
\(832\) 72.1469 2.50124
\(833\) 15.5199 0.537733
\(834\) 145.793 5.04840
\(835\) 0 0
\(836\) 14.8881 0.514916
\(837\) −4.45095 −0.153847
\(838\) 9.66192 0.333765
\(839\) 24.6703 0.851712 0.425856 0.904791i \(-0.359973\pi\)
0.425856 + 0.904791i \(0.359973\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −42.6173 −1.46869
\(843\) 87.2085 3.00362
\(844\) 63.5535 2.18760
\(845\) 0 0
\(846\) 60.8273 2.09129
\(847\) 15.4737 0.531684
\(848\) 2.24448 0.0770758
\(849\) −5.81933 −0.199719
\(850\) 0 0
\(851\) −2.70743 −0.0928095
\(852\) 19.0791 0.653638
\(853\) −28.1115 −0.962520 −0.481260 0.876578i \(-0.659821\pi\)
−0.481260 + 0.876578i \(0.659821\pi\)
\(854\) 42.4045 1.45105
\(855\) 0 0
\(856\) 11.7154 0.400425
\(857\) 8.39482 0.286762 0.143381 0.989668i \(-0.454203\pi\)
0.143381 + 0.989668i \(0.454203\pi\)
\(858\) −99.3842 −3.39292
\(859\) 17.8405 0.608711 0.304356 0.952559i \(-0.401559\pi\)
0.304356 + 0.952559i \(0.401559\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 85.4793 2.91144
\(863\) −2.48249 −0.0845049 −0.0422524 0.999107i \(-0.513453\pi\)
−0.0422524 + 0.999107i \(0.513453\pi\)
\(864\) −36.1571 −1.23009
\(865\) 0 0
\(866\) 38.8113 1.31886
\(867\) −39.0499 −1.32621
\(868\) 8.44916 0.286783
\(869\) −5.44964 −0.184866
\(870\) 0 0
\(871\) 36.4204 1.23406
\(872\) −22.6245 −0.766164
\(873\) 2.05959 0.0697066
\(874\) −2.70743 −0.0915802
\(875\) 0 0
\(876\) −100.755 −3.40421
\(877\) −25.9813 −0.877325 −0.438662 0.898652i \(-0.644548\pi\)
−0.438662 + 0.898652i \(0.644548\pi\)
\(878\) −21.2230 −0.716243
\(879\) −31.4149 −1.05960
\(880\) 0 0
\(881\) 25.1279 0.846580 0.423290 0.905994i \(-0.360875\pi\)
0.423290 + 0.905994i \(0.360875\pi\)
\(882\) 102.410 3.44831
\(883\) 10.9684 0.369117 0.184559 0.982822i \(-0.440914\pi\)
0.184559 + 0.982822i \(0.440914\pi\)
\(884\) −34.6915 −1.16680
\(885\) 0 0
\(886\) −43.5188 −1.46204
\(887\) 2.99897 0.100695 0.0503477 0.998732i \(-0.483967\pi\)
0.0503477 + 0.998732i \(0.483967\pi\)
\(888\) 33.8608 1.13630
\(889\) 19.5212 0.654719
\(890\) 0 0
\(891\) 9.55835 0.320217
\(892\) −35.8742 −1.20116
\(893\) 8.38665 0.280649
\(894\) 28.2634 0.945269
\(895\) 0 0
\(896\) 73.9073 2.46907
\(897\) 11.2538 0.375755
\(898\) −72.1183 −2.40662
\(899\) 0.654273 0.0218212
\(900\) 0 0
\(901\) 14.3301 0.477405
\(902\) 0 0
\(903\) 121.177 4.03251
\(904\) 55.9760 1.86173
\(905\) 0 0
\(906\) −75.2502 −2.50002
\(907\) 50.5567 1.67871 0.839354 0.543585i \(-0.182934\pi\)
0.839354 + 0.543585i \(0.182934\pi\)
\(908\) −57.1341 −1.89606
\(909\) 63.7609 2.11482
\(910\) 0 0
\(911\) 35.9044 1.18957 0.594784 0.803886i \(-0.297238\pi\)
0.594784 + 0.803886i \(0.297238\pi\)
\(912\) 1.43707 0.0475860
\(913\) 4.95804 0.164087
\(914\) 84.3301 2.78939
\(915\) 0 0
\(916\) 61.7450 2.04011
\(917\) −77.1388 −2.54735
\(918\) 29.2562 0.965600
\(919\) 15.2022 0.501475 0.250738 0.968055i \(-0.419327\pi\)
0.250738 + 0.968055i \(0.419327\pi\)
\(920\) 0 0
\(921\) −26.0827 −0.859454
\(922\) 66.3745 2.18593
\(923\) −11.2538 −0.370425
\(924\) −99.0695 −3.25915
\(925\) 0 0
\(926\) 68.2422 2.24258
\(927\) 80.0834 2.63029
\(928\) 5.31495 0.174472
\(929\) −6.00000 −0.196854 −0.0984268 0.995144i \(-0.531381\pi\)
−0.0984268 + 0.995144i \(0.531381\pi\)
\(930\) 0 0
\(931\) 14.1199 0.462761
\(932\) −48.2810 −1.58150
\(933\) −32.1234 −1.05167
\(934\) −60.9524 −1.99442
\(935\) 0 0
\(936\) −90.2022 −2.94835
\(937\) −32.1859 −1.05147 −0.525734 0.850649i \(-0.676209\pi\)
−0.525734 + 0.850649i \(0.676209\pi\)
\(938\) 58.3045 1.90371
\(939\) −74.3857 −2.42748
\(940\) 0 0
\(941\) 22.3697 0.729231 0.364616 0.931158i \(-0.381200\pi\)
0.364616 + 0.931158i \(0.381200\pi\)
\(942\) 27.4196 0.893377
\(943\) 0 0
\(944\) 2.92570 0.0952236
\(945\) 0 0
\(946\) −65.4816 −2.12899
\(947\) 0.122381 0.00397684 0.00198842 0.999998i \(-0.499367\pi\)
0.00198842 + 0.999998i \(0.499367\pi\)
\(948\) −19.5862 −0.636129
\(949\) 59.4308 1.92921
\(950\) 0 0
\(951\) 2.42045 0.0784884
\(952\) −21.8838 −0.709257
\(953\) −55.4917 −1.79755 −0.898776 0.438409i \(-0.855542\pi\)
−0.898776 + 0.438409i \(0.855542\pi\)
\(954\) 94.5587 3.06145
\(955\) 0 0
\(956\) −6.60112 −0.213495
\(957\) −7.67159 −0.247987
\(958\) 62.5787 2.02183
\(959\) −24.5108 −0.791494
\(960\) 0 0
\(961\) −30.5719 −0.986191
\(962\) −50.6873 −1.63422
\(963\) 20.9470 0.675008
\(964\) −18.3377 −0.590619
\(965\) 0 0
\(966\) 18.0160 0.579655
\(967\) 49.0722 1.57806 0.789028 0.614357i \(-0.210584\pi\)
0.789028 + 0.614357i \(0.210584\pi\)
\(968\) −11.8418 −0.380611
\(969\) 9.17508 0.294746
\(970\) 0 0
\(971\) 2.08793 0.0670050 0.0335025 0.999439i \(-0.489334\pi\)
0.0335025 + 0.999439i \(0.489334\pi\)
\(972\) −33.0071 −1.05870
\(973\) −85.7241 −2.74819
\(974\) −73.8856 −2.36745
\(975\) 0 0
\(976\) −1.37725 −0.0440849
\(977\) −36.5119 −1.16812 −0.584059 0.811711i \(-0.698536\pi\)
−0.584059 + 0.811711i \(0.698536\pi\)
\(978\) −21.2774 −0.680376
\(979\) 8.78179 0.280667
\(980\) 0 0
\(981\) −40.4524 −1.29155
\(982\) −23.1821 −0.739771
\(983\) 32.8698 1.04838 0.524191 0.851601i \(-0.324368\pi\)
0.524191 + 0.851601i \(0.324368\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −4.30056 −0.136958
\(987\) −55.8071 −1.77636
\(988\) −31.5620 −1.00412
\(989\) 7.41486 0.235779
\(990\) 0 0
\(991\) −36.0160 −1.14409 −0.572043 0.820224i \(-0.693849\pi\)
−0.572043 + 0.820224i \(0.693849\pi\)
\(992\) 3.47743 0.110409
\(993\) 63.7860 2.02419
\(994\) −18.0160 −0.571432
\(995\) 0 0
\(996\) 17.8193 0.564627
\(997\) −56.8063 −1.79907 −0.899537 0.436844i \(-0.856096\pi\)
−0.899537 + 0.436844i \(0.856096\pi\)
\(998\) −68.9344 −2.18208
\(999\) 26.6171 0.842128
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.a.l.1.5 6
3.2 odd 2 6525.2.a.bt.1.2 6
5.2 odd 4 145.2.b.c.59.5 yes 6
5.3 odd 4 145.2.b.c.59.2 6
5.4 even 2 inner 725.2.a.l.1.2 6
15.2 even 4 1305.2.c.h.784.2 6
15.8 even 4 1305.2.c.h.784.5 6
15.14 odd 2 6525.2.a.bt.1.5 6
20.3 even 4 2320.2.d.g.929.1 6
20.7 even 4 2320.2.d.g.929.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.b.c.59.2 6 5.3 odd 4
145.2.b.c.59.5 yes 6 5.2 odd 4
725.2.a.l.1.2 6 5.4 even 2 inner
725.2.a.l.1.5 6 1.1 even 1 trivial
1305.2.c.h.784.2 6 15.2 even 4
1305.2.c.h.784.5 6 15.8 even 4
2320.2.d.g.929.1 6 20.3 even 4
2320.2.d.g.929.6 6 20.7 even 4
6525.2.a.bt.1.2 6 3.2 odd 2
6525.2.a.bt.1.5 6 15.14 odd 2