Properties

Label 7203.2.a.k.1.10
Level $7203$
Weight $2$
Character 7203.1
Self dual yes
Analytic conductor $57.516$
Analytic rank $1$
Dimension $24$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7203,2,Mod(1,7203)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7203, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7203.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7203 = 3 \cdot 7^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7203.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,-6,24,18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.5162445759\)
Analytic rank: \(1\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 147)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Character \(\chi\) \(=\) 7203.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.839793 q^{2} +1.00000 q^{3} -1.29475 q^{4} +1.55513 q^{5} -0.839793 q^{6} +2.76691 q^{8} +1.00000 q^{9} -1.30599 q^{10} -1.97493 q^{11} -1.29475 q^{12} -3.72295 q^{13} +1.55513 q^{15} +0.265864 q^{16} +4.12576 q^{17} -0.839793 q^{18} -3.76986 q^{19} -2.01350 q^{20} +1.65853 q^{22} -2.95485 q^{23} +2.76691 q^{24} -2.58158 q^{25} +3.12651 q^{26} +1.00000 q^{27} -2.16007 q^{29} -1.30599 q^{30} +0.843379 q^{31} -5.75708 q^{32} -1.97493 q^{33} -3.46479 q^{34} -1.29475 q^{36} +10.3415 q^{37} +3.16591 q^{38} -3.72295 q^{39} +4.30289 q^{40} +10.4271 q^{41} +7.92726 q^{43} +2.55703 q^{44} +1.55513 q^{45} +2.48147 q^{46} -1.66788 q^{47} +0.265864 q^{48} +2.16799 q^{50} +4.12576 q^{51} +4.82028 q^{52} -4.92947 q^{53} -0.839793 q^{54} -3.07126 q^{55} -3.76986 q^{57} +1.81402 q^{58} -8.20223 q^{59} -2.01350 q^{60} +2.64053 q^{61} -0.708264 q^{62} +4.30303 q^{64} -5.78966 q^{65} +1.65853 q^{66} +4.26159 q^{67} -5.34181 q^{68} -2.95485 q^{69} -14.6555 q^{71} +2.76691 q^{72} -4.71061 q^{73} -8.68474 q^{74} -2.58158 q^{75} +4.88102 q^{76} +3.12651 q^{78} -14.2452 q^{79} +0.413452 q^{80} +1.00000 q^{81} -8.75661 q^{82} -2.86098 q^{83} +6.41608 q^{85} -6.65726 q^{86} -2.16007 q^{87} -5.46444 q^{88} -17.0826 q^{89} -1.30599 q^{90} +3.82579 q^{92} +0.843379 q^{93} +1.40067 q^{94} -5.86262 q^{95} -5.75708 q^{96} -5.74864 q^{97} -1.97493 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 6 q^{2} + 24 q^{3} + 18 q^{4} - 6 q^{6} - 18 q^{8} + 24 q^{9} - 12 q^{10} - 12 q^{11} + 18 q^{12} - 14 q^{13} + 6 q^{16} + 2 q^{17} - 6 q^{18} - 26 q^{19} + 6 q^{20} - 24 q^{22} - 24 q^{23} - 18 q^{24}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.839793 −0.593824 −0.296912 0.954905i \(-0.595957\pi\)
−0.296912 + 0.954905i \(0.595957\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.29475 −0.647373
\(5\) 1.55513 0.695474 0.347737 0.937592i \(-0.386950\pi\)
0.347737 + 0.937592i \(0.386950\pi\)
\(6\) −0.839793 −0.342844
\(7\) 0 0
\(8\) 2.76691 0.978249
\(9\) 1.00000 0.333333
\(10\) −1.30599 −0.412989
\(11\) −1.97493 −0.595463 −0.297731 0.954650i \(-0.596230\pi\)
−0.297731 + 0.954650i \(0.596230\pi\)
\(12\) −1.29475 −0.373761
\(13\) −3.72295 −1.03256 −0.516280 0.856420i \(-0.672684\pi\)
−0.516280 + 0.856420i \(0.672684\pi\)
\(14\) 0 0
\(15\) 1.55513 0.401532
\(16\) 0.265864 0.0664659
\(17\) 4.12576 1.00064 0.500322 0.865840i \(-0.333215\pi\)
0.500322 + 0.865840i \(0.333215\pi\)
\(18\) −0.839793 −0.197941
\(19\) −3.76986 −0.864866 −0.432433 0.901666i \(-0.642345\pi\)
−0.432433 + 0.901666i \(0.642345\pi\)
\(20\) −2.01350 −0.450232
\(21\) 0 0
\(22\) 1.65853 0.353600
\(23\) −2.95485 −0.616129 −0.308065 0.951365i \(-0.599681\pi\)
−0.308065 + 0.951365i \(0.599681\pi\)
\(24\) 2.76691 0.564793
\(25\) −2.58158 −0.516315
\(26\) 3.12651 0.613159
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −2.16007 −0.401115 −0.200558 0.979682i \(-0.564275\pi\)
−0.200558 + 0.979682i \(0.564275\pi\)
\(30\) −1.30599 −0.238439
\(31\) 0.843379 0.151475 0.0757377 0.997128i \(-0.475869\pi\)
0.0757377 + 0.997128i \(0.475869\pi\)
\(32\) −5.75708 −1.01772
\(33\) −1.97493 −0.343791
\(34\) −3.46479 −0.594206
\(35\) 0 0
\(36\) −1.29475 −0.215791
\(37\) 10.3415 1.70014 0.850068 0.526674i \(-0.176561\pi\)
0.850068 + 0.526674i \(0.176561\pi\)
\(38\) 3.16591 0.513578
\(39\) −3.72295 −0.596149
\(40\) 4.30289 0.680347
\(41\) 10.4271 1.62844 0.814220 0.580557i \(-0.197165\pi\)
0.814220 + 0.580557i \(0.197165\pi\)
\(42\) 0 0
\(43\) 7.92726 1.20890 0.604448 0.796645i \(-0.293394\pi\)
0.604448 + 0.796645i \(0.293394\pi\)
\(44\) 2.55703 0.385487
\(45\) 1.55513 0.231825
\(46\) 2.48147 0.365872
\(47\) −1.66788 −0.243285 −0.121642 0.992574i \(-0.538816\pi\)
−0.121642 + 0.992574i \(0.538816\pi\)
\(48\) 0.265864 0.0383741
\(49\) 0 0
\(50\) 2.16799 0.306600
\(51\) 4.12576 0.577722
\(52\) 4.82028 0.668452
\(53\) −4.92947 −0.677114 −0.338557 0.940946i \(-0.609939\pi\)
−0.338557 + 0.940946i \(0.609939\pi\)
\(54\) −0.839793 −0.114281
\(55\) −3.07126 −0.414129
\(56\) 0 0
\(57\) −3.76986 −0.499331
\(58\) 1.81402 0.238192
\(59\) −8.20223 −1.06784 −0.533920 0.845535i \(-0.679282\pi\)
−0.533920 + 0.845535i \(0.679282\pi\)
\(60\) −2.01350 −0.259941
\(61\) 2.64053 0.338085 0.169042 0.985609i \(-0.445933\pi\)
0.169042 + 0.985609i \(0.445933\pi\)
\(62\) −0.708264 −0.0899496
\(63\) 0 0
\(64\) 4.30303 0.537879
\(65\) −5.78966 −0.718119
\(66\) 1.65853 0.204151
\(67\) 4.26159 0.520636 0.260318 0.965523i \(-0.416173\pi\)
0.260318 + 0.965523i \(0.416173\pi\)
\(68\) −5.34181 −0.647790
\(69\) −2.95485 −0.355723
\(70\) 0 0
\(71\) −14.6555 −1.73928 −0.869642 0.493683i \(-0.835650\pi\)
−0.869642 + 0.493683i \(0.835650\pi\)
\(72\) 2.76691 0.326083
\(73\) −4.71061 −0.551335 −0.275667 0.961253i \(-0.588899\pi\)
−0.275667 + 0.961253i \(0.588899\pi\)
\(74\) −8.68474 −1.00958
\(75\) −2.58158 −0.298095
\(76\) 4.88102 0.559891
\(77\) 0 0
\(78\) 3.12651 0.354007
\(79\) −14.2452 −1.60271 −0.801357 0.598186i \(-0.795888\pi\)
−0.801357 + 0.598186i \(0.795888\pi\)
\(80\) 0.413452 0.0462253
\(81\) 1.00000 0.111111
\(82\) −8.75661 −0.967006
\(83\) −2.86098 −0.314034 −0.157017 0.987596i \(-0.550188\pi\)
−0.157017 + 0.987596i \(0.550188\pi\)
\(84\) 0 0
\(85\) 6.41608 0.695922
\(86\) −6.65726 −0.717871
\(87\) −2.16007 −0.231584
\(88\) −5.46444 −0.582511
\(89\) −17.0826 −1.81075 −0.905377 0.424608i \(-0.860412\pi\)
−0.905377 + 0.424608i \(0.860412\pi\)
\(90\) −1.30599 −0.137663
\(91\) 0 0
\(92\) 3.82579 0.398866
\(93\) 0.843379 0.0874543
\(94\) 1.40067 0.144468
\(95\) −5.86262 −0.601492
\(96\) −5.75708 −0.587580
\(97\) −5.74864 −0.583686 −0.291843 0.956466i \(-0.594268\pi\)
−0.291843 + 0.956466i \(0.594268\pi\)
\(98\) 0 0
\(99\) −1.97493 −0.198488
\(100\) 3.34249 0.334249
\(101\) −15.4205 −1.53440 −0.767200 0.641408i \(-0.778351\pi\)
−0.767200 + 0.641408i \(0.778351\pi\)
\(102\) −3.46479 −0.343065
\(103\) 10.3174 1.01660 0.508301 0.861179i \(-0.330274\pi\)
0.508301 + 0.861179i \(0.330274\pi\)
\(104\) −10.3011 −1.01010
\(105\) 0 0
\(106\) 4.13973 0.402086
\(107\) 14.8735 1.43788 0.718939 0.695074i \(-0.244628\pi\)
0.718939 + 0.695074i \(0.244628\pi\)
\(108\) −1.29475 −0.124587
\(109\) −12.0261 −1.15189 −0.575944 0.817489i \(-0.695365\pi\)
−0.575944 + 0.817489i \(0.695365\pi\)
\(110\) 2.57923 0.245920
\(111\) 10.3415 0.981574
\(112\) 0 0
\(113\) 9.52106 0.895666 0.447833 0.894117i \(-0.352196\pi\)
0.447833 + 0.894117i \(0.352196\pi\)
\(114\) 3.16591 0.296514
\(115\) −4.59517 −0.428502
\(116\) 2.79675 0.259672
\(117\) −3.72295 −0.344187
\(118\) 6.88818 0.634108
\(119\) 0 0
\(120\) 4.30289 0.392799
\(121\) −7.09967 −0.645424
\(122\) −2.21750 −0.200763
\(123\) 10.4271 0.940180
\(124\) −1.09196 −0.0980611
\(125\) −11.7903 −1.05456
\(126\) 0 0
\(127\) 2.68618 0.238360 0.119180 0.992873i \(-0.461973\pi\)
0.119180 + 0.992873i \(0.461973\pi\)
\(128\) 7.90051 0.698313
\(129\) 7.92726 0.697956
\(130\) 4.86212 0.426436
\(131\) 18.1812 1.58850 0.794250 0.607591i \(-0.207864\pi\)
0.794250 + 0.607591i \(0.207864\pi\)
\(132\) 2.55703 0.222561
\(133\) 0 0
\(134\) −3.57886 −0.309166
\(135\) 1.55513 0.133844
\(136\) 11.4156 0.978879
\(137\) −10.1300 −0.865463 −0.432732 0.901523i \(-0.642450\pi\)
−0.432732 + 0.901523i \(0.642450\pi\)
\(138\) 2.48147 0.211236
\(139\) −11.7778 −0.998978 −0.499489 0.866320i \(-0.666479\pi\)
−0.499489 + 0.866320i \(0.666479\pi\)
\(140\) 0 0
\(141\) −1.66788 −0.140460
\(142\) 12.3076 1.03283
\(143\) 7.35255 0.614851
\(144\) 0.265864 0.0221553
\(145\) −3.35919 −0.278966
\(146\) 3.95594 0.327396
\(147\) 0 0
\(148\) −13.3897 −1.10062
\(149\) 15.5676 1.27535 0.637673 0.770307i \(-0.279897\pi\)
0.637673 + 0.770307i \(0.279897\pi\)
\(150\) 2.16799 0.177016
\(151\) 9.07107 0.738194 0.369097 0.929391i \(-0.379667\pi\)
0.369097 + 0.929391i \(0.379667\pi\)
\(152\) −10.4309 −0.846055
\(153\) 4.12576 0.333548
\(154\) 0 0
\(155\) 1.31156 0.105347
\(156\) 4.82028 0.385931
\(157\) −21.7234 −1.73372 −0.866858 0.498554i \(-0.833864\pi\)
−0.866858 + 0.498554i \(0.833864\pi\)
\(158\) 11.9631 0.951729
\(159\) −4.92947 −0.390932
\(160\) −8.95300 −0.707797
\(161\) 0 0
\(162\) −0.839793 −0.0659804
\(163\) 22.3661 1.75185 0.875923 0.482452i \(-0.160254\pi\)
0.875923 + 0.482452i \(0.160254\pi\)
\(164\) −13.5005 −1.05421
\(165\) −3.07126 −0.239098
\(166\) 2.40263 0.186481
\(167\) −8.97216 −0.694287 −0.347143 0.937812i \(-0.612848\pi\)
−0.347143 + 0.937812i \(0.612848\pi\)
\(168\) 0 0
\(169\) 0.860357 0.0661813
\(170\) −5.38819 −0.413255
\(171\) −3.76986 −0.288289
\(172\) −10.2638 −0.782607
\(173\) 6.73401 0.511977 0.255989 0.966680i \(-0.417599\pi\)
0.255989 + 0.966680i \(0.417599\pi\)
\(174\) 1.81402 0.137520
\(175\) 0 0
\(176\) −0.525061 −0.0395779
\(177\) −8.20223 −0.616517
\(178\) 14.3459 1.07527
\(179\) −1.59942 −0.119546 −0.0597731 0.998212i \(-0.519038\pi\)
−0.0597731 + 0.998212i \(0.519038\pi\)
\(180\) −2.01350 −0.150077
\(181\) −18.4398 −1.37062 −0.685308 0.728253i \(-0.740333\pi\)
−0.685308 + 0.728253i \(0.740333\pi\)
\(182\) 0 0
\(183\) 2.64053 0.195193
\(184\) −8.17580 −0.602728
\(185\) 16.0824 1.18240
\(186\) −0.708264 −0.0519324
\(187\) −8.14807 −0.595846
\(188\) 2.15948 0.157496
\(189\) 0 0
\(190\) 4.92339 0.357180
\(191\) 4.09123 0.296031 0.148016 0.988985i \(-0.452711\pi\)
0.148016 + 0.988985i \(0.452711\pi\)
\(192\) 4.30303 0.310545
\(193\) −16.5235 −1.18939 −0.594693 0.803953i \(-0.702726\pi\)
−0.594693 + 0.803953i \(0.702726\pi\)
\(194\) 4.82767 0.346606
\(195\) −5.78966 −0.414606
\(196\) 0 0
\(197\) −11.1608 −0.795175 −0.397587 0.917564i \(-0.630152\pi\)
−0.397587 + 0.917564i \(0.630152\pi\)
\(198\) 1.65853 0.117867
\(199\) 7.20432 0.510701 0.255350 0.966849i \(-0.417809\pi\)
0.255350 + 0.966849i \(0.417809\pi\)
\(200\) −7.14298 −0.505085
\(201\) 4.26159 0.300589
\(202\) 12.9501 0.911163
\(203\) 0 0
\(204\) −5.34181 −0.374002
\(205\) 16.2155 1.13254
\(206\) −8.66447 −0.603682
\(207\) −2.95485 −0.205376
\(208\) −0.989797 −0.0686300
\(209\) 7.44520 0.514995
\(210\) 0 0
\(211\) −2.48747 −0.171244 −0.0856222 0.996328i \(-0.527288\pi\)
−0.0856222 + 0.996328i \(0.527288\pi\)
\(212\) 6.38241 0.438346
\(213\) −14.6555 −1.00418
\(214\) −12.4907 −0.853845
\(215\) 12.3279 0.840756
\(216\) 2.76691 0.188264
\(217\) 0 0
\(218\) 10.0994 0.684019
\(219\) −4.71061 −0.318313
\(220\) 3.97651 0.268096
\(221\) −15.3600 −1.03323
\(222\) −8.68474 −0.582882
\(223\) −1.38300 −0.0926127 −0.0463063 0.998927i \(-0.514745\pi\)
−0.0463063 + 0.998927i \(0.514745\pi\)
\(224\) 0 0
\(225\) −2.58158 −0.172105
\(226\) −7.99572 −0.531867
\(227\) 13.4520 0.892839 0.446419 0.894824i \(-0.352699\pi\)
0.446419 + 0.894824i \(0.352699\pi\)
\(228\) 4.88102 0.323253
\(229\) 23.2176 1.53426 0.767130 0.641491i \(-0.221684\pi\)
0.767130 + 0.641491i \(0.221684\pi\)
\(230\) 3.85900 0.254455
\(231\) 0 0
\(232\) −5.97672 −0.392391
\(233\) −24.6966 −1.61793 −0.808963 0.587859i \(-0.799971\pi\)
−0.808963 + 0.587859i \(0.799971\pi\)
\(234\) 3.12651 0.204386
\(235\) −2.59376 −0.169198
\(236\) 10.6198 0.691291
\(237\) −14.2452 −0.925327
\(238\) 0 0
\(239\) −3.80550 −0.246157 −0.123079 0.992397i \(-0.539277\pi\)
−0.123079 + 0.992397i \(0.539277\pi\)
\(240\) 0.413452 0.0266882
\(241\) −12.4874 −0.804386 −0.402193 0.915555i \(-0.631752\pi\)
−0.402193 + 0.915555i \(0.631752\pi\)
\(242\) 5.96225 0.383268
\(243\) 1.00000 0.0641500
\(244\) −3.41881 −0.218867
\(245\) 0 0
\(246\) −8.75661 −0.558301
\(247\) 14.0350 0.893027
\(248\) 2.33355 0.148181
\(249\) −2.86098 −0.181307
\(250\) 9.90144 0.626222
\(251\) −4.71580 −0.297659 −0.148829 0.988863i \(-0.547551\pi\)
−0.148829 + 0.988863i \(0.547551\pi\)
\(252\) 0 0
\(253\) 5.83562 0.366882
\(254\) −2.25584 −0.141544
\(255\) 6.41608 0.401791
\(256\) −15.2409 −0.952554
\(257\) 5.11230 0.318896 0.159448 0.987206i \(-0.449029\pi\)
0.159448 + 0.987206i \(0.449029\pi\)
\(258\) −6.65726 −0.414463
\(259\) 0 0
\(260\) 7.49615 0.464891
\(261\) −2.16007 −0.133705
\(262\) −15.2685 −0.943289
\(263\) −21.9571 −1.35393 −0.676966 0.736014i \(-0.736706\pi\)
−0.676966 + 0.736014i \(0.736706\pi\)
\(264\) −5.46444 −0.336313
\(265\) −7.66595 −0.470916
\(266\) 0 0
\(267\) −17.0826 −1.04544
\(268\) −5.51768 −0.337046
\(269\) −27.2105 −1.65906 −0.829528 0.558465i \(-0.811390\pi\)
−0.829528 + 0.558465i \(0.811390\pi\)
\(270\) −1.30599 −0.0794798
\(271\) −2.48901 −0.151196 −0.0755982 0.997138i \(-0.524087\pi\)
−0.0755982 + 0.997138i \(0.524087\pi\)
\(272\) 1.09689 0.0665087
\(273\) 0 0
\(274\) 8.50710 0.513933
\(275\) 5.09842 0.307446
\(276\) 3.82579 0.230285
\(277\) −3.54233 −0.212838 −0.106419 0.994321i \(-0.533938\pi\)
−0.106419 + 0.994321i \(0.533938\pi\)
\(278\) 9.89090 0.593217
\(279\) 0.843379 0.0504918
\(280\) 0 0
\(281\) 11.4519 0.683163 0.341581 0.939852i \(-0.389037\pi\)
0.341581 + 0.939852i \(0.389037\pi\)
\(282\) 1.40067 0.0834087
\(283\) 27.6149 1.64153 0.820767 0.571263i \(-0.193547\pi\)
0.820767 + 0.571263i \(0.193547\pi\)
\(284\) 18.9751 1.12597
\(285\) −5.86262 −0.347272
\(286\) −6.17462 −0.365113
\(287\) 0 0
\(288\) −5.75708 −0.339239
\(289\) 0.0218917 0.00128775
\(290\) 2.82103 0.165656
\(291\) −5.74864 −0.336991
\(292\) 6.09905 0.356920
\(293\) 9.10545 0.531946 0.265973 0.963981i \(-0.414307\pi\)
0.265973 + 0.963981i \(0.414307\pi\)
\(294\) 0 0
\(295\) −12.7555 −0.742655
\(296\) 28.6140 1.66316
\(297\) −1.97493 −0.114597
\(298\) −13.0736 −0.757331
\(299\) 11.0008 0.636191
\(300\) 3.34249 0.192979
\(301\) 0 0
\(302\) −7.61783 −0.438357
\(303\) −15.4205 −0.885886
\(304\) −1.00227 −0.0574841
\(305\) 4.10636 0.235129
\(306\) −3.46479 −0.198069
\(307\) −8.39817 −0.479309 −0.239654 0.970858i \(-0.577034\pi\)
−0.239654 + 0.970858i \(0.577034\pi\)
\(308\) 0 0
\(309\) 10.3174 0.586935
\(310\) −1.10144 −0.0625577
\(311\) −12.2380 −0.693954 −0.346977 0.937874i \(-0.612792\pi\)
−0.346977 + 0.937874i \(0.612792\pi\)
\(312\) −10.3011 −0.583182
\(313\) −17.6525 −0.997781 −0.498890 0.866665i \(-0.666259\pi\)
−0.498890 + 0.866665i \(0.666259\pi\)
\(314\) 18.2432 1.02952
\(315\) 0 0
\(316\) 18.4440 1.03755
\(317\) −8.56447 −0.481028 −0.240514 0.970646i \(-0.577316\pi\)
−0.240514 + 0.970646i \(0.577316\pi\)
\(318\) 4.13973 0.232145
\(319\) 4.26598 0.238849
\(320\) 6.69177 0.374081
\(321\) 14.8735 0.830159
\(322\) 0 0
\(323\) −15.5536 −0.865423
\(324\) −1.29475 −0.0719304
\(325\) 9.61108 0.533127
\(326\) −18.7829 −1.04029
\(327\) −12.0261 −0.665043
\(328\) 28.8508 1.59302
\(329\) 0 0
\(330\) 2.57923 0.141982
\(331\) −14.3796 −0.790376 −0.395188 0.918600i \(-0.629321\pi\)
−0.395188 + 0.918600i \(0.629321\pi\)
\(332\) 3.70425 0.203297
\(333\) 10.3415 0.566712
\(334\) 7.53476 0.412284
\(335\) 6.62732 0.362089
\(336\) 0 0
\(337\) −16.9818 −0.925059 −0.462529 0.886604i \(-0.653058\pi\)
−0.462529 + 0.886604i \(0.653058\pi\)
\(338\) −0.722522 −0.0393000
\(339\) 9.52106 0.517113
\(340\) −8.30721 −0.450521
\(341\) −1.66561 −0.0901979
\(342\) 3.16591 0.171193
\(343\) 0 0
\(344\) 21.9340 1.18260
\(345\) −4.59517 −0.247396
\(346\) −5.65518 −0.304024
\(347\) 10.0770 0.540962 0.270481 0.962725i \(-0.412817\pi\)
0.270481 + 0.962725i \(0.412817\pi\)
\(348\) 2.79675 0.149921
\(349\) 18.5426 0.992561 0.496281 0.868162i \(-0.334699\pi\)
0.496281 + 0.868162i \(0.334699\pi\)
\(350\) 0 0
\(351\) −3.72295 −0.198716
\(352\) 11.3698 0.606013
\(353\) −10.0935 −0.537224 −0.268612 0.963248i \(-0.586565\pi\)
−0.268612 + 0.963248i \(0.586565\pi\)
\(354\) 6.88818 0.366103
\(355\) −22.7911 −1.20963
\(356\) 22.1177 1.17223
\(357\) 0 0
\(358\) 1.34318 0.0709894
\(359\) −33.3546 −1.76039 −0.880193 0.474615i \(-0.842587\pi\)
−0.880193 + 0.474615i \(0.842587\pi\)
\(360\) 4.30289 0.226782
\(361\) −4.78812 −0.252007
\(362\) 15.4856 0.813905
\(363\) −7.09967 −0.372636
\(364\) 0 0
\(365\) −7.32560 −0.383439
\(366\) −2.21750 −0.115910
\(367\) 17.5852 0.917941 0.458970 0.888452i \(-0.348218\pi\)
0.458970 + 0.888452i \(0.348218\pi\)
\(368\) −0.785588 −0.0409516
\(369\) 10.4271 0.542813
\(370\) −13.5059 −0.702137
\(371\) 0 0
\(372\) −1.09196 −0.0566156
\(373\) −15.3968 −0.797215 −0.398607 0.917122i \(-0.630506\pi\)
−0.398607 + 0.917122i \(0.630506\pi\)
\(374\) 6.84270 0.353827
\(375\) −11.7903 −0.608850
\(376\) −4.61486 −0.237993
\(377\) 8.04184 0.414176
\(378\) 0 0
\(379\) 7.92553 0.407107 0.203554 0.979064i \(-0.434751\pi\)
0.203554 + 0.979064i \(0.434751\pi\)
\(380\) 7.59061 0.389390
\(381\) 2.68618 0.137617
\(382\) −3.43579 −0.175790
\(383\) 21.4950 1.09834 0.549171 0.835710i \(-0.314944\pi\)
0.549171 + 0.835710i \(0.314944\pi\)
\(384\) 7.90051 0.403171
\(385\) 0 0
\(386\) 13.8763 0.706285
\(387\) 7.92726 0.402965
\(388\) 7.44303 0.377863
\(389\) −9.55401 −0.484408 −0.242204 0.970225i \(-0.577870\pi\)
−0.242204 + 0.970225i \(0.577870\pi\)
\(390\) 4.86212 0.246203
\(391\) −12.1910 −0.616526
\(392\) 0 0
\(393\) 18.1812 0.917121
\(394\) 9.37277 0.472194
\(395\) −22.1532 −1.11465
\(396\) 2.55703 0.128496
\(397\) −19.0564 −0.956413 −0.478207 0.878247i \(-0.658713\pi\)
−0.478207 + 0.878247i \(0.658713\pi\)
\(398\) −6.05014 −0.303266
\(399\) 0 0
\(400\) −0.686347 −0.0343174
\(401\) 32.3394 1.61495 0.807477 0.589899i \(-0.200833\pi\)
0.807477 + 0.589899i \(0.200833\pi\)
\(402\) −3.57886 −0.178497
\(403\) −3.13986 −0.156407
\(404\) 19.9657 0.993330
\(405\) 1.55513 0.0772749
\(406\) 0 0
\(407\) −20.4237 −1.01237
\(408\) 11.4156 0.565156
\(409\) 14.0715 0.695793 0.347897 0.937533i \(-0.386896\pi\)
0.347897 + 0.937533i \(0.386896\pi\)
\(410\) −13.6176 −0.672528
\(411\) −10.1300 −0.499675
\(412\) −13.3584 −0.658121
\(413\) 0 0
\(414\) 2.48147 0.121957
\(415\) −4.44919 −0.218402
\(416\) 21.4333 1.05086
\(417\) −11.7778 −0.576760
\(418\) −6.25243 −0.305816
\(419\) 0.974002 0.0475831 0.0237916 0.999717i \(-0.492426\pi\)
0.0237916 + 0.999717i \(0.492426\pi\)
\(420\) 0 0
\(421\) −16.5696 −0.807552 −0.403776 0.914858i \(-0.632302\pi\)
−0.403776 + 0.914858i \(0.632302\pi\)
\(422\) 2.08896 0.101689
\(423\) −1.66788 −0.0810949
\(424\) −13.6394 −0.662386
\(425\) −10.6510 −0.516648
\(426\) 12.3076 0.596303
\(427\) 0 0
\(428\) −19.2574 −0.930844
\(429\) 7.35255 0.354985
\(430\) −10.3529 −0.499261
\(431\) −31.0706 −1.49662 −0.748310 0.663349i \(-0.769134\pi\)
−0.748310 + 0.663349i \(0.769134\pi\)
\(432\) 0.265864 0.0127914
\(433\) −9.62165 −0.462387 −0.231194 0.972908i \(-0.574263\pi\)
−0.231194 + 0.972908i \(0.574263\pi\)
\(434\) 0 0
\(435\) −3.35919 −0.161061
\(436\) 15.5707 0.745702
\(437\) 11.1394 0.532869
\(438\) 3.95594 0.189022
\(439\) −7.98407 −0.381059 −0.190530 0.981681i \(-0.561020\pi\)
−0.190530 + 0.981681i \(0.561020\pi\)
\(440\) −8.49790 −0.405121
\(441\) 0 0
\(442\) 12.8992 0.613554
\(443\) 26.7679 1.27178 0.635891 0.771779i \(-0.280633\pi\)
0.635891 + 0.771779i \(0.280633\pi\)
\(444\) −13.3897 −0.635445
\(445\) −26.5657 −1.25933
\(446\) 1.16144 0.0549956
\(447\) 15.5676 0.736321
\(448\) 0 0
\(449\) −21.4758 −1.01351 −0.506754 0.862091i \(-0.669155\pi\)
−0.506754 + 0.862091i \(0.669155\pi\)
\(450\) 2.16799 0.102200
\(451\) −20.5927 −0.969675
\(452\) −12.3274 −0.579830
\(453\) 9.07107 0.426196
\(454\) −11.2969 −0.530189
\(455\) 0 0
\(456\) −10.4309 −0.488470
\(457\) −23.2566 −1.08790 −0.543948 0.839119i \(-0.683071\pi\)
−0.543948 + 0.839119i \(0.683071\pi\)
\(458\) −19.4980 −0.911080
\(459\) 4.12576 0.192574
\(460\) 5.94959 0.277401
\(461\) 37.4300 1.74329 0.871646 0.490137i \(-0.163053\pi\)
0.871646 + 0.490137i \(0.163053\pi\)
\(462\) 0 0
\(463\) −1.75490 −0.0815573 −0.0407786 0.999168i \(-0.512984\pi\)
−0.0407786 + 0.999168i \(0.512984\pi\)
\(464\) −0.574285 −0.0266605
\(465\) 1.31156 0.0608222
\(466\) 20.7400 0.960763
\(467\) 16.5659 0.766580 0.383290 0.923628i \(-0.374791\pi\)
0.383290 + 0.923628i \(0.374791\pi\)
\(468\) 4.82028 0.222817
\(469\) 0 0
\(470\) 2.17822 0.100474
\(471\) −21.7234 −1.00096
\(472\) −22.6948 −1.04461
\(473\) −15.6558 −0.719852
\(474\) 11.9631 0.549481
\(475\) 9.73219 0.446544
\(476\) 0 0
\(477\) −4.92947 −0.225705
\(478\) 3.19583 0.146174
\(479\) −25.4105 −1.16104 −0.580518 0.814248i \(-0.697150\pi\)
−0.580518 + 0.814248i \(0.697150\pi\)
\(480\) −8.95300 −0.408647
\(481\) −38.5010 −1.75549
\(482\) 10.4869 0.477663
\(483\) 0 0
\(484\) 9.19227 0.417831
\(485\) −8.93987 −0.405939
\(486\) −0.839793 −0.0380938
\(487\) −11.9215 −0.540216 −0.270108 0.962830i \(-0.587059\pi\)
−0.270108 + 0.962830i \(0.587059\pi\)
\(488\) 7.30609 0.330731
\(489\) 22.3661 1.01143
\(490\) 0 0
\(491\) 2.54465 0.114838 0.0574191 0.998350i \(-0.481713\pi\)
0.0574191 + 0.998350i \(0.481713\pi\)
\(492\) −13.5005 −0.608647
\(493\) −8.91194 −0.401374
\(494\) −11.7865 −0.530300
\(495\) −3.07126 −0.138043
\(496\) 0.224224 0.0100679
\(497\) 0 0
\(498\) 2.40263 0.107665
\(499\) −32.6805 −1.46298 −0.731490 0.681852i \(-0.761175\pi\)
−0.731490 + 0.681852i \(0.761175\pi\)
\(500\) 15.2655 0.682693
\(501\) −8.97216 −0.400847
\(502\) 3.96030 0.176757
\(503\) −7.86982 −0.350898 −0.175449 0.984489i \(-0.556138\pi\)
−0.175449 + 0.984489i \(0.556138\pi\)
\(504\) 0 0
\(505\) −23.9809 −1.06714
\(506\) −4.90071 −0.217863
\(507\) 0.860357 0.0382098
\(508\) −3.47793 −0.154308
\(509\) 13.7079 0.607591 0.303795 0.952737i \(-0.401746\pi\)
0.303795 + 0.952737i \(0.401746\pi\)
\(510\) −5.38819 −0.238593
\(511\) 0 0
\(512\) −3.00184 −0.132664
\(513\) −3.76986 −0.166444
\(514\) −4.29327 −0.189368
\(515\) 16.0449 0.707021
\(516\) −10.2638 −0.451839
\(517\) 3.29393 0.144867
\(518\) 0 0
\(519\) 6.73401 0.295590
\(520\) −16.0195 −0.702500
\(521\) −20.9426 −0.917512 −0.458756 0.888562i \(-0.651705\pi\)
−0.458756 + 0.888562i \(0.651705\pi\)
\(522\) 1.81402 0.0793973
\(523\) −31.6495 −1.38393 −0.691967 0.721929i \(-0.743256\pi\)
−0.691967 + 0.721929i \(0.743256\pi\)
\(524\) −23.5401 −1.02835
\(525\) 0 0
\(526\) 18.4394 0.803997
\(527\) 3.47958 0.151573
\(528\) −0.525061 −0.0228503
\(529\) −14.2688 −0.620384
\(530\) 6.43781 0.279641
\(531\) −8.20223 −0.355947
\(532\) 0 0
\(533\) −38.8196 −1.68146
\(534\) 14.3459 0.620807
\(535\) 23.1302 1.00001
\(536\) 11.7914 0.509312
\(537\) −1.59942 −0.0690200
\(538\) 22.8512 0.985186
\(539\) 0 0
\(540\) −2.01350 −0.0866471
\(541\) −21.1516 −0.909377 −0.454688 0.890651i \(-0.650249\pi\)
−0.454688 + 0.890651i \(0.650249\pi\)
\(542\) 2.09025 0.0897840
\(543\) −18.4398 −0.791326
\(544\) −23.7523 −1.01837
\(545\) −18.7021 −0.801109
\(546\) 0 0
\(547\) 43.0476 1.84058 0.920292 0.391233i \(-0.127951\pi\)
0.920292 + 0.391233i \(0.127951\pi\)
\(548\) 13.1158 0.560278
\(549\) 2.64053 0.112695
\(550\) −4.28162 −0.182569
\(551\) 8.14318 0.346911
\(552\) −8.17580 −0.347985
\(553\) 0 0
\(554\) 2.97482 0.126388
\(555\) 16.0824 0.682659
\(556\) 15.2492 0.646712
\(557\) 28.7820 1.21953 0.609767 0.792581i \(-0.291263\pi\)
0.609767 + 0.792581i \(0.291263\pi\)
\(558\) −0.708264 −0.0299832
\(559\) −29.5128 −1.24826
\(560\) 0 0
\(561\) −8.14807 −0.344012
\(562\) −9.61723 −0.405678
\(563\) 14.9378 0.629553 0.314777 0.949166i \(-0.398070\pi\)
0.314777 + 0.949166i \(0.398070\pi\)
\(564\) 2.15948 0.0909304
\(565\) 14.8065 0.622913
\(566\) −23.1908 −0.974781
\(567\) 0 0
\(568\) −40.5503 −1.70145
\(569\) −31.7429 −1.33073 −0.665365 0.746518i \(-0.731724\pi\)
−0.665365 + 0.746518i \(0.731724\pi\)
\(570\) 4.92339 0.206218
\(571\) −23.4475 −0.981246 −0.490623 0.871372i \(-0.663231\pi\)
−0.490623 + 0.871372i \(0.663231\pi\)
\(572\) −9.51969 −0.398038
\(573\) 4.09123 0.170914
\(574\) 0 0
\(575\) 7.62818 0.318117
\(576\) 4.30303 0.179293
\(577\) 31.2782 1.30213 0.651064 0.759023i \(-0.274323\pi\)
0.651064 + 0.759023i \(0.274323\pi\)
\(578\) −0.0183845 −0.000764694 0
\(579\) −16.5235 −0.686692
\(580\) 4.34930 0.180595
\(581\) 0 0
\(582\) 4.82767 0.200113
\(583\) 9.73533 0.403196
\(584\) −13.0338 −0.539343
\(585\) −5.78966 −0.239373
\(586\) −7.64669 −0.315882
\(587\) 11.4659 0.473249 0.236624 0.971601i \(-0.423959\pi\)
0.236624 + 0.971601i \(0.423959\pi\)
\(588\) 0 0
\(589\) −3.17942 −0.131006
\(590\) 10.7120 0.441006
\(591\) −11.1608 −0.459094
\(592\) 2.74943 0.113001
\(593\) 40.2254 1.65186 0.825929 0.563774i \(-0.190651\pi\)
0.825929 + 0.563774i \(0.190651\pi\)
\(594\) 1.65853 0.0680503
\(595\) 0 0
\(596\) −20.1561 −0.825625
\(597\) 7.20432 0.294853
\(598\) −9.23837 −0.377785
\(599\) −39.2772 −1.60482 −0.802411 0.596772i \(-0.796450\pi\)
−0.802411 + 0.596772i \(0.796450\pi\)
\(600\) −7.14298 −0.291611
\(601\) 13.6601 0.557206 0.278603 0.960406i \(-0.410129\pi\)
0.278603 + 0.960406i \(0.410129\pi\)
\(602\) 0 0
\(603\) 4.26159 0.173545
\(604\) −11.7447 −0.477887
\(605\) −11.0409 −0.448876
\(606\) 12.9501 0.526060
\(607\) −1.96729 −0.0798500 −0.0399250 0.999203i \(-0.512712\pi\)
−0.0399250 + 0.999203i \(0.512712\pi\)
\(608\) 21.7034 0.880190
\(609\) 0 0
\(610\) −3.44849 −0.139625
\(611\) 6.20942 0.251206
\(612\) −5.34181 −0.215930
\(613\) −31.9180 −1.28916 −0.644578 0.764539i \(-0.722967\pi\)
−0.644578 + 0.764539i \(0.722967\pi\)
\(614\) 7.05273 0.284625
\(615\) 16.2155 0.653871
\(616\) 0 0
\(617\) 30.3534 1.22198 0.610992 0.791637i \(-0.290771\pi\)
0.610992 + 0.791637i \(0.290771\pi\)
\(618\) −8.66447 −0.348536
\(619\) 12.7902 0.514080 0.257040 0.966401i \(-0.417253\pi\)
0.257040 + 0.966401i \(0.417253\pi\)
\(620\) −1.69814 −0.0681990
\(621\) −2.95485 −0.118574
\(622\) 10.2774 0.412087
\(623\) 0 0
\(624\) −0.989797 −0.0396236
\(625\) −5.42758 −0.217103
\(626\) 14.8245 0.592506
\(627\) 7.44520 0.297333
\(628\) 28.1263 1.12236
\(629\) 42.6666 1.70123
\(630\) 0 0
\(631\) 11.8293 0.470916 0.235458 0.971885i \(-0.424341\pi\)
0.235458 + 0.971885i \(0.424341\pi\)
\(632\) −39.4152 −1.56785
\(633\) −2.48747 −0.0988680
\(634\) 7.19238 0.285646
\(635\) 4.17736 0.165774
\(636\) 6.38241 0.253079
\(637\) 0 0
\(638\) −3.58255 −0.141834
\(639\) −14.6555 −0.579761
\(640\) 12.2863 0.485659
\(641\) 18.6471 0.736517 0.368259 0.929723i \(-0.379954\pi\)
0.368259 + 0.929723i \(0.379954\pi\)
\(642\) −12.4907 −0.492968
\(643\) −45.7833 −1.80552 −0.902758 0.430148i \(-0.858461\pi\)
−0.902758 + 0.430148i \(0.858461\pi\)
\(644\) 0 0
\(645\) 12.3279 0.485411
\(646\) 13.0618 0.513909
\(647\) −13.1863 −0.518407 −0.259204 0.965823i \(-0.583460\pi\)
−0.259204 + 0.965823i \(0.583460\pi\)
\(648\) 2.76691 0.108694
\(649\) 16.1988 0.635859
\(650\) −8.07132 −0.316583
\(651\) 0 0
\(652\) −28.9584 −1.13410
\(653\) −18.7848 −0.735108 −0.367554 0.930002i \(-0.619805\pi\)
−0.367554 + 0.930002i \(0.619805\pi\)
\(654\) 10.0994 0.394918
\(655\) 28.2741 1.10476
\(656\) 2.77218 0.108236
\(657\) −4.71061 −0.183778
\(658\) 0 0
\(659\) 23.1125 0.900336 0.450168 0.892944i \(-0.351364\pi\)
0.450168 + 0.892944i \(0.351364\pi\)
\(660\) 3.97651 0.154785
\(661\) 3.19997 0.124465 0.0622323 0.998062i \(-0.480178\pi\)
0.0622323 + 0.998062i \(0.480178\pi\)
\(662\) 12.0759 0.469344
\(663\) −15.3600 −0.596533
\(664\) −7.91607 −0.307203
\(665\) 0 0
\(666\) −8.68474 −0.336527
\(667\) 6.38270 0.247139
\(668\) 11.6167 0.449463
\(669\) −1.38300 −0.0534700
\(670\) −5.56558 −0.215017
\(671\) −5.21484 −0.201317
\(672\) 0 0
\(673\) −38.5773 −1.48705 −0.743524 0.668710i \(-0.766847\pi\)
−0.743524 + 0.668710i \(0.766847\pi\)
\(674\) 14.2612 0.549322
\(675\) −2.58158 −0.0993649
\(676\) −1.11394 −0.0428440
\(677\) 31.0852 1.19470 0.597350 0.801981i \(-0.296220\pi\)
0.597350 + 0.801981i \(0.296220\pi\)
\(678\) −7.99572 −0.307074
\(679\) 0 0
\(680\) 17.7527 0.680785
\(681\) 13.4520 0.515481
\(682\) 1.39877 0.0535616
\(683\) −24.8684 −0.951563 −0.475782 0.879563i \(-0.657835\pi\)
−0.475782 + 0.879563i \(0.657835\pi\)
\(684\) 4.88102 0.186630
\(685\) −15.7534 −0.601908
\(686\) 0 0
\(687\) 23.2176 0.885806
\(688\) 2.10757 0.0803503
\(689\) 18.3522 0.699161
\(690\) 3.85900 0.146910
\(691\) −17.2740 −0.657134 −0.328567 0.944481i \(-0.606566\pi\)
−0.328567 + 0.944481i \(0.606566\pi\)
\(692\) −8.71884 −0.331441
\(693\) 0 0
\(694\) −8.46260 −0.321236
\(695\) −18.3160 −0.694764
\(696\) −5.97672 −0.226547
\(697\) 43.0197 1.62949
\(698\) −15.5719 −0.589406
\(699\) −24.6966 −0.934111
\(700\) 0 0
\(701\) 3.79801 0.143449 0.0717244 0.997424i \(-0.477150\pi\)
0.0717244 + 0.997424i \(0.477150\pi\)
\(702\) 3.12651 0.118002
\(703\) −38.9861 −1.47039
\(704\) −8.49818 −0.320287
\(705\) −2.59376 −0.0976866
\(706\) 8.47648 0.319017
\(707\) 0 0
\(708\) 10.6198 0.399117
\(709\) −12.8807 −0.483744 −0.241872 0.970308i \(-0.577761\pi\)
−0.241872 + 0.970308i \(0.577761\pi\)
\(710\) 19.1398 0.718305
\(711\) −14.2452 −0.534238
\(712\) −47.2660 −1.77137
\(713\) −2.49206 −0.0933284
\(714\) 0 0
\(715\) 11.4342 0.427613
\(716\) 2.07084 0.0773911
\(717\) −3.80550 −0.142119
\(718\) 28.0109 1.04536
\(719\) 2.00632 0.0748231 0.0374116 0.999300i \(-0.488089\pi\)
0.0374116 + 0.999300i \(0.488089\pi\)
\(720\) 0.413452 0.0154084
\(721\) 0 0
\(722\) 4.02104 0.149647
\(723\) −12.4874 −0.464412
\(724\) 23.8748 0.887301
\(725\) 5.57639 0.207102
\(726\) 5.96225 0.221280
\(727\) −1.15772 −0.0429373 −0.0214687 0.999770i \(-0.506834\pi\)
−0.0214687 + 0.999770i \(0.506834\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 6.15199 0.227695
\(731\) 32.7060 1.20967
\(732\) −3.41881 −0.126363
\(733\) −17.7744 −0.656511 −0.328255 0.944589i \(-0.606461\pi\)
−0.328255 + 0.944589i \(0.606461\pi\)
\(734\) −14.7680 −0.545095
\(735\) 0 0
\(736\) 17.0113 0.627046
\(737\) −8.41633 −0.310019
\(738\) −8.75661 −0.322335
\(739\) 12.4249 0.457056 0.228528 0.973537i \(-0.426609\pi\)
0.228528 + 0.973537i \(0.426609\pi\)
\(740\) −20.8226 −0.765455
\(741\) 14.0350 0.515589
\(742\) 0 0
\(743\) 28.7754 1.05567 0.527834 0.849348i \(-0.323004\pi\)
0.527834 + 0.849348i \(0.323004\pi\)
\(744\) 2.33355 0.0855521
\(745\) 24.2096 0.886971
\(746\) 12.9301 0.473405
\(747\) −2.86098 −0.104678
\(748\) 10.5497 0.385735
\(749\) 0 0
\(750\) 9.90144 0.361549
\(751\) 38.0584 1.38877 0.694385 0.719604i \(-0.255676\pi\)
0.694385 + 0.719604i \(0.255676\pi\)
\(752\) −0.443427 −0.0161701
\(753\) −4.71580 −0.171853
\(754\) −6.75349 −0.245948
\(755\) 14.1067 0.513395
\(756\) 0 0
\(757\) −4.53831 −0.164948 −0.0824738 0.996593i \(-0.526282\pi\)
−0.0824738 + 0.996593i \(0.526282\pi\)
\(758\) −6.65581 −0.241750
\(759\) 5.83562 0.211819
\(760\) −16.2213 −0.588409
\(761\) 11.5503 0.418698 0.209349 0.977841i \(-0.432866\pi\)
0.209349 + 0.977841i \(0.432866\pi\)
\(762\) −2.25584 −0.0817205
\(763\) 0 0
\(764\) −5.29711 −0.191643
\(765\) 6.41608 0.231974
\(766\) −18.0513 −0.652221
\(767\) 30.5365 1.10261
\(768\) −15.2409 −0.549957
\(769\) −7.50232 −0.270541 −0.135270 0.990809i \(-0.543190\pi\)
−0.135270 + 0.990809i \(0.543190\pi\)
\(770\) 0 0
\(771\) 5.11230 0.184115
\(772\) 21.3937 0.769976
\(773\) −13.9081 −0.500240 −0.250120 0.968215i \(-0.580470\pi\)
−0.250120 + 0.968215i \(0.580470\pi\)
\(774\) −6.65726 −0.239290
\(775\) −2.17725 −0.0782090
\(776\) −15.9059 −0.570990
\(777\) 0 0
\(778\) 8.02340 0.287653
\(779\) −39.3087 −1.40838
\(780\) 7.49615 0.268405
\(781\) 28.9435 1.03568
\(782\) 10.2379 0.366108
\(783\) −2.16007 −0.0771947
\(784\) 0 0
\(785\) −33.7827 −1.20576
\(786\) −15.2685 −0.544608
\(787\) 10.1926 0.363326 0.181663 0.983361i \(-0.441852\pi\)
0.181663 + 0.983361i \(0.441852\pi\)
\(788\) 14.4504 0.514775
\(789\) −21.9571 −0.781693
\(790\) 18.6041 0.661903
\(791\) 0 0
\(792\) −5.46444 −0.194170
\(793\) −9.83055 −0.349093
\(794\) 16.0034 0.567941
\(795\) −7.66595 −0.271883
\(796\) −9.32777 −0.330614
\(797\) 44.6992 1.58333 0.791664 0.610957i \(-0.209215\pi\)
0.791664 + 0.610957i \(0.209215\pi\)
\(798\) 0 0
\(799\) −6.88125 −0.243441
\(800\) 14.8624 0.525464
\(801\) −17.0826 −0.603585
\(802\) −27.1584 −0.958998
\(803\) 9.30310 0.328299
\(804\) −5.51768 −0.194594
\(805\) 0 0
\(806\) 2.63683 0.0928784
\(807\) −27.2105 −0.957856
\(808\) −42.6672 −1.50103
\(809\) −15.1947 −0.534216 −0.267108 0.963667i \(-0.586068\pi\)
−0.267108 + 0.963667i \(0.586068\pi\)
\(810\) −1.30599 −0.0458877
\(811\) 37.0114 1.29965 0.649824 0.760085i \(-0.274843\pi\)
0.649824 + 0.760085i \(0.274843\pi\)
\(812\) 0 0
\(813\) −2.48901 −0.0872933
\(814\) 17.1517 0.601168
\(815\) 34.7821 1.21836
\(816\) 1.09689 0.0383988
\(817\) −29.8847 −1.04553
\(818\) −11.8172 −0.413178
\(819\) 0 0
\(820\) −20.9949 −0.733175
\(821\) −37.5491 −1.31047 −0.655236 0.755424i \(-0.727431\pi\)
−0.655236 + 0.755424i \(0.727431\pi\)
\(822\) 8.50710 0.296719
\(823\) 51.2765 1.78738 0.893692 0.448680i \(-0.148106\pi\)
0.893692 + 0.448680i \(0.148106\pi\)
\(824\) 28.5472 0.994490
\(825\) 5.09842 0.177504
\(826\) 0 0
\(827\) −43.3868 −1.50871 −0.754354 0.656468i \(-0.772050\pi\)
−0.754354 + 0.656468i \(0.772050\pi\)
\(828\) 3.82579 0.132955
\(829\) −44.0733 −1.53073 −0.765364 0.643598i \(-0.777441\pi\)
−0.765364 + 0.643598i \(0.777441\pi\)
\(830\) 3.73640 0.129692
\(831\) −3.54233 −0.122882
\(832\) −16.0200 −0.555393
\(833\) 0 0
\(834\) 9.89090 0.342494
\(835\) −13.9529 −0.482859
\(836\) −9.63965 −0.333394
\(837\) 0.843379 0.0291514
\(838\) −0.817960 −0.0282560
\(839\) −25.0824 −0.865940 −0.432970 0.901408i \(-0.642534\pi\)
−0.432970 + 0.901408i \(0.642534\pi\)
\(840\) 0 0
\(841\) −24.3341 −0.839106
\(842\) 13.9150 0.479543
\(843\) 11.4519 0.394424
\(844\) 3.22064 0.110859
\(845\) 1.33797 0.0460274
\(846\) 1.40067 0.0481561
\(847\) 0 0
\(848\) −1.31056 −0.0450050
\(849\) 27.6149 0.947740
\(850\) 8.94461 0.306798
\(851\) −30.5577 −1.04750
\(852\) 18.9751 0.650077
\(853\) −21.3025 −0.729383 −0.364691 0.931128i \(-0.618826\pi\)
−0.364691 + 0.931128i \(0.618826\pi\)
\(854\) 0 0
\(855\) −5.86262 −0.200497
\(856\) 41.1536 1.40660
\(857\) −15.6908 −0.535987 −0.267993 0.963421i \(-0.586361\pi\)
−0.267993 + 0.963421i \(0.586361\pi\)
\(858\) −6.17462 −0.210798
\(859\) −18.0571 −0.616102 −0.308051 0.951370i \(-0.599677\pi\)
−0.308051 + 0.951370i \(0.599677\pi\)
\(860\) −15.9615 −0.544283
\(861\) 0 0
\(862\) 26.0929 0.888728
\(863\) 39.1902 1.33405 0.667026 0.745035i \(-0.267567\pi\)
0.667026 + 0.745035i \(0.267567\pi\)
\(864\) −5.75708 −0.195860
\(865\) 10.4723 0.356067
\(866\) 8.08020 0.274576
\(867\) 0.0218917 0.000743481 0
\(868\) 0 0
\(869\) 28.1333 0.954356
\(870\) 2.82103 0.0956417
\(871\) −15.8657 −0.537588
\(872\) −33.2750 −1.12683
\(873\) −5.74864 −0.194562
\(874\) −9.35479 −0.316431
\(875\) 0 0
\(876\) 6.09905 0.206068
\(877\) −33.5667 −1.13347 −0.566733 0.823901i \(-0.691793\pi\)
−0.566733 + 0.823901i \(0.691793\pi\)
\(878\) 6.70497 0.226282
\(879\) 9.10545 0.307119
\(880\) −0.816537 −0.0275254
\(881\) −4.10302 −0.138234 −0.0691171 0.997609i \(-0.522018\pi\)
−0.0691171 + 0.997609i \(0.522018\pi\)
\(882\) 0 0
\(883\) 8.81326 0.296590 0.148295 0.988943i \(-0.452622\pi\)
0.148295 + 0.988943i \(0.452622\pi\)
\(884\) 19.8873 0.668883
\(885\) −12.7555 −0.428772
\(886\) −22.4795 −0.755215
\(887\) 42.7798 1.43641 0.718203 0.695834i \(-0.244965\pi\)
0.718203 + 0.695834i \(0.244965\pi\)
\(888\) 28.6140 0.960224
\(889\) 0 0
\(890\) 22.3097 0.747822
\(891\) −1.97493 −0.0661625
\(892\) 1.79064 0.0599550
\(893\) 6.28766 0.210409
\(894\) −13.0736 −0.437245
\(895\) −2.48730 −0.0831413
\(896\) 0 0
\(897\) 11.0008 0.367305
\(898\) 18.0353 0.601845
\(899\) −1.82176 −0.0607591
\(900\) 3.34249 0.111416
\(901\) −20.3378 −0.677550
\(902\) 17.2937 0.575816
\(903\) 0 0
\(904\) 26.3439 0.876184
\(905\) −28.6762 −0.953229
\(906\) −7.61783 −0.253085
\(907\) 28.1370 0.934274 0.467137 0.884185i \(-0.345286\pi\)
0.467137 + 0.884185i \(0.345286\pi\)
\(908\) −17.4169 −0.578000
\(909\) −15.4205 −0.511467
\(910\) 0 0
\(911\) 49.7583 1.64857 0.824284 0.566177i \(-0.191578\pi\)
0.824284 + 0.566177i \(0.191578\pi\)
\(912\) −1.00227 −0.0331885
\(913\) 5.65023 0.186995
\(914\) 19.5307 0.646018
\(915\) 4.10636 0.135752
\(916\) −30.0609 −0.993240
\(917\) 0 0
\(918\) −3.46479 −0.114355
\(919\) −26.7020 −0.880818 −0.440409 0.897797i \(-0.645166\pi\)
−0.440409 + 0.897797i \(0.645166\pi\)
\(920\) −12.7144 −0.419182
\(921\) −8.39817 −0.276729
\(922\) −31.4335 −1.03521
\(923\) 54.5616 1.79592
\(924\) 0 0
\(925\) −26.6974 −0.877806
\(926\) 1.47376 0.0484307
\(927\) 10.3174 0.338867
\(928\) 12.4357 0.408223
\(929\) 16.1865 0.531062 0.265531 0.964102i \(-0.414453\pi\)
0.265531 + 0.964102i \(0.414453\pi\)
\(930\) −1.10144 −0.0361177
\(931\) 0 0
\(932\) 31.9758 1.04740
\(933\) −12.2380 −0.400655
\(934\) −13.9120 −0.455213
\(935\) −12.6713 −0.414396
\(936\) −10.3011 −0.336701
\(937\) 20.7859 0.679047 0.339524 0.940598i \(-0.389734\pi\)
0.339524 + 0.940598i \(0.389734\pi\)
\(938\) 0 0
\(939\) −17.6525 −0.576069
\(940\) 3.35826 0.109534
\(941\) −3.91637 −0.127670 −0.0638351 0.997960i \(-0.520333\pi\)
−0.0638351 + 0.997960i \(0.520333\pi\)
\(942\) 18.2432 0.594395
\(943\) −30.8105 −1.00333
\(944\) −2.18067 −0.0709749
\(945\) 0 0
\(946\) 13.1476 0.427465
\(947\) −51.2509 −1.66543 −0.832714 0.553703i \(-0.813214\pi\)
−0.832714 + 0.553703i \(0.813214\pi\)
\(948\) 18.4440 0.599032
\(949\) 17.5374 0.569287
\(950\) −8.17303 −0.265168
\(951\) −8.56447 −0.277722
\(952\) 0 0
\(953\) 18.4457 0.597516 0.298758 0.954329i \(-0.403428\pi\)
0.298758 + 0.954329i \(0.403428\pi\)
\(954\) 4.13973 0.134029
\(955\) 6.36239 0.205882
\(956\) 4.92715 0.159356
\(957\) 4.26598 0.137900
\(958\) 21.3396 0.689450
\(959\) 0 0
\(960\) 6.69177 0.215976
\(961\) −30.2887 −0.977055
\(962\) 32.3329 1.04245
\(963\) 14.8735 0.479292
\(964\) 16.1681 0.520738
\(965\) −25.6961 −0.827187
\(966\) 0 0
\(967\) 21.9504 0.705879 0.352939 0.935646i \(-0.385182\pi\)
0.352939 + 0.935646i \(0.385182\pi\)
\(968\) −19.6441 −0.631386
\(969\) −15.5536 −0.499652
\(970\) 7.50764 0.241056
\(971\) −39.9353 −1.28159 −0.640793 0.767714i \(-0.721394\pi\)
−0.640793 + 0.767714i \(0.721394\pi\)
\(972\) −1.29475 −0.0415290
\(973\) 0 0
\(974\) 10.0116 0.320793
\(975\) 9.61108 0.307801
\(976\) 0.702019 0.0224711
\(977\) 24.2096 0.774533 0.387266 0.921968i \(-0.373419\pi\)
0.387266 + 0.921968i \(0.373419\pi\)
\(978\) −18.7829 −0.600610
\(979\) 33.7369 1.07824
\(980\) 0 0
\(981\) −12.0261 −0.383963
\(982\) −2.13698 −0.0681937
\(983\) 52.4490 1.67286 0.836432 0.548070i \(-0.184637\pi\)
0.836432 + 0.548070i \(0.184637\pi\)
\(984\) 28.8508 0.919730
\(985\) −17.3565 −0.553024
\(986\) 7.48419 0.238345
\(987\) 0 0
\(988\) −18.1718 −0.578122
\(989\) −23.4239 −0.744836
\(990\) 2.57923 0.0819732
\(991\) −0.271740 −0.00863210 −0.00431605 0.999991i \(-0.501374\pi\)
−0.00431605 + 0.999991i \(0.501374\pi\)
\(992\) −4.85540 −0.154159
\(993\) −14.3796 −0.456324
\(994\) 0 0
\(995\) 11.2036 0.355179
\(996\) 3.70425 0.117374
\(997\) 1.00370 0.0317873 0.0158937 0.999874i \(-0.494941\pi\)
0.0158937 + 0.999874i \(0.494941\pi\)
\(998\) 27.4449 0.868752
\(999\) 10.3415 0.327191
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7203.2.a.k.1.10 24
7.6 odd 2 7203.2.a.i.1.10 24
49.3 odd 42 147.2.m.a.58.3 48
49.33 odd 42 147.2.m.a.109.3 yes 48
147.101 even 42 441.2.bb.c.352.2 48
147.131 even 42 441.2.bb.c.109.2 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
147.2.m.a.58.3 48 49.3 odd 42
147.2.m.a.109.3 yes 48 49.33 odd 42
441.2.bb.c.109.2 48 147.131 even 42
441.2.bb.c.352.2 48 147.101 even 42
7203.2.a.i.1.10 24 7.6 odd 2
7203.2.a.k.1.10 24 1.1 even 1 trivial