Properties

Label 725.2.a.j.1.5
Level $725$
Weight $2$
Character 725.1
Self dual yes
Analytic conductor $5.789$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [725,2,Mod(1,725)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("725.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(725, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,6,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.294577.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 7x^{3} - x^{2} + 7x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-2.35417\) of defining polynomial
Character \(\chi\) \(=\) 725.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.35417 q^{2} +1.80364 q^{3} +3.54210 q^{4} +4.24606 q^{6} -0.0127981 q^{7} +3.63036 q^{8} +0.253109 q^{9} +0.615705 q^{11} +6.38866 q^{12} +3.05573 q^{13} -0.0301289 q^{14} +1.46227 q^{16} -6.63473 q^{17} +0.595861 q^{18} -3.54210 q^{19} -0.0230832 q^{21} +1.44947 q^{22} -1.27619 q^{23} +6.54785 q^{24} +7.19369 q^{26} -4.95440 q^{27} -0.0453322 q^{28} -1.00000 q^{29} +6.68608 q^{31} -3.81829 q^{32} +1.11051 q^{33} -15.6193 q^{34} +0.896537 q^{36} +6.22381 q^{37} -8.33869 q^{38} +5.51142 q^{39} +7.00863 q^{41} -0.0543416 q^{42} +5.31124 q^{43} +2.18089 q^{44} -3.00437 q^{46} +3.22196 q^{47} +2.63740 q^{48} -6.99984 q^{49} -11.9666 q^{51} +10.8237 q^{52} -3.77788 q^{53} -11.6635 q^{54} -0.0464618 q^{56} -6.38866 q^{57} -2.35417 q^{58} -8.04970 q^{59} -0.250232 q^{61} +15.7402 q^{62} -0.00323932 q^{63} -11.9134 q^{64} +2.61432 q^{66} +2.90821 q^{67} -23.5009 q^{68} -2.30179 q^{69} -14.0268 q^{71} +0.918877 q^{72} +8.75366 q^{73} +14.6519 q^{74} -12.5465 q^{76} -0.00787986 q^{77} +12.9748 q^{78} -8.35000 q^{79} -9.69526 q^{81} +16.4995 q^{82} +16.2457 q^{83} -0.0817629 q^{84} +12.5035 q^{86} -1.80364 q^{87} +2.23523 q^{88} +15.2351 q^{89} -0.0391075 q^{91} -4.52040 q^{92} +12.0593 q^{93} +7.58503 q^{94} -6.88681 q^{96} -9.90841 q^{97} -16.4788 q^{98} +0.155840 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 6 q^{3} + 4 q^{4} - q^{6} + 10 q^{7} - 3 q^{8} + 7 q^{9} + 2 q^{11} + 18 q^{12} + 8 q^{13} - 13 q^{14} + 6 q^{16} + 3 q^{17} - 16 q^{18} - 4 q^{19} + 15 q^{21} + 16 q^{22} + 3 q^{23} - 19 q^{24}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.35417 1.66465 0.832324 0.554290i \(-0.187010\pi\)
0.832324 + 0.554290i \(0.187010\pi\)
\(3\) 1.80364 1.04133 0.520665 0.853761i \(-0.325684\pi\)
0.520665 + 0.853761i \(0.325684\pi\)
\(4\) 3.54210 1.77105
\(5\) 0 0
\(6\) 4.24606 1.73345
\(7\) −0.0127981 −0.00483723 −0.00241862 0.999997i \(-0.500770\pi\)
−0.00241862 + 0.999997i \(0.500770\pi\)
\(8\) 3.63036 1.28353
\(9\) 0.253109 0.0843697
\(10\) 0 0
\(11\) 0.615705 0.185642 0.0928210 0.995683i \(-0.470412\pi\)
0.0928210 + 0.995683i \(0.470412\pi\)
\(12\) 6.38866 1.84425
\(13\) 3.05573 0.847506 0.423753 0.905778i \(-0.360713\pi\)
0.423753 + 0.905778i \(0.360713\pi\)
\(14\) −0.0301289 −0.00805229
\(15\) 0 0
\(16\) 1.46227 0.365567
\(17\) −6.63473 −1.60916 −0.804579 0.593846i \(-0.797609\pi\)
−0.804579 + 0.593846i \(0.797609\pi\)
\(18\) 0.595861 0.140446
\(19\) −3.54210 −0.812613 −0.406307 0.913737i \(-0.633184\pi\)
−0.406307 + 0.913737i \(0.633184\pi\)
\(20\) 0 0
\(21\) −0.0230832 −0.00503716
\(22\) 1.44947 0.309028
\(23\) −1.27619 −0.266104 −0.133052 0.991109i \(-0.542478\pi\)
−0.133052 + 0.991109i \(0.542478\pi\)
\(24\) 6.54785 1.33657
\(25\) 0 0
\(26\) 7.19369 1.41080
\(27\) −4.95440 −0.953474
\(28\) −0.0453322 −0.00856698
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 6.68608 1.20086 0.600428 0.799679i \(-0.294997\pi\)
0.600428 + 0.799679i \(0.294997\pi\)
\(32\) −3.81829 −0.674985
\(33\) 1.11051 0.193315
\(34\) −15.6193 −2.67868
\(35\) 0 0
\(36\) 0.896537 0.149423
\(37\) 6.22381 1.02319 0.511594 0.859227i \(-0.329055\pi\)
0.511594 + 0.859227i \(0.329055\pi\)
\(38\) −8.33869 −1.35271
\(39\) 5.51142 0.882534
\(40\) 0 0
\(41\) 7.00863 1.09456 0.547282 0.836948i \(-0.315663\pi\)
0.547282 + 0.836948i \(0.315663\pi\)
\(42\) −0.0543416 −0.00838509
\(43\) 5.31124 0.809956 0.404978 0.914326i \(-0.367279\pi\)
0.404978 + 0.914326i \(0.367279\pi\)
\(44\) 2.18089 0.328781
\(45\) 0 0
\(46\) −3.00437 −0.442970
\(47\) 3.22196 0.469971 0.234985 0.971999i \(-0.424496\pi\)
0.234985 + 0.971999i \(0.424496\pi\)
\(48\) 2.63740 0.380677
\(49\) −6.99984 −0.999977
\(50\) 0 0
\(51\) −11.9666 −1.67567
\(52\) 10.8237 1.50097
\(53\) −3.77788 −0.518931 −0.259466 0.965752i \(-0.583546\pi\)
−0.259466 + 0.965752i \(0.583546\pi\)
\(54\) −11.6635 −1.58720
\(55\) 0 0
\(56\) −0.0464618 −0.00620871
\(57\) −6.38866 −0.846199
\(58\) −2.35417 −0.309117
\(59\) −8.04970 −1.04798 −0.523991 0.851724i \(-0.675557\pi\)
−0.523991 + 0.851724i \(0.675557\pi\)
\(60\) 0 0
\(61\) −0.250232 −0.0320389 −0.0160194 0.999872i \(-0.505099\pi\)
−0.0160194 + 0.999872i \(0.505099\pi\)
\(62\) 15.7402 1.99900
\(63\) −0.00323932 −0.000408116 0
\(64\) −11.9134 −1.48918
\(65\) 0 0
\(66\) 2.61432 0.321801
\(67\) 2.90821 0.355294 0.177647 0.984094i \(-0.443151\pi\)
0.177647 + 0.984094i \(0.443151\pi\)
\(68\) −23.5009 −2.84990
\(69\) −2.30179 −0.277103
\(70\) 0 0
\(71\) −14.0268 −1.66468 −0.832339 0.554268i \(-0.812998\pi\)
−0.832339 + 0.554268i \(0.812998\pi\)
\(72\) 0.918877 0.108291
\(73\) 8.75366 1.02454 0.512269 0.858825i \(-0.328805\pi\)
0.512269 + 0.858825i \(0.328805\pi\)
\(74\) 14.6519 1.70325
\(75\) 0 0
\(76\) −12.5465 −1.43918
\(77\) −0.00787986 −0.000897993 0
\(78\) 12.9748 1.46911
\(79\) −8.35000 −0.939448 −0.469724 0.882813i \(-0.655647\pi\)
−0.469724 + 0.882813i \(0.655647\pi\)
\(80\) 0 0
\(81\) −9.69526 −1.07725
\(82\) 16.4995 1.82206
\(83\) 16.2457 1.78320 0.891599 0.452825i \(-0.149584\pi\)
0.891599 + 0.452825i \(0.149584\pi\)
\(84\) −0.0817629 −0.00892106
\(85\) 0 0
\(86\) 12.5035 1.34829
\(87\) −1.80364 −0.193370
\(88\) 2.23523 0.238276
\(89\) 15.2351 1.61491 0.807457 0.589927i \(-0.200843\pi\)
0.807457 + 0.589927i \(0.200843\pi\)
\(90\) 0 0
\(91\) −0.0391075 −0.00409958
\(92\) −4.52040 −0.471284
\(93\) 12.0593 1.25049
\(94\) 7.58503 0.782336
\(95\) 0 0
\(96\) −6.88681 −0.702883
\(97\) −9.90841 −1.00605 −0.503023 0.864273i \(-0.667779\pi\)
−0.503023 + 0.864273i \(0.667779\pi\)
\(98\) −16.4788 −1.66461
\(99\) 0.155840 0.0156626
\(100\) 0 0
\(101\) −14.5937 −1.45212 −0.726062 0.687630i \(-0.758651\pi\)
−0.726062 + 0.687630i \(0.758651\pi\)
\(102\) −28.1715 −2.78939
\(103\) 8.34137 0.821899 0.410950 0.911658i \(-0.365197\pi\)
0.410950 + 0.911658i \(0.365197\pi\)
\(104\) 11.0934 1.08780
\(105\) 0 0
\(106\) −8.89375 −0.863838
\(107\) 6.71964 0.649612 0.324806 0.945781i \(-0.394701\pi\)
0.324806 + 0.945781i \(0.394701\pi\)
\(108\) −17.5490 −1.68865
\(109\) 13.2479 1.26892 0.634460 0.772955i \(-0.281222\pi\)
0.634460 + 0.772955i \(0.281222\pi\)
\(110\) 0 0
\(111\) 11.2255 1.06548
\(112\) −0.0187143 −0.00176833
\(113\) −8.24441 −0.775569 −0.387784 0.921750i \(-0.626759\pi\)
−0.387784 + 0.921750i \(0.626759\pi\)
\(114\) −15.0400 −1.40862
\(115\) 0 0
\(116\) −3.54210 −0.328876
\(117\) 0.773432 0.0715038
\(118\) −18.9503 −1.74452
\(119\) 0.0849120 0.00778387
\(120\) 0 0
\(121\) −10.6209 −0.965537
\(122\) −0.589087 −0.0533334
\(123\) 12.6410 1.13980
\(124\) 23.6828 2.12678
\(125\) 0 0
\(126\) −0.00762590 −0.000679369 0
\(127\) 11.9709 1.06225 0.531123 0.847295i \(-0.321770\pi\)
0.531123 + 0.847295i \(0.321770\pi\)
\(128\) −20.4096 −1.80397
\(129\) 9.57955 0.843433
\(130\) 0 0
\(131\) −7.31459 −0.639078 −0.319539 0.947573i \(-0.603528\pi\)
−0.319539 + 0.947573i \(0.603528\pi\)
\(132\) 3.93353 0.342370
\(133\) 0.0453322 0.00393080
\(134\) 6.84640 0.591439
\(135\) 0 0
\(136\) −24.0864 −2.06540
\(137\) 18.5756 1.58702 0.793511 0.608556i \(-0.208251\pi\)
0.793511 + 0.608556i \(0.208251\pi\)
\(138\) −5.41879 −0.461278
\(139\) −13.0723 −1.10877 −0.554387 0.832259i \(-0.687047\pi\)
−0.554387 + 0.832259i \(0.687047\pi\)
\(140\) 0 0
\(141\) 5.81125 0.489395
\(142\) −33.0215 −2.77110
\(143\) 1.88142 0.157333
\(144\) 0.370114 0.0308428
\(145\) 0 0
\(146\) 20.6076 1.70550
\(147\) −12.6252 −1.04131
\(148\) 22.0454 1.81212
\(149\) 15.7013 1.28630 0.643150 0.765740i \(-0.277627\pi\)
0.643150 + 0.765740i \(0.277627\pi\)
\(150\) 0 0
\(151\) 14.5106 1.18086 0.590428 0.807090i \(-0.298959\pi\)
0.590428 + 0.807090i \(0.298959\pi\)
\(152\) −12.8591 −1.04301
\(153\) −1.67931 −0.135764
\(154\) −0.0185505 −0.00149484
\(155\) 0 0
\(156\) 19.5220 1.56301
\(157\) 11.7705 0.939386 0.469693 0.882830i \(-0.344365\pi\)
0.469693 + 0.882830i \(0.344365\pi\)
\(158\) −19.6573 −1.56385
\(159\) −6.81392 −0.540379
\(160\) 0 0
\(161\) 0.0163329 0.00128721
\(162\) −22.8243 −1.79324
\(163\) −11.4716 −0.898523 −0.449261 0.893400i \(-0.648313\pi\)
−0.449261 + 0.893400i \(0.648313\pi\)
\(164\) 24.8253 1.93853
\(165\) 0 0
\(166\) 38.2451 2.96840
\(167\) −17.1940 −1.33051 −0.665256 0.746616i \(-0.731677\pi\)
−0.665256 + 0.746616i \(0.731677\pi\)
\(168\) −0.0838002 −0.00646532
\(169\) −3.66254 −0.281734
\(170\) 0 0
\(171\) −0.896537 −0.0685599
\(172\) 18.8129 1.43447
\(173\) −12.5883 −0.957068 −0.478534 0.878069i \(-0.658832\pi\)
−0.478534 + 0.878069i \(0.658832\pi\)
\(174\) −4.24606 −0.321893
\(175\) 0 0
\(176\) 0.900326 0.0678646
\(177\) −14.5187 −1.09130
\(178\) 35.8659 2.68826
\(179\) −13.9297 −1.04115 −0.520576 0.853815i \(-0.674283\pi\)
−0.520576 + 0.853815i \(0.674283\pi\)
\(180\) 0 0
\(181\) −2.34991 −0.174667 −0.0873335 0.996179i \(-0.527835\pi\)
−0.0873335 + 0.996179i \(0.527835\pi\)
\(182\) −0.0920656 −0.00682436
\(183\) −0.451327 −0.0333631
\(184\) −4.63304 −0.341552
\(185\) 0 0
\(186\) 28.3895 2.08162
\(187\) −4.08503 −0.298727
\(188\) 11.4125 0.832342
\(189\) 0.0634069 0.00461218
\(190\) 0 0
\(191\) 6.08289 0.440143 0.220071 0.975484i \(-0.429371\pi\)
0.220071 + 0.975484i \(0.429371\pi\)
\(192\) −21.4875 −1.55073
\(193\) 4.22212 0.303915 0.151958 0.988387i \(-0.451442\pi\)
0.151958 + 0.988387i \(0.451442\pi\)
\(194\) −23.3260 −1.67471
\(195\) 0 0
\(196\) −24.7941 −1.77101
\(197\) 14.2067 1.01218 0.506092 0.862479i \(-0.331090\pi\)
0.506092 + 0.862479i \(0.331090\pi\)
\(198\) 0.366874 0.0260726
\(199\) 17.9466 1.27220 0.636102 0.771605i \(-0.280546\pi\)
0.636102 + 0.771605i \(0.280546\pi\)
\(200\) 0 0
\(201\) 5.24535 0.369978
\(202\) −34.3559 −2.41727
\(203\) 0.0127981 0.000898252 0
\(204\) −42.3870 −2.96769
\(205\) 0 0
\(206\) 19.6370 1.36817
\(207\) −0.323016 −0.0224512
\(208\) 4.46829 0.309820
\(209\) −2.18089 −0.150855
\(210\) 0 0
\(211\) 5.57966 0.384120 0.192060 0.981383i \(-0.438483\pi\)
0.192060 + 0.981383i \(0.438483\pi\)
\(212\) −13.3816 −0.919053
\(213\) −25.2993 −1.73348
\(214\) 15.8191 1.08137
\(215\) 0 0
\(216\) −17.9862 −1.22381
\(217\) −0.0855693 −0.00580882
\(218\) 31.1878 2.11230
\(219\) 15.7884 1.06688
\(220\) 0 0
\(221\) −20.2739 −1.36377
\(222\) 26.4267 1.77364
\(223\) 28.0322 1.87718 0.938588 0.345041i \(-0.112135\pi\)
0.938588 + 0.345041i \(0.112135\pi\)
\(224\) 0.0488669 0.00326506
\(225\) 0 0
\(226\) −19.4087 −1.29105
\(227\) 24.6498 1.63606 0.818031 0.575174i \(-0.195066\pi\)
0.818031 + 0.575174i \(0.195066\pi\)
\(228\) −22.6293 −1.49866
\(229\) −13.8635 −0.916123 −0.458062 0.888920i \(-0.651456\pi\)
−0.458062 + 0.888920i \(0.651456\pi\)
\(230\) 0 0
\(231\) −0.0142124 −0.000935108 0
\(232\) −3.63036 −0.238345
\(233\) −3.13422 −0.205330 −0.102665 0.994716i \(-0.532737\pi\)
−0.102665 + 0.994716i \(0.532737\pi\)
\(234\) 1.82079 0.119029
\(235\) 0 0
\(236\) −28.5128 −1.85603
\(237\) −15.0604 −0.978276
\(238\) 0.199897 0.0129574
\(239\) −16.8652 −1.09092 −0.545460 0.838137i \(-0.683645\pi\)
−0.545460 + 0.838137i \(0.683645\pi\)
\(240\) 0 0
\(241\) 1.59078 0.102471 0.0512355 0.998687i \(-0.483684\pi\)
0.0512355 + 0.998687i \(0.483684\pi\)
\(242\) −25.0034 −1.60728
\(243\) −2.62355 −0.168301
\(244\) −0.886345 −0.0567424
\(245\) 0 0
\(246\) 29.7591 1.89737
\(247\) −10.8237 −0.688694
\(248\) 24.2729 1.54133
\(249\) 29.3014 1.85690
\(250\) 0 0
\(251\) 0.138433 0.00873779 0.00436889 0.999990i \(-0.498609\pi\)
0.00436889 + 0.999990i \(0.498609\pi\)
\(252\) −0.0114740 −0.000722793 0
\(253\) −0.785758 −0.0494002
\(254\) 28.1815 1.76826
\(255\) 0 0
\(256\) −24.2208 −1.51380
\(257\) 27.6954 1.72759 0.863796 0.503842i \(-0.168080\pi\)
0.863796 + 0.503842i \(0.168080\pi\)
\(258\) 22.5519 1.40402
\(259\) −0.0796531 −0.00494940
\(260\) 0 0
\(261\) −0.253109 −0.0156671
\(262\) −17.2198 −1.06384
\(263\) −8.79890 −0.542564 −0.271282 0.962500i \(-0.587448\pi\)
−0.271282 + 0.962500i \(0.587448\pi\)
\(264\) 4.03154 0.248124
\(265\) 0 0
\(266\) 0.106720 0.00654339
\(267\) 27.4785 1.68166
\(268\) 10.3012 0.629243
\(269\) 0.657325 0.0400778 0.0200389 0.999799i \(-0.493621\pi\)
0.0200389 + 0.999799i \(0.493621\pi\)
\(270\) 0 0
\(271\) −12.3389 −0.749536 −0.374768 0.927119i \(-0.622278\pi\)
−0.374768 + 0.927119i \(0.622278\pi\)
\(272\) −9.70176 −0.588256
\(273\) −0.0705358 −0.00426902
\(274\) 43.7301 2.64183
\(275\) 0 0
\(276\) −8.15316 −0.490763
\(277\) −25.4620 −1.52986 −0.764930 0.644113i \(-0.777227\pi\)
−0.764930 + 0.644113i \(0.777227\pi\)
\(278\) −30.7743 −1.84572
\(279\) 1.69231 0.101316
\(280\) 0 0
\(281\) 11.0301 0.658003 0.329002 0.944329i \(-0.393288\pi\)
0.329002 + 0.944329i \(0.393288\pi\)
\(282\) 13.6806 0.814670
\(283\) −3.85338 −0.229059 −0.114530 0.993420i \(-0.536536\pi\)
−0.114530 + 0.993420i \(0.536536\pi\)
\(284\) −49.6844 −2.94823
\(285\) 0 0
\(286\) 4.42919 0.261903
\(287\) −0.0896973 −0.00529466
\(288\) −0.966444 −0.0569483
\(289\) 27.0196 1.58939
\(290\) 0 0
\(291\) −17.8712 −1.04763
\(292\) 31.0064 1.81451
\(293\) −21.0271 −1.22842 −0.614209 0.789143i \(-0.710525\pi\)
−0.614209 + 0.789143i \(0.710525\pi\)
\(294\) −29.7217 −1.73341
\(295\) 0 0
\(296\) 22.5947 1.31329
\(297\) −3.05045 −0.177005
\(298\) 36.9634 2.14123
\(299\) −3.89969 −0.225525
\(300\) 0 0
\(301\) −0.0679739 −0.00391795
\(302\) 34.1604 1.96571
\(303\) −26.3217 −1.51214
\(304\) −5.17950 −0.297065
\(305\) 0 0
\(306\) −3.95337 −0.225999
\(307\) 15.4208 0.880113 0.440057 0.897970i \(-0.354958\pi\)
0.440057 + 0.897970i \(0.354958\pi\)
\(308\) −0.0279112 −0.00159039
\(309\) 15.0448 0.855869
\(310\) 0 0
\(311\) 9.65112 0.547265 0.273632 0.961834i \(-0.411775\pi\)
0.273632 + 0.961834i \(0.411775\pi\)
\(312\) 20.0084 1.13275
\(313\) 4.20630 0.237754 0.118877 0.992909i \(-0.462071\pi\)
0.118877 + 0.992909i \(0.462071\pi\)
\(314\) 27.7096 1.56375
\(315\) 0 0
\(316\) −29.5765 −1.66381
\(317\) −19.6625 −1.10436 −0.552179 0.833725i \(-0.686204\pi\)
−0.552179 + 0.833725i \(0.686204\pi\)
\(318\) −16.0411 −0.899541
\(319\) −0.615705 −0.0344728
\(320\) 0 0
\(321\) 12.1198 0.676461
\(322\) 0.0384503 0.00214275
\(323\) 23.5009 1.30762
\(324\) −34.3416 −1.90787
\(325\) 0 0
\(326\) −27.0060 −1.49572
\(327\) 23.8944 1.32137
\(328\) 25.4438 1.40490
\(329\) −0.0412350 −0.00227336
\(330\) 0 0
\(331\) 10.3331 0.567960 0.283980 0.958830i \(-0.408345\pi\)
0.283980 + 0.958830i \(0.408345\pi\)
\(332\) 57.5439 3.15813
\(333\) 1.57530 0.0863261
\(334\) −40.4775 −2.21483
\(335\) 0 0
\(336\) −0.0337538 −0.00184142
\(337\) −5.22967 −0.284879 −0.142439 0.989804i \(-0.545495\pi\)
−0.142439 + 0.989804i \(0.545495\pi\)
\(338\) −8.62224 −0.468988
\(339\) −14.8699 −0.807623
\(340\) 0 0
\(341\) 4.11665 0.222929
\(342\) −2.11060 −0.114128
\(343\) 0.179172 0.00967435
\(344\) 19.2817 1.03960
\(345\) 0 0
\(346\) −29.6349 −1.59318
\(347\) −1.83303 −0.0984020 −0.0492010 0.998789i \(-0.515667\pi\)
−0.0492010 + 0.998789i \(0.515667\pi\)
\(348\) −6.38866 −0.342468
\(349\) −20.3449 −1.08904 −0.544519 0.838748i \(-0.683288\pi\)
−0.544519 + 0.838748i \(0.683288\pi\)
\(350\) 0 0
\(351\) −15.1393 −0.808075
\(352\) −2.35094 −0.125306
\(353\) 14.2365 0.757734 0.378867 0.925451i \(-0.376314\pi\)
0.378867 + 0.925451i \(0.376314\pi\)
\(354\) −34.1795 −1.81662
\(355\) 0 0
\(356\) 53.9641 2.86009
\(357\) 0.153151 0.00810558
\(358\) −32.7927 −1.73315
\(359\) −10.9779 −0.579392 −0.289696 0.957119i \(-0.593554\pi\)
−0.289696 + 0.957119i \(0.593554\pi\)
\(360\) 0 0
\(361\) −6.45353 −0.339660
\(362\) −5.53207 −0.290759
\(363\) −19.1563 −1.00544
\(364\) −0.138523 −0.00726056
\(365\) 0 0
\(366\) −1.06250 −0.0555377
\(367\) 30.9755 1.61691 0.808453 0.588561i \(-0.200305\pi\)
0.808453 + 0.588561i \(0.200305\pi\)
\(368\) −1.86614 −0.0972791
\(369\) 1.77395 0.0923480
\(370\) 0 0
\(371\) 0.0483497 0.00251019
\(372\) 42.7151 2.21468
\(373\) −31.6787 −1.64026 −0.820130 0.572177i \(-0.806099\pi\)
−0.820130 + 0.572177i \(0.806099\pi\)
\(374\) −9.61685 −0.497275
\(375\) 0 0
\(376\) 11.6969 0.603220
\(377\) −3.05573 −0.157378
\(378\) 0.149270 0.00767765
\(379\) −7.98024 −0.409917 −0.204959 0.978771i \(-0.565706\pi\)
−0.204959 + 0.978771i \(0.565706\pi\)
\(380\) 0 0
\(381\) 21.5912 1.10615
\(382\) 14.3201 0.732682
\(383\) −19.0485 −0.973334 −0.486667 0.873588i \(-0.661787\pi\)
−0.486667 + 0.873588i \(0.661787\pi\)
\(384\) −36.8116 −1.87853
\(385\) 0 0
\(386\) 9.93958 0.505911
\(387\) 1.34432 0.0683358
\(388\) −35.0966 −1.78176
\(389\) 13.3610 0.677432 0.338716 0.940889i \(-0.390007\pi\)
0.338716 + 0.940889i \(0.390007\pi\)
\(390\) 0 0
\(391\) 8.46719 0.428204
\(392\) −25.4119 −1.28350
\(393\) −13.1929 −0.665492
\(394\) 33.4449 1.68493
\(395\) 0 0
\(396\) 0.552002 0.0277392
\(397\) 14.3046 0.717925 0.358963 0.933352i \(-0.383131\pi\)
0.358963 + 0.933352i \(0.383131\pi\)
\(398\) 42.2494 2.11777
\(399\) 0.0817629 0.00409326
\(400\) 0 0
\(401\) 3.71660 0.185598 0.0927991 0.995685i \(-0.470419\pi\)
0.0927991 + 0.995685i \(0.470419\pi\)
\(402\) 12.3484 0.615884
\(403\) 20.4308 1.01773
\(404\) −51.6922 −2.57178
\(405\) 0 0
\(406\) 0.0301289 0.00149527
\(407\) 3.83203 0.189947
\(408\) −43.4432 −2.15076
\(409\) 31.0905 1.53733 0.768664 0.639653i \(-0.220922\pi\)
0.768664 + 0.639653i \(0.220922\pi\)
\(410\) 0 0
\(411\) 33.5037 1.65261
\(412\) 29.5460 1.45562
\(413\) 0.103021 0.00506933
\(414\) −0.760433 −0.0373732
\(415\) 0 0
\(416\) −11.6676 −0.572054
\(417\) −23.5776 −1.15460
\(418\) −5.13417 −0.251121
\(419\) 26.8273 1.31060 0.655301 0.755368i \(-0.272542\pi\)
0.655301 + 0.755368i \(0.272542\pi\)
\(420\) 0 0
\(421\) −26.6460 −1.29865 −0.649323 0.760513i \(-0.724948\pi\)
−0.649323 + 0.760513i \(0.724948\pi\)
\(422\) 13.1354 0.639424
\(423\) 0.815507 0.0396513
\(424\) −13.7151 −0.666062
\(425\) 0 0
\(426\) −59.5588 −2.88563
\(427\) 0.00320249 0.000154979 0
\(428\) 23.8016 1.15050
\(429\) 3.39341 0.163835
\(430\) 0 0
\(431\) 12.6953 0.611513 0.305756 0.952110i \(-0.401091\pi\)
0.305756 + 0.952110i \(0.401091\pi\)
\(432\) −7.24466 −0.348559
\(433\) −5.59059 −0.268667 −0.134333 0.990936i \(-0.542889\pi\)
−0.134333 + 0.990936i \(0.542889\pi\)
\(434\) −0.201444 −0.00966964
\(435\) 0 0
\(436\) 46.9254 2.24732
\(437\) 4.52040 0.216240
\(438\) 37.1686 1.77599
\(439\) −33.7319 −1.60994 −0.804969 0.593317i \(-0.797818\pi\)
−0.804969 + 0.593317i \(0.797818\pi\)
\(440\) 0 0
\(441\) −1.77172 −0.0843677
\(442\) −47.7281 −2.27020
\(443\) −16.1981 −0.769593 −0.384796 0.923001i \(-0.625728\pi\)
−0.384796 + 0.923001i \(0.625728\pi\)
\(444\) 39.7619 1.88701
\(445\) 0 0
\(446\) 65.9925 3.12483
\(447\) 28.3194 1.33946
\(448\) 0.152469 0.00720351
\(449\) 5.47981 0.258608 0.129304 0.991605i \(-0.458726\pi\)
0.129304 + 0.991605i \(0.458726\pi\)
\(450\) 0 0
\(451\) 4.31525 0.203197
\(452\) −29.2025 −1.37357
\(453\) 26.1719 1.22966
\(454\) 58.0297 2.72347
\(455\) 0 0
\(456\) −23.1931 −1.08612
\(457\) −35.1916 −1.64619 −0.823097 0.567901i \(-0.807756\pi\)
−0.823097 + 0.567901i \(0.807756\pi\)
\(458\) −32.6369 −1.52502
\(459\) 32.8711 1.53429
\(460\) 0 0
\(461\) −13.6103 −0.633896 −0.316948 0.948443i \(-0.602658\pi\)
−0.316948 + 0.948443i \(0.602658\pi\)
\(462\) −0.0334584 −0.00155663
\(463\) 14.7376 0.684912 0.342456 0.939534i \(-0.388741\pi\)
0.342456 + 0.939534i \(0.388741\pi\)
\(464\) −1.46227 −0.0678842
\(465\) 0 0
\(466\) −7.37849 −0.341802
\(467\) −3.30836 −0.153093 −0.0765464 0.997066i \(-0.524389\pi\)
−0.0765464 + 0.997066i \(0.524389\pi\)
\(468\) 2.73957 0.126637
\(469\) −0.0372196 −0.00171864
\(470\) 0 0
\(471\) 21.2297 0.978211
\(472\) −29.2233 −1.34511
\(473\) 3.27016 0.150362
\(474\) −35.4546 −1.62848
\(475\) 0 0
\(476\) 0.300767 0.0137856
\(477\) −0.956215 −0.0437821
\(478\) −39.7035 −1.81600
\(479\) 1.23504 0.0564306 0.0282153 0.999602i \(-0.491018\pi\)
0.0282153 + 0.999602i \(0.491018\pi\)
\(480\) 0 0
\(481\) 19.0183 0.867158
\(482\) 3.74496 0.170578
\(483\) 0.0294586 0.00134041
\(484\) −37.6203 −1.71001
\(485\) 0 0
\(486\) −6.17628 −0.280162
\(487\) −21.6520 −0.981145 −0.490573 0.871400i \(-0.663212\pi\)
−0.490573 + 0.871400i \(0.663212\pi\)
\(488\) −0.908430 −0.0411227
\(489\) −20.6906 −0.935659
\(490\) 0 0
\(491\) −24.5870 −1.10959 −0.554797 0.831986i \(-0.687204\pi\)
−0.554797 + 0.831986i \(0.687204\pi\)
\(492\) 44.7758 2.01865
\(493\) 6.63473 0.298813
\(494\) −25.4807 −1.14643
\(495\) 0 0
\(496\) 9.77686 0.438994
\(497\) 0.179517 0.00805243
\(498\) 68.9803 3.09108
\(499\) 20.9955 0.939888 0.469944 0.882696i \(-0.344274\pi\)
0.469944 + 0.882696i \(0.344274\pi\)
\(500\) 0 0
\(501\) −31.0117 −1.38550
\(502\) 0.325893 0.0145453
\(503\) −1.14978 −0.0512661 −0.0256331 0.999671i \(-0.508160\pi\)
−0.0256331 + 0.999671i \(0.508160\pi\)
\(504\) −0.0117599 −0.000523827 0
\(505\) 0 0
\(506\) −1.84980 −0.0822338
\(507\) −6.60590 −0.293378
\(508\) 42.4021 1.88129
\(509\) 10.1966 0.451955 0.225977 0.974133i \(-0.427442\pi\)
0.225977 + 0.974133i \(0.427442\pi\)
\(510\) 0 0
\(511\) −0.112030 −0.00495593
\(512\) −16.2005 −0.715968
\(513\) 17.5490 0.774806
\(514\) 65.1996 2.87583
\(515\) 0 0
\(516\) 33.9317 1.49376
\(517\) 1.98378 0.0872463
\(518\) −0.187517 −0.00823901
\(519\) −22.7047 −0.996624
\(520\) 0 0
\(521\) 5.03932 0.220777 0.110388 0.993889i \(-0.464791\pi\)
0.110388 + 0.993889i \(0.464791\pi\)
\(522\) −0.595861 −0.0260801
\(523\) 37.4208 1.63630 0.818149 0.575006i \(-0.195000\pi\)
0.818149 + 0.575006i \(0.195000\pi\)
\(524\) −25.9090 −1.13184
\(525\) 0 0
\(526\) −20.7141 −0.903177
\(527\) −44.3603 −1.93237
\(528\) 1.62386 0.0706695
\(529\) −21.3713 −0.929188
\(530\) 0 0
\(531\) −2.03745 −0.0884179
\(532\) 0.160571 0.00696164
\(533\) 21.4164 0.927649
\(534\) 64.6891 2.79937
\(535\) 0 0
\(536\) 10.5578 0.456029
\(537\) −25.1241 −1.08418
\(538\) 1.54745 0.0667154
\(539\) −4.30983 −0.185638
\(540\) 0 0
\(541\) −3.79343 −0.163092 −0.0815461 0.996670i \(-0.525986\pi\)
−0.0815461 + 0.996670i \(0.525986\pi\)
\(542\) −29.0479 −1.24771
\(543\) −4.23838 −0.181886
\(544\) 25.3333 1.08616
\(545\) 0 0
\(546\) −0.166053 −0.00710641
\(547\) 21.8706 0.935119 0.467560 0.883962i \(-0.345133\pi\)
0.467560 + 0.883962i \(0.345133\pi\)
\(548\) 65.7967 2.81069
\(549\) −0.0633359 −0.00270311
\(550\) 0 0
\(551\) 3.54210 0.150899
\(552\) −8.35632 −0.355668
\(553\) 0.106864 0.00454433
\(554\) −59.9417 −2.54668
\(555\) 0 0
\(556\) −46.3032 −1.96369
\(557\) −30.5287 −1.29354 −0.646771 0.762684i \(-0.723881\pi\)
−0.646771 + 0.762684i \(0.723881\pi\)
\(558\) 3.98398 0.168655
\(559\) 16.2297 0.686443
\(560\) 0 0
\(561\) −7.36792 −0.311074
\(562\) 25.9668 1.09534
\(563\) −26.7529 −1.12750 −0.563750 0.825945i \(-0.690642\pi\)
−0.563750 + 0.825945i \(0.690642\pi\)
\(564\) 20.5840 0.866743
\(565\) 0 0
\(566\) −9.07149 −0.381303
\(567\) 0.124081 0.00521092
\(568\) −50.9224 −2.13666
\(569\) −32.5806 −1.36585 −0.682924 0.730489i \(-0.739292\pi\)
−0.682924 + 0.730489i \(0.739292\pi\)
\(570\) 0 0
\(571\) 44.1692 1.84842 0.924211 0.381881i \(-0.124724\pi\)
0.924211 + 0.381881i \(0.124724\pi\)
\(572\) 6.66419 0.278644
\(573\) 10.9713 0.458334
\(574\) −0.211162 −0.00881374
\(575\) 0 0
\(576\) −3.01540 −0.125642
\(577\) 30.7443 1.27990 0.639950 0.768417i \(-0.278955\pi\)
0.639950 + 0.768417i \(0.278955\pi\)
\(578\) 63.6087 2.64577
\(579\) 7.61518 0.316476
\(580\) 0 0
\(581\) −0.207915 −0.00862575
\(582\) −42.0717 −1.74393
\(583\) −2.32606 −0.0963354
\(584\) 31.7789 1.31502
\(585\) 0 0
\(586\) −49.5014 −2.04488
\(587\) 5.45253 0.225050 0.112525 0.993649i \(-0.464106\pi\)
0.112525 + 0.993649i \(0.464106\pi\)
\(588\) −44.7196 −1.84421
\(589\) −23.6828 −0.975832
\(590\) 0 0
\(591\) 25.6237 1.05402
\(592\) 9.10089 0.374044
\(593\) −11.9686 −0.491491 −0.245745 0.969334i \(-0.579033\pi\)
−0.245745 + 0.969334i \(0.579033\pi\)
\(594\) −7.18126 −0.294650
\(595\) 0 0
\(596\) 55.6155 2.27810
\(597\) 32.3692 1.32478
\(598\) −9.18053 −0.375420
\(599\) −36.2858 −1.48260 −0.741300 0.671174i \(-0.765790\pi\)
−0.741300 + 0.671174i \(0.765790\pi\)
\(600\) 0 0
\(601\) 46.2257 1.88559 0.942793 0.333380i \(-0.108189\pi\)
0.942793 + 0.333380i \(0.108189\pi\)
\(602\) −0.160022 −0.00652200
\(603\) 0.736093 0.0299760
\(604\) 51.3980 2.09135
\(605\) 0 0
\(606\) −61.9656 −2.51718
\(607\) 0.329296 0.0133657 0.00668286 0.999978i \(-0.497873\pi\)
0.00668286 + 0.999978i \(0.497873\pi\)
\(608\) 13.5248 0.548502
\(609\) 0.0230832 0.000935377 0
\(610\) 0 0
\(611\) 9.84542 0.398303
\(612\) −5.94828 −0.240445
\(613\) −30.4610 −1.23031 −0.615154 0.788407i \(-0.710906\pi\)
−0.615154 + 0.788407i \(0.710906\pi\)
\(614\) 36.3032 1.46508
\(615\) 0 0
\(616\) −0.0286067 −0.00115260
\(617\) −44.5426 −1.79322 −0.896609 0.442823i \(-0.853977\pi\)
−0.896609 + 0.442823i \(0.853977\pi\)
\(618\) 35.4180 1.42472
\(619\) 25.8857 1.04043 0.520216 0.854035i \(-0.325851\pi\)
0.520216 + 0.854035i \(0.325851\pi\)
\(620\) 0 0
\(621\) 6.32276 0.253724
\(622\) 22.7203 0.911002
\(623\) −0.194980 −0.00781171
\(624\) 8.05918 0.322626
\(625\) 0 0
\(626\) 9.90233 0.395777
\(627\) −3.93353 −0.157090
\(628\) 41.6922 1.66370
\(629\) −41.2933 −1.64647
\(630\) 0 0
\(631\) 38.4771 1.53175 0.765874 0.642991i \(-0.222307\pi\)
0.765874 + 0.642991i \(0.222307\pi\)
\(632\) −30.3135 −1.20581
\(633\) 10.0637 0.399996
\(634\) −46.2889 −1.83837
\(635\) 0 0
\(636\) −24.1356 −0.957038
\(637\) −21.3896 −0.847486
\(638\) −1.44947 −0.0573851
\(639\) −3.55031 −0.140448
\(640\) 0 0
\(641\) −48.4274 −1.91277 −0.956384 0.292111i \(-0.905642\pi\)
−0.956384 + 0.292111i \(0.905642\pi\)
\(642\) 28.5320 1.12607
\(643\) 43.5976 1.71932 0.859660 0.510867i \(-0.170676\pi\)
0.859660 + 0.510867i \(0.170676\pi\)
\(644\) 0.0578526 0.00227971
\(645\) 0 0
\(646\) 55.3249 2.17673
\(647\) 16.8934 0.664148 0.332074 0.943253i \(-0.392252\pi\)
0.332074 + 0.943253i \(0.392252\pi\)
\(648\) −35.1973 −1.38268
\(649\) −4.95624 −0.194549
\(650\) 0 0
\(651\) −0.154336 −0.00604890
\(652\) −40.6334 −1.59133
\(653\) −11.2128 −0.438790 −0.219395 0.975636i \(-0.570408\pi\)
−0.219395 + 0.975636i \(0.570408\pi\)
\(654\) 56.2515 2.19961
\(655\) 0 0
\(656\) 10.2485 0.400137
\(657\) 2.21563 0.0864400
\(658\) −0.0970740 −0.00378434
\(659\) −1.82415 −0.0710588 −0.0355294 0.999369i \(-0.511312\pi\)
−0.0355294 + 0.999369i \(0.511312\pi\)
\(660\) 0 0
\(661\) 1.57157 0.0611269 0.0305635 0.999533i \(-0.490270\pi\)
0.0305635 + 0.999533i \(0.490270\pi\)
\(662\) 24.3259 0.945453
\(663\) −36.5668 −1.42014
\(664\) 58.9778 2.28878
\(665\) 0 0
\(666\) 3.70853 0.143703
\(667\) 1.27619 0.0494144
\(668\) −60.9028 −2.35640
\(669\) 50.5599 1.95476
\(670\) 0 0
\(671\) −0.154069 −0.00594776
\(672\) 0.0881383 0.00340001
\(673\) −37.6250 −1.45034 −0.725169 0.688571i \(-0.758238\pi\)
−0.725169 + 0.688571i \(0.758238\pi\)
\(674\) −12.3115 −0.474222
\(675\) 0 0
\(676\) −12.9731 −0.498965
\(677\) 14.6714 0.563869 0.281934 0.959434i \(-0.409024\pi\)
0.281934 + 0.959434i \(0.409024\pi\)
\(678\) −35.0063 −1.34441
\(679\) 0.126809 0.00486648
\(680\) 0 0
\(681\) 44.4592 1.70368
\(682\) 9.69129 0.371099
\(683\) 0.255891 0.00979141 0.00489570 0.999988i \(-0.498442\pi\)
0.00489570 + 0.999988i \(0.498442\pi\)
\(684\) −3.17562 −0.121423
\(685\) 0 0
\(686\) 0.421800 0.0161044
\(687\) −25.0047 −0.953987
\(688\) 7.76646 0.296094
\(689\) −11.5442 −0.439797
\(690\) 0 0
\(691\) −23.9201 −0.909963 −0.454982 0.890501i \(-0.650354\pi\)
−0.454982 + 0.890501i \(0.650354\pi\)
\(692\) −44.5889 −1.69502
\(693\) −0.00199446 −7.57634e−5 0
\(694\) −4.31525 −0.163805
\(695\) 0 0
\(696\) −6.54785 −0.248196
\(697\) −46.5003 −1.76133
\(698\) −47.8953 −1.81286
\(699\) −5.65301 −0.213816
\(700\) 0 0
\(701\) −50.2201 −1.89679 −0.948393 0.317097i \(-0.897292\pi\)
−0.948393 + 0.317097i \(0.897292\pi\)
\(702\) −35.6404 −1.34516
\(703\) −22.0454 −0.831457
\(704\) −7.33516 −0.276454
\(705\) 0 0
\(706\) 33.5152 1.26136
\(707\) 0.186771 0.00702426
\(708\) −51.4268 −1.93274
\(709\) −13.1055 −0.492189 −0.246095 0.969246i \(-0.579147\pi\)
−0.246095 + 0.969246i \(0.579147\pi\)
\(710\) 0 0
\(711\) −2.11346 −0.0792610
\(712\) 55.3088 2.07278
\(713\) −8.53273 −0.319553
\(714\) 0.360542 0.0134929
\(715\) 0 0
\(716\) −49.3402 −1.84393
\(717\) −30.4188 −1.13601
\(718\) −25.8438 −0.964483
\(719\) −37.4625 −1.39712 −0.698558 0.715554i \(-0.746174\pi\)
−0.698558 + 0.715554i \(0.746174\pi\)
\(720\) 0 0
\(721\) −0.106754 −0.00397572
\(722\) −15.1927 −0.565413
\(723\) 2.86919 0.106706
\(724\) −8.32360 −0.309344
\(725\) 0 0
\(726\) −45.0970 −1.67371
\(727\) 21.1218 0.783363 0.391682 0.920101i \(-0.371893\pi\)
0.391682 + 0.920101i \(0.371893\pi\)
\(728\) −0.141974 −0.00526192
\(729\) 24.3538 0.901994
\(730\) 0 0
\(731\) −35.2386 −1.30335
\(732\) −1.59865 −0.0590876
\(733\) −14.4913 −0.535250 −0.267625 0.963523i \(-0.586239\pi\)
−0.267625 + 0.963523i \(0.586239\pi\)
\(734\) 72.9214 2.69158
\(735\) 0 0
\(736\) 4.87287 0.179617
\(737\) 1.79060 0.0659575
\(738\) 4.17617 0.153727
\(739\) −39.5124 −1.45349 −0.726744 0.686908i \(-0.758967\pi\)
−0.726744 + 0.686908i \(0.758967\pi\)
\(740\) 0 0
\(741\) −19.5220 −0.717159
\(742\) 0.113823 0.00417858
\(743\) −39.9742 −1.46651 −0.733255 0.679954i \(-0.762000\pi\)
−0.733255 + 0.679954i \(0.762000\pi\)
\(744\) 43.7795 1.60503
\(745\) 0 0
\(746\) −74.5769 −2.73045
\(747\) 4.11194 0.150448
\(748\) −14.4696 −0.529061
\(749\) −0.0859987 −0.00314233
\(750\) 0 0
\(751\) 23.6980 0.864752 0.432376 0.901693i \(-0.357675\pi\)
0.432376 + 0.901693i \(0.357675\pi\)
\(752\) 4.71137 0.171806
\(753\) 0.249682 0.00909893
\(754\) −7.19369 −0.261979
\(755\) 0 0
\(756\) 0.224594 0.00816839
\(757\) 36.0636 1.31075 0.655377 0.755302i \(-0.272510\pi\)
0.655377 + 0.755302i \(0.272510\pi\)
\(758\) −18.7868 −0.682368
\(759\) −1.41722 −0.0514419
\(760\) 0 0
\(761\) −23.7429 −0.860679 −0.430340 0.902667i \(-0.641606\pi\)
−0.430340 + 0.902667i \(0.641606\pi\)
\(762\) 50.8292 1.84135
\(763\) −0.169548 −0.00613806
\(764\) 21.5462 0.779515
\(765\) 0 0
\(766\) −44.8434 −1.62026
\(767\) −24.5977 −0.888171
\(768\) −43.6855 −1.57636
\(769\) −44.3789 −1.60035 −0.800173 0.599770i \(-0.795259\pi\)
−0.800173 + 0.599770i \(0.795259\pi\)
\(770\) 0 0
\(771\) 49.9525 1.79899
\(772\) 14.9552 0.538249
\(773\) −25.0988 −0.902742 −0.451371 0.892336i \(-0.649065\pi\)
−0.451371 + 0.892336i \(0.649065\pi\)
\(774\) 3.16476 0.113755
\(775\) 0 0
\(776\) −35.9711 −1.29129
\(777\) −0.143665 −0.00515397
\(778\) 31.4541 1.12769
\(779\) −24.8253 −0.889457
\(780\) 0 0
\(781\) −8.63638 −0.309034
\(782\) 19.9332 0.712809
\(783\) 4.95440 0.177056
\(784\) −10.2356 −0.365559
\(785\) 0 0
\(786\) −31.0582 −1.10781
\(787\) −30.0739 −1.07202 −0.536009 0.844213i \(-0.680069\pi\)
−0.536009 + 0.844213i \(0.680069\pi\)
\(788\) 50.3215 1.79263
\(789\) −15.8700 −0.564988
\(790\) 0 0
\(791\) 0.105513 0.00375161
\(792\) 0.565757 0.0201033
\(793\) −0.764639 −0.0271531
\(794\) 33.6753 1.19509
\(795\) 0 0
\(796\) 63.5688 2.25314
\(797\) −47.2484 −1.67363 −0.836813 0.547489i \(-0.815584\pi\)
−0.836813 + 0.547489i \(0.815584\pi\)
\(798\) 0.192483 0.00681384
\(799\) −21.3768 −0.756257
\(800\) 0 0
\(801\) 3.85613 0.136250
\(802\) 8.74950 0.308955
\(803\) 5.38967 0.190197
\(804\) 18.5796 0.655250
\(805\) 0 0
\(806\) 48.0976 1.69417
\(807\) 1.18558 0.0417343
\(808\) −52.9802 −1.86384
\(809\) 6.39951 0.224995 0.112497 0.993652i \(-0.464115\pi\)
0.112497 + 0.993652i \(0.464115\pi\)
\(810\) 0 0
\(811\) −0.587673 −0.0206360 −0.0103180 0.999947i \(-0.503284\pi\)
−0.0103180 + 0.999947i \(0.503284\pi\)
\(812\) 0.0453322 0.00159085
\(813\) −22.2549 −0.780515
\(814\) 9.02124 0.316194
\(815\) 0 0
\(816\) −17.4985 −0.612569
\(817\) −18.8129 −0.658181
\(818\) 73.1923 2.55911
\(819\) −0.00989847 −0.000345881 0
\(820\) 0 0
\(821\) −49.1599 −1.71569 −0.857846 0.513907i \(-0.828198\pi\)
−0.857846 + 0.513907i \(0.828198\pi\)
\(822\) 78.8732 2.75102
\(823\) −34.0871 −1.18820 −0.594100 0.804391i \(-0.702492\pi\)
−0.594100 + 0.804391i \(0.702492\pi\)
\(824\) 30.2822 1.05493
\(825\) 0 0
\(826\) 0.242529 0.00843865
\(827\) 49.1111 1.70776 0.853881 0.520468i \(-0.174243\pi\)
0.853881 + 0.520468i \(0.174243\pi\)
\(828\) −1.14415 −0.0397621
\(829\) −46.1300 −1.60216 −0.801081 0.598556i \(-0.795741\pi\)
−0.801081 + 0.598556i \(0.795741\pi\)
\(830\) 0 0
\(831\) −45.9241 −1.59309
\(832\) −36.4042 −1.26209
\(833\) 46.4420 1.60912
\(834\) −55.5056 −1.92200
\(835\) 0 0
\(836\) −7.72492 −0.267172
\(837\) −33.1255 −1.14499
\(838\) 63.1560 2.18169
\(839\) 16.6944 0.576356 0.288178 0.957577i \(-0.406951\pi\)
0.288178 + 0.957577i \(0.406951\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −62.7291 −2.16179
\(843\) 19.8944 0.685199
\(844\) 19.7637 0.680295
\(845\) 0 0
\(846\) 1.91984 0.0660054
\(847\) 0.135928 0.00467053
\(848\) −5.52428 −0.189704
\(849\) −6.95009 −0.238527
\(850\) 0 0
\(851\) −7.94278 −0.272275
\(852\) −89.6126 −3.07008
\(853\) 12.5126 0.428424 0.214212 0.976787i \(-0.431282\pi\)
0.214212 + 0.976787i \(0.431282\pi\)
\(854\) 0.00753920 0.000257986 0
\(855\) 0 0
\(856\) 24.3947 0.833794
\(857\) −6.82871 −0.233264 −0.116632 0.993175i \(-0.537210\pi\)
−0.116632 + 0.993175i \(0.537210\pi\)
\(858\) 7.98865 0.272728
\(859\) 18.0611 0.616236 0.308118 0.951348i \(-0.400301\pi\)
0.308118 + 0.951348i \(0.400301\pi\)
\(860\) 0 0
\(861\) −0.161781 −0.00551349
\(862\) 29.8869 1.01795
\(863\) 47.8533 1.62894 0.814472 0.580203i \(-0.197027\pi\)
0.814472 + 0.580203i \(0.197027\pi\)
\(864\) 18.9173 0.643581
\(865\) 0 0
\(866\) −13.1612 −0.447235
\(867\) 48.7336 1.65508
\(868\) −0.303095 −0.0102877
\(869\) −5.14113 −0.174401
\(870\) 0 0
\(871\) 8.88668 0.301114
\(872\) 48.0947 1.62869
\(873\) −2.50791 −0.0848798
\(874\) 10.6418 0.359963
\(875\) 0 0
\(876\) 55.9242 1.88950
\(877\) 20.4812 0.691602 0.345801 0.938308i \(-0.387607\pi\)
0.345801 + 0.938308i \(0.387607\pi\)
\(878\) −79.4106 −2.67998
\(879\) −37.9253 −1.27919
\(880\) 0 0
\(881\) −30.9655 −1.04325 −0.521627 0.853174i \(-0.674675\pi\)
−0.521627 + 0.853174i \(0.674675\pi\)
\(882\) −4.17093 −0.140442
\(883\) 13.2897 0.447235 0.223618 0.974677i \(-0.428213\pi\)
0.223618 + 0.974677i \(0.428213\pi\)
\(884\) −71.8122 −2.41531
\(885\) 0 0
\(886\) −38.1329 −1.28110
\(887\) 33.9462 1.13980 0.569900 0.821714i \(-0.306982\pi\)
0.569900 + 0.821714i \(0.306982\pi\)
\(888\) 40.7526 1.36757
\(889\) −0.153205 −0.00513833
\(890\) 0 0
\(891\) −5.96942 −0.199983
\(892\) 99.2929 3.32457
\(893\) −11.4125 −0.381905
\(894\) 66.6687 2.22973
\(895\) 0 0
\(896\) 0.261205 0.00872624
\(897\) −7.03363 −0.234846
\(898\) 12.9004 0.430492
\(899\) −6.68608 −0.222993
\(900\) 0 0
\(901\) 25.0652 0.835043
\(902\) 10.1588 0.338251
\(903\) −0.122600 −0.00407988
\(904\) −29.9302 −0.995462
\(905\) 0 0
\(906\) 61.6129 2.04695
\(907\) 20.0608 0.666107 0.333053 0.942908i \(-0.391921\pi\)
0.333053 + 0.942908i \(0.391921\pi\)
\(908\) 87.3119 2.89755
\(909\) −3.69379 −0.122515
\(910\) 0 0
\(911\) −25.3431 −0.839655 −0.419827 0.907604i \(-0.637909\pi\)
−0.419827 + 0.907604i \(0.637909\pi\)
\(912\) −9.34195 −0.309343
\(913\) 10.0026 0.331037
\(914\) −82.8469 −2.74033
\(915\) 0 0
\(916\) −49.1058 −1.62250
\(917\) 0.0936129 0.00309137
\(918\) 77.3840 2.55405
\(919\) 20.7223 0.683566 0.341783 0.939779i \(-0.388969\pi\)
0.341783 + 0.939779i \(0.388969\pi\)
\(920\) 0 0
\(921\) 27.8136 0.916489
\(922\) −32.0409 −1.05521
\(923\) −42.8621 −1.41082
\(924\) −0.0503418 −0.00165612
\(925\) 0 0
\(926\) 34.6947 1.14014
\(927\) 2.11128 0.0693434
\(928\) 3.81829 0.125342
\(929\) 14.2042 0.466024 0.233012 0.972474i \(-0.425142\pi\)
0.233012 + 0.972474i \(0.425142\pi\)
\(930\) 0 0
\(931\) 24.7941 0.812594
\(932\) −11.1017 −0.363649
\(933\) 17.4071 0.569883
\(934\) −7.78843 −0.254845
\(935\) 0 0
\(936\) 2.80783 0.0917769
\(937\) 38.5926 1.26077 0.630383 0.776284i \(-0.282898\pi\)
0.630383 + 0.776284i \(0.282898\pi\)
\(938\) −0.0876210 −0.00286093
\(939\) 7.58664 0.247581
\(940\) 0 0
\(941\) −2.07239 −0.0675578 −0.0337789 0.999429i \(-0.510754\pi\)
−0.0337789 + 0.999429i \(0.510754\pi\)
\(942\) 49.9782 1.62838
\(943\) −8.94436 −0.291268
\(944\) −11.7708 −0.383108
\(945\) 0 0
\(946\) 7.69849 0.250299
\(947\) 17.6870 0.574751 0.287376 0.957818i \(-0.407217\pi\)
0.287376 + 0.957818i \(0.407217\pi\)
\(948\) −53.3453 −1.73258
\(949\) 26.7488 0.868303
\(950\) 0 0
\(951\) −35.4641 −1.15000
\(952\) 0.308261 0.00999080
\(953\) 26.5946 0.861485 0.430742 0.902475i \(-0.358252\pi\)
0.430742 + 0.902475i \(0.358252\pi\)
\(954\) −2.25109 −0.0728817
\(955\) 0 0
\(956\) −59.7383 −1.93207
\(957\) −1.11051 −0.0358976
\(958\) 2.90750 0.0939370
\(959\) −0.237733 −0.00767679
\(960\) 0 0
\(961\) 13.7037 0.442055
\(962\) 44.7722 1.44351
\(963\) 1.70080 0.0548076
\(964\) 5.63470 0.181481
\(965\) 0 0
\(966\) 0.0693503 0.00223131
\(967\) 11.9643 0.384745 0.192372 0.981322i \(-0.438382\pi\)
0.192372 + 0.981322i \(0.438382\pi\)
\(968\) −38.5577 −1.23929
\(969\) 42.3870 1.36167
\(970\) 0 0
\(971\) −18.6333 −0.597970 −0.298985 0.954258i \(-0.596648\pi\)
−0.298985 + 0.954258i \(0.596648\pi\)
\(972\) −9.29289 −0.298070
\(973\) 0.167300 0.00536340
\(974\) −50.9724 −1.63326
\(975\) 0 0
\(976\) −0.365906 −0.0117124
\(977\) −12.5708 −0.402175 −0.201088 0.979573i \(-0.564448\pi\)
−0.201088 + 0.979573i \(0.564448\pi\)
\(978\) −48.7090 −1.55754
\(979\) 9.38030 0.299796
\(980\) 0 0
\(981\) 3.35317 0.107058
\(982\) −57.8818 −1.84708
\(983\) 22.4214 0.715131 0.357565 0.933888i \(-0.383607\pi\)
0.357565 + 0.933888i \(0.383607\pi\)
\(984\) 45.8915 1.46297
\(985\) 0 0
\(986\) 15.6193 0.497418
\(987\) −0.0743730 −0.00236732
\(988\) −38.3386 −1.21971
\(989\) −6.77816 −0.215533
\(990\) 0 0
\(991\) −42.0680 −1.33633 −0.668167 0.744011i \(-0.732921\pi\)
−0.668167 + 0.744011i \(0.732921\pi\)
\(992\) −25.5294 −0.810560
\(993\) 18.6372 0.591434
\(994\) 0.422613 0.0134045
\(995\) 0 0
\(996\) 103.788 3.28866
\(997\) 21.6692 0.686269 0.343134 0.939286i \(-0.388511\pi\)
0.343134 + 0.939286i \(0.388511\pi\)
\(998\) 49.4269 1.56458
\(999\) −30.8352 −0.975584
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.a.j.1.5 yes 5
3.2 odd 2 6525.2.a.bp.1.1 5
5.2 odd 4 725.2.b.g.349.9 10
5.3 odd 4 725.2.b.g.349.2 10
5.4 even 2 725.2.a.i.1.1 5
15.14 odd 2 6525.2.a.bo.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
725.2.a.i.1.1 5 5.4 even 2
725.2.a.j.1.5 yes 5 1.1 even 1 trivial
725.2.b.g.349.2 10 5.3 odd 4
725.2.b.g.349.9 10 5.2 odd 4
6525.2.a.bo.1.5 5 15.14 odd 2
6525.2.a.bp.1.1 5 3.2 odd 2