Properties

Label 7203.2.a.p.1.11
Level $7203$
Weight $2$
Character 7203.1
Self dual yes
Analytic conductor $57.516$
Analytic rank $1$
Dimension $36$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7203,2,Mod(1,7203)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7203, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7203.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7203 = 3 \cdot 7^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7203.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,36,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.5162445759\)
Analytic rank: \(1\)
Dimension: \(36\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Character \(\chi\) \(=\) 7203.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.21757 q^{2} +1.00000 q^{3} -0.517511 q^{4} -3.57513 q^{5} -1.21757 q^{6} +3.06526 q^{8} +1.00000 q^{9} +4.35299 q^{10} -4.28056 q^{11} -0.517511 q^{12} -4.08072 q^{13} -3.57513 q^{15} -2.69716 q^{16} -5.83413 q^{17} -1.21757 q^{18} -3.43868 q^{19} +1.85017 q^{20} +5.21190 q^{22} +7.62869 q^{23} +3.06526 q^{24} +7.78158 q^{25} +4.96858 q^{26} +1.00000 q^{27} +10.1967 q^{29} +4.35299 q^{30} +1.78887 q^{31} -2.84652 q^{32} -4.28056 q^{33} +7.10349 q^{34} -0.517511 q^{36} +7.88083 q^{37} +4.18685 q^{38} -4.08072 q^{39} -10.9587 q^{40} +2.00531 q^{41} +2.85285 q^{43} +2.21524 q^{44} -3.57513 q^{45} -9.28851 q^{46} +6.11940 q^{47} -2.69716 q^{48} -9.47465 q^{50} -5.83413 q^{51} +2.11182 q^{52} +1.26956 q^{53} -1.21757 q^{54} +15.3036 q^{55} -3.43868 q^{57} -12.4152 q^{58} +7.94737 q^{59} +1.85017 q^{60} -8.44502 q^{61} -2.17808 q^{62} +8.86017 q^{64} +14.5891 q^{65} +5.21190 q^{66} -6.77752 q^{67} +3.01923 q^{68} +7.62869 q^{69} +9.18136 q^{71} +3.06526 q^{72} -5.97461 q^{73} -9.59550 q^{74} +7.78158 q^{75} +1.77956 q^{76} +4.96858 q^{78} -6.86811 q^{79} +9.64270 q^{80} +1.00000 q^{81} -2.44161 q^{82} +0.480942 q^{83} +20.8578 q^{85} -3.47356 q^{86} +10.1967 q^{87} -13.1210 q^{88} +4.26669 q^{89} +4.35299 q^{90} -3.94794 q^{92} +1.78887 q^{93} -7.45082 q^{94} +12.2937 q^{95} -2.84652 q^{96} +1.03105 q^{97} -4.28056 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 36 q^{3} + 24 q^{4} - 24 q^{5} + 36 q^{9} - 24 q^{10} + 24 q^{12} - 48 q^{13} - 24 q^{15} + 4 q^{16} - 48 q^{17} - 24 q^{19} - 48 q^{20} - 16 q^{22} + 4 q^{23} + 16 q^{25} - 24 q^{26} + 36 q^{27}+ \cdots - 88 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.21757 −0.860956 −0.430478 0.902601i \(-0.641655\pi\)
−0.430478 + 0.902601i \(0.641655\pi\)
\(3\) 1.00000 0.577350
\(4\) −0.517511 −0.258756
\(5\) −3.57513 −1.59885 −0.799424 0.600767i \(-0.794862\pi\)
−0.799424 + 0.600767i \(0.794862\pi\)
\(6\) −1.21757 −0.497073
\(7\) 0 0
\(8\) 3.06526 1.08373
\(9\) 1.00000 0.333333
\(10\) 4.35299 1.37654
\(11\) −4.28056 −1.29064 −0.645319 0.763913i \(-0.723276\pi\)
−0.645319 + 0.763913i \(0.723276\pi\)
\(12\) −0.517511 −0.149393
\(13\) −4.08072 −1.13179 −0.565894 0.824478i \(-0.691469\pi\)
−0.565894 + 0.824478i \(0.691469\pi\)
\(14\) 0 0
\(15\) −3.57513 −0.923095
\(16\) −2.69716 −0.674290
\(17\) −5.83413 −1.41498 −0.707492 0.706721i \(-0.750174\pi\)
−0.707492 + 0.706721i \(0.750174\pi\)
\(18\) −1.21757 −0.286985
\(19\) −3.43868 −0.788888 −0.394444 0.918920i \(-0.629063\pi\)
−0.394444 + 0.918920i \(0.629063\pi\)
\(20\) 1.85017 0.413711
\(21\) 0 0
\(22\) 5.21190 1.11118
\(23\) 7.62869 1.59069 0.795346 0.606155i \(-0.207289\pi\)
0.795346 + 0.606155i \(0.207289\pi\)
\(24\) 3.06526 0.625693
\(25\) 7.78158 1.55632
\(26\) 4.96858 0.974420
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 10.1967 1.89347 0.946735 0.322012i \(-0.104359\pi\)
0.946735 + 0.322012i \(0.104359\pi\)
\(30\) 4.35299 0.794744
\(31\) 1.78887 0.321290 0.160645 0.987012i \(-0.448643\pi\)
0.160645 + 0.987012i \(0.448643\pi\)
\(32\) −2.84652 −0.503199
\(33\) −4.28056 −0.745150
\(34\) 7.10349 1.21824
\(35\) 0 0
\(36\) −0.517511 −0.0862519
\(37\) 7.88083 1.29560 0.647800 0.761810i \(-0.275689\pi\)
0.647800 + 0.761810i \(0.275689\pi\)
\(38\) 4.18685 0.679197
\(39\) −4.08072 −0.653438
\(40\) −10.9587 −1.73272
\(41\) 2.00531 0.313176 0.156588 0.987664i \(-0.449950\pi\)
0.156588 + 0.987664i \(0.449950\pi\)
\(42\) 0 0
\(43\) 2.85285 0.435056 0.217528 0.976054i \(-0.430201\pi\)
0.217528 + 0.976054i \(0.430201\pi\)
\(44\) 2.21524 0.333960
\(45\) −3.57513 −0.532949
\(46\) −9.28851 −1.36952
\(47\) 6.11940 0.892606 0.446303 0.894882i \(-0.352740\pi\)
0.446303 + 0.894882i \(0.352740\pi\)
\(48\) −2.69716 −0.389301
\(49\) 0 0
\(50\) −9.47465 −1.33992
\(51\) −5.83413 −0.816942
\(52\) 2.11182 0.292857
\(53\) 1.26956 0.174388 0.0871939 0.996191i \(-0.472210\pi\)
0.0871939 + 0.996191i \(0.472210\pi\)
\(54\) −1.21757 −0.165691
\(55\) 15.3036 2.06353
\(56\) 0 0
\(57\) −3.43868 −0.455464
\(58\) −12.4152 −1.63019
\(59\) 7.94737 1.03466 0.517329 0.855786i \(-0.326926\pi\)
0.517329 + 0.855786i \(0.326926\pi\)
\(60\) 1.85017 0.238856
\(61\) −8.44502 −1.08127 −0.540637 0.841256i \(-0.681817\pi\)
−0.540637 + 0.841256i \(0.681817\pi\)
\(62\) −2.17808 −0.276616
\(63\) 0 0
\(64\) 8.86017 1.10752
\(65\) 14.5891 1.80956
\(66\) 5.21190 0.641541
\(67\) −6.77752 −0.828006 −0.414003 0.910275i \(-0.635870\pi\)
−0.414003 + 0.910275i \(0.635870\pi\)
\(68\) 3.01923 0.366135
\(69\) 7.62869 0.918387
\(70\) 0 0
\(71\) 9.18136 1.08963 0.544814 0.838557i \(-0.316600\pi\)
0.544814 + 0.838557i \(0.316600\pi\)
\(72\) 3.06526 0.361244
\(73\) −5.97461 −0.699275 −0.349638 0.936885i \(-0.613695\pi\)
−0.349638 + 0.936885i \(0.613695\pi\)
\(74\) −9.59550 −1.11545
\(75\) 7.78158 0.898539
\(76\) 1.77956 0.204129
\(77\) 0 0
\(78\) 4.96858 0.562581
\(79\) −6.86811 −0.772722 −0.386361 0.922348i \(-0.626268\pi\)
−0.386361 + 0.922348i \(0.626268\pi\)
\(80\) 9.64270 1.07809
\(81\) 1.00000 0.111111
\(82\) −2.44161 −0.269631
\(83\) 0.480942 0.0527902 0.0263951 0.999652i \(-0.491597\pi\)
0.0263951 + 0.999652i \(0.491597\pi\)
\(84\) 0 0
\(85\) 20.8578 2.26235
\(86\) −3.47356 −0.374564
\(87\) 10.1967 1.09320
\(88\) −13.1210 −1.39871
\(89\) 4.26669 0.452268 0.226134 0.974096i \(-0.427391\pi\)
0.226134 + 0.974096i \(0.427391\pi\)
\(90\) 4.35299 0.458846
\(91\) 0 0
\(92\) −3.94794 −0.411601
\(93\) 1.78887 0.185497
\(94\) −7.45082 −0.768494
\(95\) 12.2937 1.26131
\(96\) −2.84652 −0.290522
\(97\) 1.03105 0.104687 0.0523437 0.998629i \(-0.483331\pi\)
0.0523437 + 0.998629i \(0.483331\pi\)
\(98\) 0 0
\(99\) −4.28056 −0.430213
\(100\) −4.02705 −0.402705
\(101\) −11.9846 −1.19251 −0.596257 0.802794i \(-0.703346\pi\)
−0.596257 + 0.802794i \(0.703346\pi\)
\(102\) 7.10349 0.703351
\(103\) −8.99004 −0.885815 −0.442908 0.896567i \(-0.646053\pi\)
−0.442908 + 0.896567i \(0.646053\pi\)
\(104\) −12.5085 −1.22656
\(105\) 0 0
\(106\) −1.54579 −0.150140
\(107\) −6.27103 −0.606244 −0.303122 0.952952i \(-0.598029\pi\)
−0.303122 + 0.952952i \(0.598029\pi\)
\(108\) −0.517511 −0.0497975
\(109\) 10.1820 0.975257 0.487628 0.873051i \(-0.337862\pi\)
0.487628 + 0.873051i \(0.337862\pi\)
\(110\) −18.6333 −1.77661
\(111\) 7.88083 0.748015
\(112\) 0 0
\(113\) 8.65989 0.814654 0.407327 0.913282i \(-0.366461\pi\)
0.407327 + 0.913282i \(0.366461\pi\)
\(114\) 4.18685 0.392135
\(115\) −27.2736 −2.54328
\(116\) −5.27688 −0.489946
\(117\) −4.08072 −0.377263
\(118\) −9.67651 −0.890795
\(119\) 0 0
\(120\) −10.9587 −1.00039
\(121\) 7.32321 0.665746
\(122\) 10.2824 0.930929
\(123\) 2.00531 0.180812
\(124\) −0.925758 −0.0831355
\(125\) −9.94450 −0.889463
\(126\) 0 0
\(127\) −17.9284 −1.59089 −0.795445 0.606026i \(-0.792763\pi\)
−0.795445 + 0.606026i \(0.792763\pi\)
\(128\) −5.09488 −0.450328
\(129\) 2.85285 0.251180
\(130\) −17.7633 −1.55795
\(131\) −9.33404 −0.815519 −0.407760 0.913089i \(-0.633690\pi\)
−0.407760 + 0.913089i \(0.633690\pi\)
\(132\) 2.21524 0.192812
\(133\) 0 0
\(134\) 8.25214 0.712877
\(135\) −3.57513 −0.307698
\(136\) −17.8831 −1.53347
\(137\) −17.5844 −1.50234 −0.751170 0.660109i \(-0.770510\pi\)
−0.751170 + 0.660109i \(0.770510\pi\)
\(138\) −9.28851 −0.790690
\(139\) 9.03696 0.766505 0.383252 0.923644i \(-0.374804\pi\)
0.383252 + 0.923644i \(0.374804\pi\)
\(140\) 0 0
\(141\) 6.11940 0.515346
\(142\) −11.1790 −0.938121
\(143\) 17.4678 1.46073
\(144\) −2.69716 −0.224763
\(145\) −36.4544 −3.02737
\(146\) 7.27454 0.602045
\(147\) 0 0
\(148\) −4.07842 −0.335244
\(149\) −11.8293 −0.969093 −0.484547 0.874765i \(-0.661015\pi\)
−0.484547 + 0.874765i \(0.661015\pi\)
\(150\) −9.47465 −0.773602
\(151\) 11.1186 0.904823 0.452411 0.891809i \(-0.350564\pi\)
0.452411 + 0.891809i \(0.350564\pi\)
\(152\) −10.5404 −0.854943
\(153\) −5.83413 −0.471662
\(154\) 0 0
\(155\) −6.39543 −0.513693
\(156\) 2.11182 0.169081
\(157\) 3.30716 0.263940 0.131970 0.991254i \(-0.457870\pi\)
0.131970 + 0.991254i \(0.457870\pi\)
\(158\) 8.36244 0.665280
\(159\) 1.26956 0.100683
\(160\) 10.1767 0.804539
\(161\) 0 0
\(162\) −1.21757 −0.0956617
\(163\) −1.67951 −0.131549 −0.0657745 0.997835i \(-0.520952\pi\)
−0.0657745 + 0.997835i \(0.520952\pi\)
\(164\) −1.03777 −0.0810361
\(165\) 15.3036 1.19138
\(166\) −0.585583 −0.0454500
\(167\) 20.5490 1.59013 0.795066 0.606522i \(-0.207436\pi\)
0.795066 + 0.606522i \(0.207436\pi\)
\(168\) 0 0
\(169\) 3.65229 0.280945
\(170\) −25.3959 −1.94778
\(171\) −3.43868 −0.262963
\(172\) −1.47638 −0.112573
\(173\) 25.2306 1.91825 0.959125 0.282982i \(-0.0913238\pi\)
0.959125 + 0.282982i \(0.0913238\pi\)
\(174\) −12.4152 −0.941193
\(175\) 0 0
\(176\) 11.5454 0.870264
\(177\) 7.94737 0.597361
\(178\) −5.19501 −0.389383
\(179\) −0.901383 −0.0673725 −0.0336863 0.999432i \(-0.510725\pi\)
−0.0336863 + 0.999432i \(0.510725\pi\)
\(180\) 1.85017 0.137904
\(181\) −13.7277 −1.02037 −0.510185 0.860065i \(-0.670423\pi\)
−0.510185 + 0.860065i \(0.670423\pi\)
\(182\) 0 0
\(183\) −8.44502 −0.624274
\(184\) 23.3839 1.72389
\(185\) −28.1750 −2.07147
\(186\) −2.17808 −0.159704
\(187\) 24.9734 1.82623
\(188\) −3.16686 −0.230967
\(189\) 0 0
\(190\) −14.9686 −1.08593
\(191\) 17.1789 1.24302 0.621511 0.783405i \(-0.286519\pi\)
0.621511 + 0.783405i \(0.286519\pi\)
\(192\) 8.86017 0.639428
\(193\) 0.985028 0.0709039 0.0354519 0.999371i \(-0.488713\pi\)
0.0354519 + 0.999371i \(0.488713\pi\)
\(194\) −1.25538 −0.0901312
\(195\) 14.5891 1.04475
\(196\) 0 0
\(197\) −6.14672 −0.437935 −0.218968 0.975732i \(-0.570269\pi\)
−0.218968 + 0.975732i \(0.570269\pi\)
\(198\) 5.21190 0.370394
\(199\) −16.9486 −1.20146 −0.600728 0.799453i \(-0.705123\pi\)
−0.600728 + 0.799453i \(0.705123\pi\)
\(200\) 23.8525 1.68663
\(201\) −6.77752 −0.478050
\(202\) 14.5922 1.02670
\(203\) 0 0
\(204\) 3.01923 0.211388
\(205\) −7.16924 −0.500721
\(206\) 10.9460 0.762647
\(207\) 7.62869 0.530231
\(208\) 11.0064 0.763154
\(209\) 14.7195 1.01817
\(210\) 0 0
\(211\) −20.6562 −1.42203 −0.711017 0.703175i \(-0.751765\pi\)
−0.711017 + 0.703175i \(0.751765\pi\)
\(212\) −0.657013 −0.0451238
\(213\) 9.18136 0.629097
\(214\) 7.63545 0.521949
\(215\) −10.1993 −0.695589
\(216\) 3.06526 0.208564
\(217\) 0 0
\(218\) −12.3973 −0.839653
\(219\) −5.97461 −0.403727
\(220\) −7.91977 −0.533951
\(221\) 23.8075 1.60146
\(222\) −9.59550 −0.644008
\(223\) 18.7904 1.25830 0.629150 0.777284i \(-0.283403\pi\)
0.629150 + 0.777284i \(0.283403\pi\)
\(224\) 0 0
\(225\) 7.78158 0.518772
\(226\) −10.5441 −0.701381
\(227\) −5.08160 −0.337277 −0.168639 0.985678i \(-0.553937\pi\)
−0.168639 + 0.985678i \(0.553937\pi\)
\(228\) 1.77956 0.117854
\(229\) 25.3656 1.67621 0.838103 0.545511i \(-0.183665\pi\)
0.838103 + 0.545511i \(0.183665\pi\)
\(230\) 33.2076 2.18965
\(231\) 0 0
\(232\) 31.2554 2.05202
\(233\) −24.5975 −1.61144 −0.805718 0.592300i \(-0.798220\pi\)
−0.805718 + 0.592300i \(0.798220\pi\)
\(234\) 4.96858 0.324807
\(235\) −21.8777 −1.42714
\(236\) −4.11285 −0.267724
\(237\) −6.86811 −0.446132
\(238\) 0 0
\(239\) 12.5318 0.810617 0.405309 0.914180i \(-0.367164\pi\)
0.405309 + 0.914180i \(0.367164\pi\)
\(240\) 9.64270 0.622434
\(241\) 7.30292 0.470422 0.235211 0.971944i \(-0.424422\pi\)
0.235211 + 0.971944i \(0.424422\pi\)
\(242\) −8.91655 −0.573178
\(243\) 1.00000 0.0641500
\(244\) 4.37039 0.279786
\(245\) 0 0
\(246\) −2.44161 −0.155671
\(247\) 14.0323 0.892854
\(248\) 5.48333 0.348192
\(249\) 0.480942 0.0304785
\(250\) 12.1082 0.765788
\(251\) 3.30634 0.208695 0.104347 0.994541i \(-0.466725\pi\)
0.104347 + 0.994541i \(0.466725\pi\)
\(252\) 0 0
\(253\) −32.6551 −2.05301
\(254\) 21.8292 1.36969
\(255\) 20.8578 1.30617
\(256\) −11.5170 −0.719809
\(257\) 12.4915 0.779200 0.389600 0.920984i \(-0.372613\pi\)
0.389600 + 0.920984i \(0.372613\pi\)
\(258\) −3.47356 −0.216255
\(259\) 0 0
\(260\) −7.55003 −0.468233
\(261\) 10.1967 0.631157
\(262\) 11.3649 0.702126
\(263\) 19.9543 1.23043 0.615217 0.788358i \(-0.289068\pi\)
0.615217 + 0.788358i \(0.289068\pi\)
\(264\) −13.1210 −0.807543
\(265\) −4.53885 −0.278820
\(266\) 0 0
\(267\) 4.26669 0.261117
\(268\) 3.50744 0.214251
\(269\) 25.3647 1.54651 0.773255 0.634095i \(-0.218627\pi\)
0.773255 + 0.634095i \(0.218627\pi\)
\(270\) 4.35299 0.264915
\(271\) −21.5216 −1.30734 −0.653672 0.756778i \(-0.726772\pi\)
−0.653672 + 0.756778i \(0.726772\pi\)
\(272\) 15.7356 0.954110
\(273\) 0 0
\(274\) 21.4104 1.29345
\(275\) −33.3095 −2.00864
\(276\) −3.94794 −0.237638
\(277\) −20.1066 −1.20809 −0.604045 0.796950i \(-0.706445\pi\)
−0.604045 + 0.796950i \(0.706445\pi\)
\(278\) −11.0032 −0.659927
\(279\) 1.78887 0.107097
\(280\) 0 0
\(281\) −12.7696 −0.761768 −0.380884 0.924623i \(-0.624380\pi\)
−0.380884 + 0.924623i \(0.624380\pi\)
\(282\) −7.45082 −0.443690
\(283\) 8.17790 0.486126 0.243063 0.970011i \(-0.421848\pi\)
0.243063 + 0.970011i \(0.421848\pi\)
\(284\) −4.75146 −0.281947
\(285\) 12.2937 0.728218
\(286\) −21.2683 −1.25762
\(287\) 0 0
\(288\) −2.84652 −0.167733
\(289\) 17.0371 1.00218
\(290\) 44.3860 2.60643
\(291\) 1.03105 0.0604413
\(292\) 3.09193 0.180941
\(293\) −16.8403 −0.983819 −0.491909 0.870646i \(-0.663701\pi\)
−0.491909 + 0.870646i \(0.663701\pi\)
\(294\) 0 0
\(295\) −28.4129 −1.65426
\(296\) 24.1568 1.40408
\(297\) −4.28056 −0.248383
\(298\) 14.4030 0.834346
\(299\) −31.1306 −1.80033
\(300\) −4.02705 −0.232502
\(301\) 0 0
\(302\) −13.5378 −0.779012
\(303\) −11.9846 −0.688498
\(304\) 9.27467 0.531939
\(305\) 30.1921 1.72879
\(306\) 7.10349 0.406080
\(307\) −26.2616 −1.49883 −0.749415 0.662100i \(-0.769665\pi\)
−0.749415 + 0.662100i \(0.769665\pi\)
\(308\) 0 0
\(309\) −8.99004 −0.511426
\(310\) 7.78692 0.442267
\(311\) −9.24413 −0.524186 −0.262093 0.965043i \(-0.584413\pi\)
−0.262093 + 0.965043i \(0.584413\pi\)
\(312\) −12.5085 −0.708152
\(313\) 2.79778 0.158140 0.0790699 0.996869i \(-0.474805\pi\)
0.0790699 + 0.996869i \(0.474805\pi\)
\(314\) −4.02672 −0.227241
\(315\) 0 0
\(316\) 3.55432 0.199946
\(317\) 9.40383 0.528172 0.264086 0.964499i \(-0.414930\pi\)
0.264086 + 0.964499i \(0.414930\pi\)
\(318\) −1.54579 −0.0866834
\(319\) −43.6474 −2.44379
\(320\) −31.6763 −1.77076
\(321\) −6.27103 −0.350015
\(322\) 0 0
\(323\) 20.0617 1.11626
\(324\) −0.517511 −0.0287506
\(325\) −31.7544 −1.76142
\(326\) 2.04492 0.113258
\(327\) 10.1820 0.563065
\(328\) 6.14678 0.339399
\(329\) 0 0
\(330\) −18.6333 −1.02573
\(331\) 3.22397 0.177205 0.0886027 0.996067i \(-0.471760\pi\)
0.0886027 + 0.996067i \(0.471760\pi\)
\(332\) −0.248893 −0.0136598
\(333\) 7.88083 0.431867
\(334\) −25.0200 −1.36903
\(335\) 24.2305 1.32386
\(336\) 0 0
\(337\) 0.976474 0.0531919 0.0265960 0.999646i \(-0.491533\pi\)
0.0265960 + 0.999646i \(0.491533\pi\)
\(338\) −4.44693 −0.241881
\(339\) 8.65989 0.470341
\(340\) −10.7941 −0.585395
\(341\) −7.65735 −0.414669
\(342\) 4.18685 0.226399
\(343\) 0 0
\(344\) 8.74474 0.471485
\(345\) −27.2736 −1.46836
\(346\) −30.7202 −1.65153
\(347\) 10.3546 0.555866 0.277933 0.960600i \(-0.410351\pi\)
0.277933 + 0.960600i \(0.410351\pi\)
\(348\) −5.27688 −0.282871
\(349\) 13.1827 0.705653 0.352826 0.935689i \(-0.385221\pi\)
0.352826 + 0.935689i \(0.385221\pi\)
\(350\) 0 0
\(351\) −4.08072 −0.217813
\(352\) 12.1847 0.649448
\(353\) −19.4610 −1.03581 −0.517903 0.855440i \(-0.673287\pi\)
−0.517903 + 0.855440i \(0.673287\pi\)
\(354\) −9.67651 −0.514301
\(355\) −32.8246 −1.74215
\(356\) −2.20806 −0.117027
\(357\) 0 0
\(358\) 1.09750 0.0580048
\(359\) −25.6891 −1.35582 −0.677908 0.735147i \(-0.737113\pi\)
−0.677908 + 0.735147i \(0.737113\pi\)
\(360\) −10.9587 −0.577575
\(361\) −7.17547 −0.377656
\(362\) 16.7145 0.878494
\(363\) 7.32321 0.384369
\(364\) 0 0
\(365\) 21.3600 1.11803
\(366\) 10.2824 0.537472
\(367\) 31.9898 1.66985 0.834927 0.550361i \(-0.185510\pi\)
0.834927 + 0.550361i \(0.185510\pi\)
\(368\) −20.5758 −1.07259
\(369\) 2.00531 0.104392
\(370\) 34.3052 1.78344
\(371\) 0 0
\(372\) −0.925758 −0.0479983
\(373\) −25.2018 −1.30490 −0.652449 0.757833i \(-0.726258\pi\)
−0.652449 + 0.757833i \(0.726258\pi\)
\(374\) −30.4069 −1.57231
\(375\) −9.94450 −0.513532
\(376\) 18.7575 0.967346
\(377\) −41.6097 −2.14301
\(378\) 0 0
\(379\) −15.5156 −0.796984 −0.398492 0.917172i \(-0.630466\pi\)
−0.398492 + 0.917172i \(0.630466\pi\)
\(380\) −6.36215 −0.326371
\(381\) −17.9284 −0.918500
\(382\) −20.9166 −1.07019
\(383\) −21.6027 −1.10384 −0.551922 0.833896i \(-0.686105\pi\)
−0.551922 + 0.833896i \(0.686105\pi\)
\(384\) −5.09488 −0.259997
\(385\) 0 0
\(386\) −1.19935 −0.0610451
\(387\) 2.85285 0.145019
\(388\) −0.533581 −0.0270885
\(389\) −11.7710 −0.596811 −0.298406 0.954439i \(-0.596455\pi\)
−0.298406 + 0.954439i \(0.596455\pi\)
\(390\) −17.7633 −0.899482
\(391\) −44.5068 −2.25081
\(392\) 0 0
\(393\) −9.33404 −0.470840
\(394\) 7.48409 0.377043
\(395\) 24.5544 1.23547
\(396\) 2.21524 0.111320
\(397\) −4.58423 −0.230076 −0.115038 0.993361i \(-0.536699\pi\)
−0.115038 + 0.993361i \(0.536699\pi\)
\(398\) 20.6362 1.03440
\(399\) 0 0
\(400\) −20.9882 −1.04941
\(401\) 32.5591 1.62593 0.812963 0.582316i \(-0.197853\pi\)
0.812963 + 0.582316i \(0.197853\pi\)
\(402\) 8.25214 0.411579
\(403\) −7.29986 −0.363632
\(404\) 6.20218 0.308570
\(405\) −3.57513 −0.177650
\(406\) 0 0
\(407\) −33.7344 −1.67215
\(408\) −17.8831 −0.885346
\(409\) 13.8885 0.686743 0.343371 0.939200i \(-0.388431\pi\)
0.343371 + 0.939200i \(0.388431\pi\)
\(410\) 8.72909 0.431099
\(411\) −17.5844 −0.867377
\(412\) 4.65245 0.229210
\(413\) 0 0
\(414\) −9.28851 −0.456505
\(415\) −1.71943 −0.0844036
\(416\) 11.6159 0.569515
\(417\) 9.03696 0.442542
\(418\) −17.9221 −0.876598
\(419\) −14.7011 −0.718196 −0.359098 0.933300i \(-0.616916\pi\)
−0.359098 + 0.933300i \(0.616916\pi\)
\(420\) 0 0
\(421\) −34.5466 −1.68370 −0.841849 0.539714i \(-0.818532\pi\)
−0.841849 + 0.539714i \(0.818532\pi\)
\(422\) 25.1505 1.22431
\(423\) 6.11940 0.297535
\(424\) 3.89154 0.188990
\(425\) −45.3987 −2.20216
\(426\) −11.1790 −0.541624
\(427\) 0 0
\(428\) 3.24533 0.156869
\(429\) 17.4678 0.843352
\(430\) 12.4185 0.598871
\(431\) −18.3935 −0.885985 −0.442992 0.896525i \(-0.646083\pi\)
−0.442992 + 0.896525i \(0.646083\pi\)
\(432\) −2.69716 −0.129767
\(433\) 6.26868 0.301253 0.150627 0.988591i \(-0.451871\pi\)
0.150627 + 0.988591i \(0.451871\pi\)
\(434\) 0 0
\(435\) −36.4544 −1.74785
\(436\) −5.26929 −0.252353
\(437\) −26.2326 −1.25488
\(438\) 7.27454 0.347591
\(439\) −7.46208 −0.356146 −0.178073 0.984017i \(-0.556986\pi\)
−0.178073 + 0.984017i \(0.556986\pi\)
\(440\) 46.9094 2.23632
\(441\) 0 0
\(442\) −28.9874 −1.37879
\(443\) 0.715561 0.0339973 0.0169987 0.999856i \(-0.494589\pi\)
0.0169987 + 0.999856i \(0.494589\pi\)
\(444\) −4.07842 −0.193553
\(445\) −15.2540 −0.723108
\(446\) −22.8787 −1.08334
\(447\) −11.8293 −0.559506
\(448\) 0 0
\(449\) 8.22950 0.388374 0.194187 0.980965i \(-0.437793\pi\)
0.194187 + 0.980965i \(0.437793\pi\)
\(450\) −9.47465 −0.446639
\(451\) −8.58384 −0.404197
\(452\) −4.48159 −0.210796
\(453\) 11.1186 0.522400
\(454\) 6.18722 0.290381
\(455\) 0 0
\(456\) −10.5404 −0.493602
\(457\) 0.681998 0.0319025 0.0159513 0.999873i \(-0.494922\pi\)
0.0159513 + 0.999873i \(0.494922\pi\)
\(458\) −30.8845 −1.44314
\(459\) −5.83413 −0.272314
\(460\) 14.1144 0.658087
\(461\) −24.7133 −1.15101 −0.575506 0.817798i \(-0.695195\pi\)
−0.575506 + 0.817798i \(0.695195\pi\)
\(462\) 0 0
\(463\) 30.1904 1.40307 0.701533 0.712637i \(-0.252499\pi\)
0.701533 + 0.712637i \(0.252499\pi\)
\(464\) −27.5020 −1.27675
\(465\) −6.39543 −0.296581
\(466\) 29.9493 1.38737
\(467\) −27.6734 −1.28057 −0.640287 0.768136i \(-0.721185\pi\)
−0.640287 + 0.768136i \(0.721185\pi\)
\(468\) 2.11182 0.0976189
\(469\) 0 0
\(470\) 26.6377 1.22870
\(471\) 3.30716 0.152386
\(472\) 24.3607 1.12129
\(473\) −12.2118 −0.561500
\(474\) 8.36244 0.384099
\(475\) −26.7584 −1.22776
\(476\) 0 0
\(477\) 1.26956 0.0581293
\(478\) −15.2585 −0.697906
\(479\) −6.69003 −0.305675 −0.152838 0.988251i \(-0.548841\pi\)
−0.152838 + 0.988251i \(0.548841\pi\)
\(480\) 10.1767 0.464501
\(481\) −32.1595 −1.46635
\(482\) −8.89185 −0.405013
\(483\) 0 0
\(484\) −3.78984 −0.172266
\(485\) −3.68615 −0.167379
\(486\) −1.21757 −0.0552303
\(487\) 26.6335 1.20688 0.603439 0.797409i \(-0.293797\pi\)
0.603439 + 0.797409i \(0.293797\pi\)
\(488\) −25.8862 −1.17181
\(489\) −1.67951 −0.0759499
\(490\) 0 0
\(491\) 11.3768 0.513426 0.256713 0.966488i \(-0.417360\pi\)
0.256713 + 0.966488i \(0.417360\pi\)
\(492\) −1.03777 −0.0467862
\(493\) −59.4886 −2.67923
\(494\) −17.0854 −0.768707
\(495\) 15.3036 0.687845
\(496\) −4.82485 −0.216642
\(497\) 0 0
\(498\) −0.585583 −0.0262406
\(499\) −7.16867 −0.320914 −0.160457 0.987043i \(-0.551297\pi\)
−0.160457 + 0.987043i \(0.551297\pi\)
\(500\) 5.14639 0.230154
\(501\) 20.5490 0.918064
\(502\) −4.02572 −0.179677
\(503\) −26.2372 −1.16986 −0.584930 0.811084i \(-0.698878\pi\)
−0.584930 + 0.811084i \(0.698878\pi\)
\(504\) 0 0
\(505\) 42.8466 1.90665
\(506\) 39.7600 1.76755
\(507\) 3.65229 0.162204
\(508\) 9.27816 0.411652
\(509\) −4.79688 −0.212618 −0.106309 0.994333i \(-0.533903\pi\)
−0.106309 + 0.994333i \(0.533903\pi\)
\(510\) −25.3959 −1.12455
\(511\) 0 0
\(512\) 24.2125 1.07005
\(513\) −3.43868 −0.151821
\(514\) −15.2094 −0.670856
\(515\) 32.1406 1.41628
\(516\) −1.47638 −0.0649942
\(517\) −26.1944 −1.15203
\(518\) 0 0
\(519\) 25.2306 1.10750
\(520\) 44.7194 1.96108
\(521\) 37.8526 1.65835 0.829175 0.558988i \(-0.188810\pi\)
0.829175 + 0.558988i \(0.188810\pi\)
\(522\) −12.4152 −0.543398
\(523\) −5.23475 −0.228900 −0.114450 0.993429i \(-0.536511\pi\)
−0.114450 + 0.993429i \(0.536511\pi\)
\(524\) 4.83047 0.211020
\(525\) 0 0
\(526\) −24.2959 −1.05935
\(527\) −10.4365 −0.454620
\(528\) 11.5454 0.502447
\(529\) 35.1970 1.53030
\(530\) 5.52640 0.240051
\(531\) 7.94737 0.344886
\(532\) 0 0
\(533\) −8.18310 −0.354449
\(534\) −5.19501 −0.224810
\(535\) 22.4198 0.969292
\(536\) −20.7749 −0.897337
\(537\) −0.901383 −0.0388976
\(538\) −30.8834 −1.33148
\(539\) 0 0
\(540\) 1.85017 0.0796187
\(541\) −25.9361 −1.11508 −0.557539 0.830151i \(-0.688254\pi\)
−0.557539 + 0.830151i \(0.688254\pi\)
\(542\) 26.2042 1.12556
\(543\) −13.7277 −0.589111
\(544\) 16.6070 0.712019
\(545\) −36.4019 −1.55929
\(546\) 0 0
\(547\) −24.2422 −1.03652 −0.518260 0.855223i \(-0.673420\pi\)
−0.518260 + 0.855223i \(0.673420\pi\)
\(548\) 9.10015 0.388739
\(549\) −8.44502 −0.360425
\(550\) 40.5568 1.72935
\(551\) −35.0630 −1.49374
\(552\) 23.3839 0.995286
\(553\) 0 0
\(554\) 24.4813 1.04011
\(555\) −28.1750 −1.19596
\(556\) −4.67673 −0.198337
\(557\) 26.8953 1.13959 0.569796 0.821786i \(-0.307022\pi\)
0.569796 + 0.821786i \(0.307022\pi\)
\(558\) −2.17808 −0.0922054
\(559\) −11.6417 −0.492392
\(560\) 0 0
\(561\) 24.9734 1.05438
\(562\) 15.5479 0.655848
\(563\) −16.1177 −0.679281 −0.339640 0.940555i \(-0.610305\pi\)
−0.339640 + 0.940555i \(0.610305\pi\)
\(564\) −3.16686 −0.133349
\(565\) −30.9603 −1.30251
\(566\) −9.95721 −0.418533
\(567\) 0 0
\(568\) 28.1433 1.18086
\(569\) −38.1714 −1.60023 −0.800113 0.599849i \(-0.795227\pi\)
−0.800113 + 0.599849i \(0.795227\pi\)
\(570\) −14.9686 −0.626964
\(571\) 5.65881 0.236814 0.118407 0.992965i \(-0.462221\pi\)
0.118407 + 0.992965i \(0.462221\pi\)
\(572\) −9.03977 −0.377972
\(573\) 17.1789 0.717659
\(574\) 0 0
\(575\) 59.3633 2.47562
\(576\) 8.86017 0.369174
\(577\) 7.83417 0.326141 0.163070 0.986614i \(-0.447860\pi\)
0.163070 + 0.986614i \(0.447860\pi\)
\(578\) −20.7439 −0.862834
\(579\) 0.985028 0.0409364
\(580\) 18.8656 0.783350
\(581\) 0 0
\(582\) −1.25538 −0.0520373
\(583\) −5.43444 −0.225071
\(584\) −18.3137 −0.757827
\(585\) 14.5891 0.603186
\(586\) 20.5043 0.847024
\(587\) 19.7426 0.814863 0.407432 0.913236i \(-0.366424\pi\)
0.407432 + 0.913236i \(0.366424\pi\)
\(588\) 0 0
\(589\) −6.15134 −0.253461
\(590\) 34.5948 1.42425
\(591\) −6.14672 −0.252842
\(592\) −21.2558 −0.873610
\(593\) 15.8243 0.649825 0.324912 0.945744i \(-0.394665\pi\)
0.324912 + 0.945744i \(0.394665\pi\)
\(594\) 5.21190 0.213847
\(595\) 0 0
\(596\) 6.12179 0.250758
\(597\) −16.9486 −0.693661
\(598\) 37.9038 1.55000
\(599\) 23.7065 0.968622 0.484311 0.874896i \(-0.339070\pi\)
0.484311 + 0.874896i \(0.339070\pi\)
\(600\) 23.8525 0.973776
\(601\) 26.9474 1.09921 0.549603 0.835426i \(-0.314779\pi\)
0.549603 + 0.835426i \(0.314779\pi\)
\(602\) 0 0
\(603\) −6.77752 −0.276002
\(604\) −5.75402 −0.234128
\(605\) −26.1814 −1.06443
\(606\) 14.5922 0.592767
\(607\) −29.9582 −1.21597 −0.607984 0.793949i \(-0.708021\pi\)
−0.607984 + 0.793949i \(0.708021\pi\)
\(608\) 9.78829 0.396967
\(609\) 0 0
\(610\) −36.7611 −1.48841
\(611\) −24.9715 −1.01024
\(612\) 3.01923 0.122045
\(613\) −39.0642 −1.57779 −0.788894 0.614530i \(-0.789346\pi\)
−0.788894 + 0.614530i \(0.789346\pi\)
\(614\) 31.9755 1.29043
\(615\) −7.16924 −0.289092
\(616\) 0 0
\(617\) 42.6265 1.71608 0.858039 0.513584i \(-0.171682\pi\)
0.858039 + 0.513584i \(0.171682\pi\)
\(618\) 10.9460 0.440315
\(619\) 8.50193 0.341721 0.170861 0.985295i \(-0.445345\pi\)
0.170861 + 0.985295i \(0.445345\pi\)
\(620\) 3.30971 0.132921
\(621\) 7.62869 0.306129
\(622\) 11.2554 0.451301
\(623\) 0 0
\(624\) 11.0064 0.440607
\(625\) −3.35496 −0.134198
\(626\) −3.40650 −0.136151
\(627\) 14.7195 0.587840
\(628\) −1.71149 −0.0682961
\(629\) −45.9778 −1.83325
\(630\) 0 0
\(631\) −1.38729 −0.0552273 −0.0276137 0.999619i \(-0.508791\pi\)
−0.0276137 + 0.999619i \(0.508791\pi\)
\(632\) −21.0525 −0.837424
\(633\) −20.6562 −0.821012
\(634\) −11.4499 −0.454732
\(635\) 64.0965 2.54359
\(636\) −0.657013 −0.0260523
\(637\) 0 0
\(638\) 53.1440 2.10399
\(639\) 9.18136 0.363209
\(640\) 18.2149 0.720006
\(641\) 18.3408 0.724417 0.362209 0.932097i \(-0.382023\pi\)
0.362209 + 0.932097i \(0.382023\pi\)
\(642\) 7.63545 0.301347
\(643\) −33.6368 −1.32651 −0.663253 0.748395i \(-0.730825\pi\)
−0.663253 + 0.748395i \(0.730825\pi\)
\(644\) 0 0
\(645\) −10.1993 −0.401598
\(646\) −24.4266 −0.961054
\(647\) −38.5595 −1.51593 −0.757965 0.652295i \(-0.773806\pi\)
−0.757965 + 0.652295i \(0.773806\pi\)
\(648\) 3.06526 0.120415
\(649\) −34.0192 −1.33537
\(650\) 38.6634 1.51650
\(651\) 0 0
\(652\) 0.869163 0.0340391
\(653\) −5.54967 −0.217175 −0.108588 0.994087i \(-0.534633\pi\)
−0.108588 + 0.994087i \(0.534633\pi\)
\(654\) −12.3973 −0.484774
\(655\) 33.3705 1.30389
\(656\) −5.40863 −0.211172
\(657\) −5.97461 −0.233092
\(658\) 0 0
\(659\) 3.51279 0.136839 0.0684194 0.997657i \(-0.478204\pi\)
0.0684194 + 0.997657i \(0.478204\pi\)
\(660\) −7.91977 −0.308277
\(661\) 4.08305 0.158812 0.0794061 0.996842i \(-0.474698\pi\)
0.0794061 + 0.996842i \(0.474698\pi\)
\(662\) −3.92542 −0.152566
\(663\) 23.8075 0.924605
\(664\) 1.47421 0.0572105
\(665\) 0 0
\(666\) −9.59550 −0.371818
\(667\) 77.7872 3.01193
\(668\) −10.6344 −0.411456
\(669\) 18.7904 0.726480
\(670\) −29.5025 −1.13978
\(671\) 36.1494 1.39553
\(672\) 0 0
\(673\) −11.2784 −0.434750 −0.217375 0.976088i \(-0.569749\pi\)
−0.217375 + 0.976088i \(0.569749\pi\)
\(674\) −1.18893 −0.0457959
\(675\) 7.78158 0.299513
\(676\) −1.89010 −0.0726962
\(677\) 29.1736 1.12123 0.560616 0.828076i \(-0.310564\pi\)
0.560616 + 0.828076i \(0.310564\pi\)
\(678\) −10.5441 −0.404942
\(679\) 0 0
\(680\) 63.9345 2.45178
\(681\) −5.08160 −0.194727
\(682\) 9.32339 0.357011
\(683\) 40.7152 1.55792 0.778962 0.627071i \(-0.215746\pi\)
0.778962 + 0.627071i \(0.215746\pi\)
\(684\) 1.77956 0.0680430
\(685\) 62.8667 2.40201
\(686\) 0 0
\(687\) 25.3656 0.967758
\(688\) −7.69460 −0.293354
\(689\) −5.18073 −0.197370
\(690\) 33.2076 1.26419
\(691\) 33.8808 1.28889 0.644443 0.764653i \(-0.277089\pi\)
0.644443 + 0.764653i \(0.277089\pi\)
\(692\) −13.0571 −0.496358
\(693\) 0 0
\(694\) −12.6075 −0.478576
\(695\) −32.3083 −1.22552
\(696\) 31.2554 1.18473
\(697\) −11.6992 −0.443140
\(698\) −16.0509 −0.607536
\(699\) −24.5975 −0.930363
\(700\) 0 0
\(701\) 3.77985 0.142763 0.0713814 0.997449i \(-0.477259\pi\)
0.0713814 + 0.997449i \(0.477259\pi\)
\(702\) 4.96858 0.187527
\(703\) −27.0997 −1.02208
\(704\) −37.9265 −1.42941
\(705\) −21.8777 −0.823960
\(706\) 23.6952 0.891782
\(707\) 0 0
\(708\) −4.11285 −0.154570
\(709\) 40.3458 1.51522 0.757608 0.652709i \(-0.226368\pi\)
0.757608 + 0.652709i \(0.226368\pi\)
\(710\) 39.9664 1.49991
\(711\) −6.86811 −0.257574
\(712\) 13.0785 0.490138
\(713\) 13.6467 0.511073
\(714\) 0 0
\(715\) −62.4496 −2.33548
\(716\) 0.466476 0.0174330
\(717\) 12.5318 0.468010
\(718\) 31.2783 1.16730
\(719\) −25.1260 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(720\) 9.64270 0.359362
\(721\) 0 0
\(722\) 8.73667 0.325145
\(723\) 7.30292 0.271599
\(724\) 7.10423 0.264027
\(725\) 79.3460 2.94684
\(726\) −8.91655 −0.330924
\(727\) 43.8758 1.62726 0.813631 0.581382i \(-0.197488\pi\)
0.813631 + 0.581382i \(0.197488\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −26.0074 −0.962578
\(731\) −16.6439 −0.615598
\(732\) 4.37039 0.161534
\(733\) 6.65398 0.245770 0.122885 0.992421i \(-0.460785\pi\)
0.122885 + 0.992421i \(0.460785\pi\)
\(734\) −38.9500 −1.43767
\(735\) 0 0
\(736\) −21.7153 −0.800435
\(737\) 29.0116 1.06866
\(738\) −2.44161 −0.0898770
\(739\) −1.68170 −0.0618624 −0.0309312 0.999522i \(-0.509847\pi\)
−0.0309312 + 0.999522i \(0.509847\pi\)
\(740\) 14.5809 0.536004
\(741\) 14.0323 0.515489
\(742\) 0 0
\(743\) 18.7457 0.687714 0.343857 0.939022i \(-0.388266\pi\)
0.343857 + 0.939022i \(0.388266\pi\)
\(744\) 5.48333 0.201029
\(745\) 42.2913 1.54943
\(746\) 30.6850 1.12346
\(747\) 0.480942 0.0175967
\(748\) −12.9240 −0.472548
\(749\) 0 0
\(750\) 12.1082 0.442128
\(751\) 10.3704 0.378423 0.189211 0.981936i \(-0.439407\pi\)
0.189211 + 0.981936i \(0.439407\pi\)
\(752\) −16.5050 −0.601875
\(753\) 3.30634 0.120490
\(754\) 50.6629 1.84504
\(755\) −39.7506 −1.44667
\(756\) 0 0
\(757\) −37.5256 −1.36389 −0.681946 0.731402i \(-0.738866\pi\)
−0.681946 + 0.731402i \(0.738866\pi\)
\(758\) 18.8914 0.686168
\(759\) −32.6551 −1.18530
\(760\) 37.6835 1.36692
\(761\) −5.02938 −0.182315 −0.0911574 0.995836i \(-0.529057\pi\)
−0.0911574 + 0.995836i \(0.529057\pi\)
\(762\) 21.8292 0.790788
\(763\) 0 0
\(764\) −8.89028 −0.321639
\(765\) 20.8578 0.754115
\(766\) 26.3029 0.950361
\(767\) −32.4310 −1.17102
\(768\) −11.5170 −0.415582
\(769\) −49.5153 −1.78557 −0.892785 0.450484i \(-0.851251\pi\)
−0.892785 + 0.450484i \(0.851251\pi\)
\(770\) 0 0
\(771\) 12.4915 0.449871
\(772\) −0.509763 −0.0183468
\(773\) −35.3310 −1.27077 −0.635384 0.772197i \(-0.719158\pi\)
−0.635384 + 0.772197i \(0.719158\pi\)
\(774\) −3.47356 −0.124855
\(775\) 13.9202 0.500028
\(776\) 3.16044 0.113453
\(777\) 0 0
\(778\) 14.3320 0.513828
\(779\) −6.89561 −0.247061
\(780\) −7.55003 −0.270335
\(781\) −39.3014 −1.40631
\(782\) 54.1904 1.93784
\(783\) 10.1967 0.364399
\(784\) 0 0
\(785\) −11.8235 −0.422001
\(786\) 11.3649 0.405373
\(787\) 12.4323 0.443164 0.221582 0.975142i \(-0.428878\pi\)
0.221582 + 0.975142i \(0.428878\pi\)
\(788\) 3.18099 0.113318
\(789\) 19.9543 0.710392
\(790\) −29.8968 −1.06368
\(791\) 0 0
\(792\) −13.1210 −0.466235
\(793\) 34.4618 1.22377
\(794\) 5.58164 0.198085
\(795\) −4.53885 −0.160977
\(796\) 8.77110 0.310884
\(797\) −15.6882 −0.555705 −0.277852 0.960624i \(-0.589623\pi\)
−0.277852 + 0.960624i \(0.589623\pi\)
\(798\) 0 0
\(799\) −35.7014 −1.26302
\(800\) −22.1504 −0.783136
\(801\) 4.26669 0.150756
\(802\) −39.6432 −1.39985
\(803\) 25.5747 0.902511
\(804\) 3.50744 0.123698
\(805\) 0 0
\(806\) 8.88813 0.313071
\(807\) 25.3647 0.892878
\(808\) −36.7360 −1.29237
\(809\) −35.7662 −1.25747 −0.628736 0.777619i \(-0.716427\pi\)
−0.628736 + 0.777619i \(0.716427\pi\)
\(810\) 4.35299 0.152949
\(811\) −15.8131 −0.555271 −0.277636 0.960686i \(-0.589551\pi\)
−0.277636 + 0.960686i \(0.589551\pi\)
\(812\) 0 0
\(813\) −21.5216 −0.754795
\(814\) 41.0741 1.43965
\(815\) 6.00446 0.210327
\(816\) 15.7356 0.550856
\(817\) −9.81006 −0.343210
\(818\) −16.9103 −0.591255
\(819\) 0 0
\(820\) 3.71016 0.129564
\(821\) 16.5924 0.579078 0.289539 0.957166i \(-0.406498\pi\)
0.289539 + 0.957166i \(0.406498\pi\)
\(822\) 21.4104 0.746773
\(823\) −14.5684 −0.507824 −0.253912 0.967227i \(-0.581717\pi\)
−0.253912 + 0.967227i \(0.581717\pi\)
\(824\) −27.5568 −0.959987
\(825\) −33.3095 −1.15969
\(826\) 0 0
\(827\) −17.8032 −0.619077 −0.309539 0.950887i \(-0.600175\pi\)
−0.309539 + 0.950887i \(0.600175\pi\)
\(828\) −3.94794 −0.137200
\(829\) −16.2079 −0.562923 −0.281462 0.959572i \(-0.590819\pi\)
−0.281462 + 0.959572i \(0.590819\pi\)
\(830\) 2.09354 0.0726677
\(831\) −20.1066 −0.697491
\(832\) −36.1559 −1.25348
\(833\) 0 0
\(834\) −11.0032 −0.381009
\(835\) −73.4656 −2.54238
\(836\) −7.61750 −0.263457
\(837\) 1.78887 0.0618322
\(838\) 17.8997 0.618335
\(839\) −37.2453 −1.28585 −0.642924 0.765930i \(-0.722279\pi\)
−0.642924 + 0.765930i \(0.722279\pi\)
\(840\) 0 0
\(841\) 74.9717 2.58523
\(842\) 42.0630 1.44959
\(843\) −12.7696 −0.439807
\(844\) 10.6898 0.367959
\(845\) −13.0574 −0.449189
\(846\) −7.45082 −0.256165
\(847\) 0 0
\(848\) −3.42421 −0.117588
\(849\) 8.17790 0.280665
\(850\) 55.2764 1.89596
\(851\) 60.1204 2.06090
\(852\) −4.75146 −0.162782
\(853\) −0.715212 −0.0244884 −0.0122442 0.999925i \(-0.503898\pi\)
−0.0122442 + 0.999925i \(0.503898\pi\)
\(854\) 0 0
\(855\) 12.2937 0.420437
\(856\) −19.2223 −0.657006
\(857\) 13.1835 0.450341 0.225170 0.974319i \(-0.427706\pi\)
0.225170 + 0.974319i \(0.427706\pi\)
\(858\) −21.2683 −0.726089
\(859\) −5.87896 −0.200588 −0.100294 0.994958i \(-0.531978\pi\)
−0.100294 + 0.994958i \(0.531978\pi\)
\(860\) 5.27827 0.179988
\(861\) 0 0
\(862\) 22.3955 0.762793
\(863\) 4.56267 0.155315 0.0776575 0.996980i \(-0.475256\pi\)
0.0776575 + 0.996980i \(0.475256\pi\)
\(864\) −2.84652 −0.0968407
\(865\) −90.2029 −3.06699
\(866\) −7.63258 −0.259366
\(867\) 17.0371 0.578610
\(868\) 0 0
\(869\) 29.3994 0.997305
\(870\) 44.3860 1.50482
\(871\) 27.6572 0.937128
\(872\) 31.2104 1.05692
\(873\) 1.03105 0.0348958
\(874\) 31.9402 1.08039
\(875\) 0 0
\(876\) 3.09193 0.104467
\(877\) 2.65595 0.0896851 0.0448425 0.998994i \(-0.485721\pi\)
0.0448425 + 0.998994i \(0.485721\pi\)
\(878\) 9.08565 0.306626
\(879\) −16.8403 −0.568008
\(880\) −41.2762 −1.39142
\(881\) −45.8891 −1.54604 −0.773021 0.634380i \(-0.781255\pi\)
−0.773021 + 0.634380i \(0.781255\pi\)
\(882\) 0 0
\(883\) 23.4502 0.789163 0.394581 0.918861i \(-0.370890\pi\)
0.394581 + 0.918861i \(0.370890\pi\)
\(884\) −12.3206 −0.414388
\(885\) −28.4129 −0.955089
\(886\) −0.871249 −0.0292702
\(887\) −24.2960 −0.815781 −0.407890 0.913031i \(-0.633735\pi\)
−0.407890 + 0.913031i \(0.633735\pi\)
\(888\) 24.1568 0.810648
\(889\) 0 0
\(890\) 18.5729 0.622564
\(891\) −4.28056 −0.143404
\(892\) −9.72425 −0.325592
\(893\) −21.0427 −0.704165
\(894\) 14.4030 0.481710
\(895\) 3.22256 0.107718
\(896\) 0 0
\(897\) −31.1306 −1.03942
\(898\) −10.0200 −0.334373
\(899\) 18.2404 0.608353
\(900\) −4.02705 −0.134235
\(901\) −7.40679 −0.246756
\(902\) 10.4515 0.347996
\(903\) 0 0
\(904\) 26.5448 0.882867
\(905\) 49.0783 1.63142
\(906\) −13.5378 −0.449763
\(907\) −41.7674 −1.38686 −0.693432 0.720522i \(-0.743902\pi\)
−0.693432 + 0.720522i \(0.743902\pi\)
\(908\) 2.62978 0.0872724
\(909\) −11.9846 −0.397505
\(910\) 0 0
\(911\) −16.3065 −0.540259 −0.270129 0.962824i \(-0.587066\pi\)
−0.270129 + 0.962824i \(0.587066\pi\)
\(912\) 9.27467 0.307115
\(913\) −2.05870 −0.0681331
\(914\) −0.830384 −0.0274666
\(915\) 30.1921 0.998119
\(916\) −13.1270 −0.433728
\(917\) 0 0
\(918\) 7.10349 0.234450
\(919\) −40.0868 −1.32234 −0.661171 0.750235i \(-0.729940\pi\)
−0.661171 + 0.750235i \(0.729940\pi\)
\(920\) −83.6006 −2.75623
\(921\) −26.2616 −0.865350
\(922\) 30.0903 0.990970
\(923\) −37.4666 −1.23323
\(924\) 0 0
\(925\) 61.3252 2.01636
\(926\) −36.7591 −1.20798
\(927\) −8.99004 −0.295272
\(928\) −29.0250 −0.952793
\(929\) 56.1756 1.84306 0.921532 0.388303i \(-0.126939\pi\)
0.921532 + 0.388303i \(0.126939\pi\)
\(930\) 7.78692 0.255343
\(931\) 0 0
\(932\) 12.7295 0.416968
\(933\) −9.24413 −0.302639
\(934\) 33.6945 1.10252
\(935\) −89.2831 −2.91987
\(936\) −12.5085 −0.408852
\(937\) 18.2937 0.597629 0.298815 0.954311i \(-0.403409\pi\)
0.298815 + 0.954311i \(0.403409\pi\)
\(938\) 0 0
\(939\) 2.79778 0.0913020
\(940\) 11.3219 0.369281
\(941\) 27.0760 0.882652 0.441326 0.897347i \(-0.354508\pi\)
0.441326 + 0.897347i \(0.354508\pi\)
\(942\) −4.02672 −0.131198
\(943\) 15.2979 0.498167
\(944\) −21.4353 −0.697660
\(945\) 0 0
\(946\) 14.8688 0.483427
\(947\) −15.8047 −0.513584 −0.256792 0.966467i \(-0.582666\pi\)
−0.256792 + 0.966467i \(0.582666\pi\)
\(948\) 3.55432 0.115439
\(949\) 24.3807 0.791432
\(950\) 32.5803 1.05704
\(951\) 9.40383 0.304940
\(952\) 0 0
\(953\) 11.7217 0.379702 0.189851 0.981813i \(-0.439200\pi\)
0.189851 + 0.981813i \(0.439200\pi\)
\(954\) −1.54579 −0.0500467
\(955\) −61.4169 −1.98740
\(956\) −6.48537 −0.209752
\(957\) −43.6474 −1.41092
\(958\) 8.14561 0.263173
\(959\) 0 0
\(960\) −31.6763 −1.02235
\(961\) −27.8000 −0.896773
\(962\) 39.1566 1.26246
\(963\) −6.27103 −0.202081
\(964\) −3.77934 −0.121724
\(965\) −3.52161 −0.113365
\(966\) 0 0
\(967\) −34.1130 −1.09700 −0.548500 0.836151i \(-0.684801\pi\)
−0.548500 + 0.836151i \(0.684801\pi\)
\(968\) 22.4475 0.721491
\(969\) 20.0617 0.644475
\(970\) 4.48816 0.144106
\(971\) −0.807110 −0.0259014 −0.0129507 0.999916i \(-0.504122\pi\)
−0.0129507 + 0.999916i \(0.504122\pi\)
\(972\) −0.517511 −0.0165992
\(973\) 0 0
\(974\) −32.4283 −1.03907
\(975\) −31.7544 −1.01696
\(976\) 22.7776 0.729092
\(977\) 12.3748 0.395906 0.197953 0.980212i \(-0.436571\pi\)
0.197953 + 0.980212i \(0.436571\pi\)
\(978\) 2.04492 0.0653895
\(979\) −18.2638 −0.583715
\(980\) 0 0
\(981\) 10.1820 0.325086
\(982\) −13.8521 −0.442037
\(983\) 34.9832 1.11579 0.557896 0.829911i \(-0.311609\pi\)
0.557896 + 0.829911i \(0.311609\pi\)
\(984\) 6.14678 0.195952
\(985\) 21.9753 0.700192
\(986\) 72.4319 2.30670
\(987\) 0 0
\(988\) −7.26187 −0.231031
\(989\) 21.7636 0.692041
\(990\) −18.6333 −0.592204
\(991\) −56.1530 −1.78376 −0.891879 0.452273i \(-0.850613\pi\)
−0.891879 + 0.452273i \(0.850613\pi\)
\(992\) −5.09205 −0.161673
\(993\) 3.22397 0.102310
\(994\) 0 0
\(995\) 60.5936 1.92095
\(996\) −0.248893 −0.00788647
\(997\) 15.2494 0.482955 0.241477 0.970406i \(-0.422368\pi\)
0.241477 + 0.970406i \(0.422368\pi\)
\(998\) 8.72840 0.276293
\(999\) 7.88083 0.249338
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7203.2.a.p.1.11 yes 36
7.6 odd 2 7203.2.a.o.1.11 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7203.2.a.o.1.11 36 7.6 odd 2
7203.2.a.p.1.11 yes 36 1.1 even 1 trivial