Properties

Label 7203.2.a.j.1.10
Level $7203$
Weight $2$
Character 7203.1
Self dual yes
Analytic conductor $57.516$
Analytic rank $1$
Dimension $24$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7203,2,Mod(1,7203)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7203, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7203.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7203 = 3 \cdot 7^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7203.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,-6,-24,32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.5162445759\)
Analytic rank: \(1\)
Dimension: \(24\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Character \(\chi\) \(=\) 7203.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.796145 q^{2} -1.00000 q^{3} -1.36615 q^{4} -2.25441 q^{5} +0.796145 q^{6} +2.67995 q^{8} +1.00000 q^{9} +1.79483 q^{10} +1.03004 q^{11} +1.36615 q^{12} -3.01079 q^{13} +2.25441 q^{15} +0.598684 q^{16} +6.43512 q^{17} -0.796145 q^{18} -5.89578 q^{19} +3.07987 q^{20} -0.820061 q^{22} +2.43884 q^{23} -2.67995 q^{24} +0.0823483 q^{25} +2.39702 q^{26} -1.00000 q^{27} -5.31054 q^{29} -1.79483 q^{30} -5.96355 q^{31} -5.83653 q^{32} -1.03004 q^{33} -5.12328 q^{34} -1.36615 q^{36} -0.364356 q^{37} +4.69390 q^{38} +3.01079 q^{39} -6.04169 q^{40} +7.24996 q^{41} +8.97255 q^{43} -1.40719 q^{44} -2.25441 q^{45} -1.94167 q^{46} -2.92073 q^{47} -0.598684 q^{48} -0.0655611 q^{50} -6.43512 q^{51} +4.11320 q^{52} +1.55667 q^{53} +0.796145 q^{54} -2.32213 q^{55} +5.89578 q^{57} +4.22796 q^{58} -5.85015 q^{59} -3.07987 q^{60} -14.1918 q^{61} +4.74785 q^{62} +3.44935 q^{64} +6.78754 q^{65} +0.820061 q^{66} +9.44651 q^{67} -8.79136 q^{68} -2.43884 q^{69} +11.4001 q^{71} +2.67995 q^{72} +12.4955 q^{73} +0.290080 q^{74} -0.0823483 q^{75} +8.05455 q^{76} -2.39702 q^{78} -12.8912 q^{79} -1.34968 q^{80} +1.00000 q^{81} -5.77202 q^{82} +2.64870 q^{83} -14.5074 q^{85} -7.14344 q^{86} +5.31054 q^{87} +2.76045 q^{88} -1.97536 q^{89} +1.79483 q^{90} -3.33183 q^{92} +5.96355 q^{93} +2.32533 q^{94} +13.2915 q^{95} +5.83653 q^{96} +10.7738 q^{97} +1.03004 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 6 q^{2} - 24 q^{3} + 32 q^{4} - 14 q^{5} + 6 q^{6} - 18 q^{8} + 24 q^{9} - 16 q^{10} + 2 q^{11} - 32 q^{12} - 28 q^{13} + 14 q^{15} + 48 q^{16} - 30 q^{17} - 6 q^{18} - 16 q^{19} - 34 q^{20} + 18 q^{22}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.796145 −0.562959 −0.281480 0.959567i \(-0.590825\pi\)
−0.281480 + 0.959567i \(0.590825\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.36615 −0.683077
\(5\) −2.25441 −1.00820 −0.504101 0.863645i \(-0.668176\pi\)
−0.504101 + 0.863645i \(0.668176\pi\)
\(6\) 0.796145 0.325025
\(7\) 0 0
\(8\) 2.67995 0.947504
\(9\) 1.00000 0.333333
\(10\) 1.79483 0.567576
\(11\) 1.03004 0.310569 0.155284 0.987870i \(-0.450371\pi\)
0.155284 + 0.987870i \(0.450371\pi\)
\(12\) 1.36615 0.394375
\(13\) −3.01079 −0.835042 −0.417521 0.908667i \(-0.637101\pi\)
−0.417521 + 0.908667i \(0.637101\pi\)
\(14\) 0 0
\(15\) 2.25441 0.582085
\(16\) 0.598684 0.149671
\(17\) 6.43512 1.56075 0.780373 0.625315i \(-0.215029\pi\)
0.780373 + 0.625315i \(0.215029\pi\)
\(18\) −0.796145 −0.187653
\(19\) −5.89578 −1.35259 −0.676293 0.736633i \(-0.736415\pi\)
−0.676293 + 0.736633i \(0.736415\pi\)
\(20\) 3.07987 0.688679
\(21\) 0 0
\(22\) −0.820061 −0.174838
\(23\) 2.43884 0.508534 0.254267 0.967134i \(-0.418166\pi\)
0.254267 + 0.967134i \(0.418166\pi\)
\(24\) −2.67995 −0.547042
\(25\) 0.0823483 0.0164697
\(26\) 2.39702 0.470095
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −5.31054 −0.986143 −0.493071 0.869989i \(-0.664126\pi\)
−0.493071 + 0.869989i \(0.664126\pi\)
\(30\) −1.79483 −0.327690
\(31\) −5.96355 −1.07109 −0.535543 0.844508i \(-0.679893\pi\)
−0.535543 + 0.844508i \(0.679893\pi\)
\(32\) −5.83653 −1.03176
\(33\) −1.03004 −0.179307
\(34\) −5.12328 −0.878636
\(35\) 0 0
\(36\) −1.36615 −0.227692
\(37\) −0.364356 −0.0598997 −0.0299499 0.999551i \(-0.509535\pi\)
−0.0299499 + 0.999551i \(0.509535\pi\)
\(38\) 4.69390 0.761451
\(39\) 3.01079 0.482112
\(40\) −6.04169 −0.955274
\(41\) 7.24996 1.13225 0.566127 0.824318i \(-0.308441\pi\)
0.566127 + 0.824318i \(0.308441\pi\)
\(42\) 0 0
\(43\) 8.97255 1.36830 0.684150 0.729341i \(-0.260173\pi\)
0.684150 + 0.729341i \(0.260173\pi\)
\(44\) −1.40719 −0.212142
\(45\) −2.25441 −0.336067
\(46\) −1.94167 −0.286284
\(47\) −2.92073 −0.426033 −0.213016 0.977049i \(-0.568329\pi\)
−0.213016 + 0.977049i \(0.568329\pi\)
\(48\) −0.598684 −0.0864125
\(49\) 0 0
\(50\) −0.0655611 −0.00927175
\(51\) −6.43512 −0.901097
\(52\) 4.11320 0.570398
\(53\) 1.55667 0.213825 0.106912 0.994268i \(-0.465904\pi\)
0.106912 + 0.994268i \(0.465904\pi\)
\(54\) 0.796145 0.108342
\(55\) −2.32213 −0.313116
\(56\) 0 0
\(57\) 5.89578 0.780916
\(58\) 4.22796 0.555158
\(59\) −5.85015 −0.761624 −0.380812 0.924652i \(-0.624356\pi\)
−0.380812 + 0.924652i \(0.624356\pi\)
\(60\) −3.07987 −0.397609
\(61\) −14.1918 −1.81707 −0.908535 0.417809i \(-0.862798\pi\)
−0.908535 + 0.417809i \(0.862798\pi\)
\(62\) 4.74785 0.602978
\(63\) 0 0
\(64\) 3.44935 0.431169
\(65\) 6.78754 0.841890
\(66\) 0.820061 0.100942
\(67\) 9.44651 1.15408 0.577038 0.816718i \(-0.304209\pi\)
0.577038 + 0.816718i \(0.304209\pi\)
\(68\) −8.79136 −1.06611
\(69\) −2.43884 −0.293602
\(70\) 0 0
\(71\) 11.4001 1.35295 0.676474 0.736467i \(-0.263507\pi\)
0.676474 + 0.736467i \(0.263507\pi\)
\(72\) 2.67995 0.315835
\(73\) 12.4955 1.46248 0.731242 0.682119i \(-0.238941\pi\)
0.731242 + 0.682119i \(0.238941\pi\)
\(74\) 0.290080 0.0337211
\(75\) −0.0823483 −0.00950876
\(76\) 8.05455 0.923920
\(77\) 0 0
\(78\) −2.39702 −0.271409
\(79\) −12.8912 −1.45037 −0.725184 0.688555i \(-0.758245\pi\)
−0.725184 + 0.688555i \(0.758245\pi\)
\(80\) −1.34968 −0.150898
\(81\) 1.00000 0.111111
\(82\) −5.77202 −0.637413
\(83\) 2.64870 0.290733 0.145366 0.989378i \(-0.453564\pi\)
0.145366 + 0.989378i \(0.453564\pi\)
\(84\) 0 0
\(85\) −14.5074 −1.57355
\(86\) −7.14344 −0.770297
\(87\) 5.31054 0.569350
\(88\) 2.76045 0.294265
\(89\) −1.97536 −0.209388 −0.104694 0.994504i \(-0.533386\pi\)
−0.104694 + 0.994504i \(0.533386\pi\)
\(90\) 1.79483 0.189192
\(91\) 0 0
\(92\) −3.33183 −0.347368
\(93\) 5.96355 0.618392
\(94\) 2.32533 0.239839
\(95\) 13.2915 1.36368
\(96\) 5.83653 0.595688
\(97\) 10.7738 1.09391 0.546957 0.837161i \(-0.315786\pi\)
0.546957 + 0.837161i \(0.315786\pi\)
\(98\) 0 0
\(99\) 1.03004 0.103523
\(100\) −0.112500 −0.0112500
\(101\) −2.88285 −0.286855 −0.143427 0.989661i \(-0.545812\pi\)
−0.143427 + 0.989661i \(0.545812\pi\)
\(102\) 5.12328 0.507281
\(103\) 3.18333 0.313663 0.156831 0.987625i \(-0.449872\pi\)
0.156831 + 0.987625i \(0.449872\pi\)
\(104\) −8.06874 −0.791205
\(105\) 0 0
\(106\) −1.23933 −0.120374
\(107\) 11.1987 1.08262 0.541308 0.840825i \(-0.317929\pi\)
0.541308 + 0.840825i \(0.317929\pi\)
\(108\) 1.36615 0.131458
\(109\) 13.3668 1.28030 0.640152 0.768248i \(-0.278871\pi\)
0.640152 + 0.768248i \(0.278871\pi\)
\(110\) 1.84875 0.176271
\(111\) 0.364356 0.0345831
\(112\) 0 0
\(113\) 9.69666 0.912185 0.456093 0.889932i \(-0.349249\pi\)
0.456093 + 0.889932i \(0.349249\pi\)
\(114\) −4.69390 −0.439624
\(115\) −5.49814 −0.512704
\(116\) 7.25502 0.673611
\(117\) −3.01079 −0.278347
\(118\) 4.65756 0.428763
\(119\) 0 0
\(120\) 6.04169 0.551528
\(121\) −9.93902 −0.903547
\(122\) 11.2987 1.02294
\(123\) −7.24996 −0.653707
\(124\) 8.14713 0.731634
\(125\) 11.0864 0.991596
\(126\) 0 0
\(127\) −4.37273 −0.388017 −0.194008 0.981000i \(-0.562149\pi\)
−0.194008 + 0.981000i \(0.562149\pi\)
\(128\) 8.92687 0.789032
\(129\) −8.97255 −0.789989
\(130\) −5.40386 −0.473950
\(131\) 4.82488 0.421551 0.210776 0.977534i \(-0.432401\pi\)
0.210776 + 0.977534i \(0.432401\pi\)
\(132\) 1.40719 0.122480
\(133\) 0 0
\(134\) −7.52079 −0.649697
\(135\) 2.25441 0.194028
\(136\) 17.2458 1.47881
\(137\) −0.925604 −0.0790797 −0.0395399 0.999218i \(-0.512589\pi\)
−0.0395399 + 0.999218i \(0.512589\pi\)
\(138\) 1.94167 0.165286
\(139\) −0.767472 −0.0650961 −0.0325481 0.999470i \(-0.510362\pi\)
−0.0325481 + 0.999470i \(0.510362\pi\)
\(140\) 0 0
\(141\) 2.92073 0.245970
\(142\) −9.07616 −0.761654
\(143\) −3.10123 −0.259338
\(144\) 0.598684 0.0498903
\(145\) 11.9721 0.994230
\(146\) −9.94819 −0.823318
\(147\) 0 0
\(148\) 0.497766 0.0409161
\(149\) −17.8730 −1.46421 −0.732107 0.681190i \(-0.761463\pi\)
−0.732107 + 0.681190i \(0.761463\pi\)
\(150\) 0.0655611 0.00535304
\(151\) 19.0466 1.54999 0.774993 0.631969i \(-0.217753\pi\)
0.774993 + 0.631969i \(0.217753\pi\)
\(152\) −15.8004 −1.28158
\(153\) 6.43512 0.520248
\(154\) 0 0
\(155\) 13.4443 1.07987
\(156\) −4.11320 −0.329319
\(157\) 14.7953 1.18079 0.590395 0.807114i \(-0.298972\pi\)
0.590395 + 0.807114i \(0.298972\pi\)
\(158\) 10.2632 0.816498
\(159\) −1.55667 −0.123452
\(160\) 13.1579 1.04022
\(161\) 0 0
\(162\) −0.796145 −0.0625510
\(163\) 9.53602 0.746919 0.373459 0.927647i \(-0.378172\pi\)
0.373459 + 0.927647i \(0.378172\pi\)
\(164\) −9.90456 −0.773416
\(165\) 2.32213 0.180777
\(166\) −2.10875 −0.163671
\(167\) 3.27141 0.253149 0.126575 0.991957i \(-0.459602\pi\)
0.126575 + 0.991957i \(0.459602\pi\)
\(168\) 0 0
\(169\) −3.93516 −0.302705
\(170\) 11.5500 0.885842
\(171\) −5.89578 −0.450862
\(172\) −12.2579 −0.934654
\(173\) −24.6552 −1.87450 −0.937252 0.348653i \(-0.886639\pi\)
−0.937252 + 0.348653i \(0.886639\pi\)
\(174\) −4.22796 −0.320521
\(175\) 0 0
\(176\) 0.616668 0.0464831
\(177\) 5.85015 0.439724
\(178\) 1.57267 0.117877
\(179\) −18.2211 −1.36191 −0.680953 0.732327i \(-0.738434\pi\)
−0.680953 + 0.732327i \(0.738434\pi\)
\(180\) 3.07987 0.229560
\(181\) −11.6879 −0.868752 −0.434376 0.900732i \(-0.643031\pi\)
−0.434376 + 0.900732i \(0.643031\pi\)
\(182\) 0 0
\(183\) 14.1918 1.04909
\(184\) 6.53596 0.481838
\(185\) 0.821406 0.0603910
\(186\) −4.74785 −0.348129
\(187\) 6.62843 0.484719
\(188\) 3.99017 0.291013
\(189\) 0 0
\(190\) −10.5819 −0.767695
\(191\) 1.43231 0.103639 0.0518193 0.998656i \(-0.483498\pi\)
0.0518193 + 0.998656i \(0.483498\pi\)
\(192\) −3.44935 −0.248936
\(193\) 25.2004 1.81397 0.906983 0.421168i \(-0.138380\pi\)
0.906983 + 0.421168i \(0.138380\pi\)
\(194\) −8.57750 −0.615829
\(195\) −6.78754 −0.486066
\(196\) 0 0
\(197\) −19.7659 −1.40826 −0.704131 0.710070i \(-0.748663\pi\)
−0.704131 + 0.710070i \(0.748663\pi\)
\(198\) −0.820061 −0.0582792
\(199\) 15.1743 1.07568 0.537840 0.843047i \(-0.319240\pi\)
0.537840 + 0.843047i \(0.319240\pi\)
\(200\) 0.220689 0.0156051
\(201\) −9.44651 −0.666306
\(202\) 2.29517 0.161487
\(203\) 0 0
\(204\) 8.79136 0.615518
\(205\) −16.3444 −1.14154
\(206\) −2.53439 −0.176579
\(207\) 2.43884 0.169511
\(208\) −1.80251 −0.124981
\(209\) −6.07289 −0.420071
\(210\) 0 0
\(211\) 25.5923 1.76185 0.880924 0.473259i \(-0.156922\pi\)
0.880924 + 0.473259i \(0.156922\pi\)
\(212\) −2.12664 −0.146059
\(213\) −11.4001 −0.781125
\(214\) −8.91575 −0.609468
\(215\) −20.2278 −1.37952
\(216\) −2.67995 −0.182347
\(217\) 0 0
\(218\) −10.6419 −0.720759
\(219\) −12.4955 −0.844365
\(220\) 3.17238 0.213882
\(221\) −19.3748 −1.30329
\(222\) −0.290080 −0.0194689
\(223\) −2.16406 −0.144916 −0.0724580 0.997371i \(-0.523084\pi\)
−0.0724580 + 0.997371i \(0.523084\pi\)
\(224\) 0 0
\(225\) 0.0823483 0.00548989
\(226\) −7.71994 −0.513523
\(227\) −24.9814 −1.65807 −0.829036 0.559194i \(-0.811110\pi\)
−0.829036 + 0.559194i \(0.811110\pi\)
\(228\) −8.05455 −0.533425
\(229\) −6.74951 −0.446020 −0.223010 0.974816i \(-0.571588\pi\)
−0.223010 + 0.974816i \(0.571588\pi\)
\(230\) 4.37732 0.288632
\(231\) 0 0
\(232\) −14.2320 −0.934374
\(233\) 22.0954 1.44752 0.723758 0.690054i \(-0.242413\pi\)
0.723758 + 0.690054i \(0.242413\pi\)
\(234\) 2.39702 0.156698
\(235\) 6.58452 0.429527
\(236\) 7.99220 0.520248
\(237\) 12.8912 0.837371
\(238\) 0 0
\(239\) −14.1469 −0.915086 −0.457543 0.889188i \(-0.651270\pi\)
−0.457543 + 0.889188i \(0.651270\pi\)
\(240\) 1.34968 0.0871212
\(241\) −11.2165 −0.722517 −0.361259 0.932466i \(-0.617653\pi\)
−0.361259 + 0.932466i \(0.617653\pi\)
\(242\) 7.91290 0.508660
\(243\) −1.00000 −0.0641500
\(244\) 19.3881 1.24120
\(245\) 0 0
\(246\) 5.77202 0.368010
\(247\) 17.7509 1.12947
\(248\) −15.9820 −1.01486
\(249\) −2.64870 −0.167855
\(250\) −8.82637 −0.558228
\(251\) 25.8994 1.63476 0.817379 0.576100i \(-0.195426\pi\)
0.817379 + 0.576100i \(0.195426\pi\)
\(252\) 0 0
\(253\) 2.51210 0.157935
\(254\) 3.48132 0.218438
\(255\) 14.5074 0.908487
\(256\) −14.0058 −0.875362
\(257\) 8.33587 0.519977 0.259989 0.965612i \(-0.416281\pi\)
0.259989 + 0.965612i \(0.416281\pi\)
\(258\) 7.14344 0.444731
\(259\) 0 0
\(260\) −9.27282 −0.575076
\(261\) −5.31054 −0.328714
\(262\) −3.84130 −0.237316
\(263\) −24.5466 −1.51361 −0.756804 0.653642i \(-0.773240\pi\)
−0.756804 + 0.653642i \(0.773240\pi\)
\(264\) −2.76045 −0.169894
\(265\) −3.50936 −0.215578
\(266\) 0 0
\(267\) 1.97536 0.120890
\(268\) −12.9054 −0.788322
\(269\) 30.1130 1.83602 0.918011 0.396555i \(-0.129794\pi\)
0.918011 + 0.396555i \(0.129794\pi\)
\(270\) −1.79483 −0.109230
\(271\) −16.0901 −0.977405 −0.488702 0.872450i \(-0.662530\pi\)
−0.488702 + 0.872450i \(0.662530\pi\)
\(272\) 3.85260 0.233598
\(273\) 0 0
\(274\) 0.736915 0.0445187
\(275\) 0.0848220 0.00511496
\(276\) 3.33183 0.200553
\(277\) −19.9575 −1.19913 −0.599565 0.800326i \(-0.704660\pi\)
−0.599565 + 0.800326i \(0.704660\pi\)
\(278\) 0.611019 0.0366465
\(279\) −5.96355 −0.357029
\(280\) 0 0
\(281\) −14.6649 −0.874836 −0.437418 0.899258i \(-0.644107\pi\)
−0.437418 + 0.899258i \(0.644107\pi\)
\(282\) −2.32533 −0.138471
\(283\) 0.883867 0.0525404 0.0262702 0.999655i \(-0.491637\pi\)
0.0262702 + 0.999655i \(0.491637\pi\)
\(284\) −15.5743 −0.924167
\(285\) −13.2915 −0.787320
\(286\) 2.46903 0.145997
\(287\) 0 0
\(288\) −5.83653 −0.343921
\(289\) 24.4107 1.43593
\(290\) −9.53154 −0.559711
\(291\) −10.7738 −0.631571
\(292\) −17.0707 −0.998988
\(293\) −11.2204 −0.655503 −0.327751 0.944764i \(-0.606291\pi\)
−0.327751 + 0.944764i \(0.606291\pi\)
\(294\) 0 0
\(295\) 13.1886 0.767871
\(296\) −0.976454 −0.0567552
\(297\) −1.03004 −0.0597690
\(298\) 14.2295 0.824293
\(299\) −7.34283 −0.424647
\(300\) 0.112500 0.00649521
\(301\) 0 0
\(302\) −15.1638 −0.872579
\(303\) 2.88285 0.165616
\(304\) −3.52971 −0.202443
\(305\) 31.9940 1.83197
\(306\) −5.12328 −0.292879
\(307\) −15.8876 −0.906756 −0.453378 0.891318i \(-0.649781\pi\)
−0.453378 + 0.891318i \(0.649781\pi\)
\(308\) 0 0
\(309\) −3.18333 −0.181093
\(310\) −10.7036 −0.607923
\(311\) −23.7475 −1.34660 −0.673299 0.739371i \(-0.735123\pi\)
−0.673299 + 0.739371i \(0.735123\pi\)
\(312\) 8.06874 0.456803
\(313\) 5.80782 0.328278 0.164139 0.986437i \(-0.447515\pi\)
0.164139 + 0.986437i \(0.447515\pi\)
\(314\) −11.7792 −0.664737
\(315\) 0 0
\(316\) 17.6113 0.990713
\(317\) 12.7048 0.713574 0.356787 0.934186i \(-0.383872\pi\)
0.356787 + 0.934186i \(0.383872\pi\)
\(318\) 1.23933 0.0694982
\(319\) −5.47007 −0.306265
\(320\) −7.77625 −0.434705
\(321\) −11.1987 −0.625048
\(322\) 0 0
\(323\) −37.9401 −2.11104
\(324\) −1.36615 −0.0758974
\(325\) −0.247933 −0.0137529
\(326\) −7.59205 −0.420485
\(327\) −13.3668 −0.739184
\(328\) 19.4295 1.07281
\(329\) 0 0
\(330\) −1.84875 −0.101770
\(331\) 21.6094 1.18776 0.593880 0.804554i \(-0.297596\pi\)
0.593880 + 0.804554i \(0.297596\pi\)
\(332\) −3.61853 −0.198593
\(333\) −0.364356 −0.0199666
\(334\) −2.60452 −0.142513
\(335\) −21.2963 −1.16354
\(336\) 0 0
\(337\) −14.5829 −0.794383 −0.397192 0.917736i \(-0.630015\pi\)
−0.397192 + 0.917736i \(0.630015\pi\)
\(338\) 3.13296 0.170410
\(339\) −9.69666 −0.526650
\(340\) 19.8193 1.07485
\(341\) −6.14270 −0.332646
\(342\) 4.69390 0.253817
\(343\) 0 0
\(344\) 24.0459 1.29647
\(345\) 5.49814 0.296010
\(346\) 19.6291 1.05527
\(347\) 7.19196 0.386085 0.193042 0.981190i \(-0.438165\pi\)
0.193042 + 0.981190i \(0.438165\pi\)
\(348\) −7.25502 −0.388910
\(349\) −8.24964 −0.441593 −0.220797 0.975320i \(-0.570866\pi\)
−0.220797 + 0.975320i \(0.570866\pi\)
\(350\) 0 0
\(351\) 3.01079 0.160704
\(352\) −6.01186 −0.320433
\(353\) −26.6180 −1.41673 −0.708365 0.705846i \(-0.750567\pi\)
−0.708365 + 0.705846i \(0.750567\pi\)
\(354\) −4.65756 −0.247547
\(355\) −25.7005 −1.36404
\(356\) 2.69865 0.143028
\(357\) 0 0
\(358\) 14.5066 0.766698
\(359\) 35.3254 1.86440 0.932201 0.361940i \(-0.117886\pi\)
0.932201 + 0.361940i \(0.117886\pi\)
\(360\) −6.04169 −0.318425
\(361\) 15.7603 0.829488
\(362\) 9.30522 0.489072
\(363\) 9.93902 0.521663
\(364\) 0 0
\(365\) −28.1698 −1.47448
\(366\) −11.2987 −0.590592
\(367\) −12.5622 −0.655742 −0.327871 0.944722i \(-0.606331\pi\)
−0.327871 + 0.944722i \(0.606331\pi\)
\(368\) 1.46009 0.0761127
\(369\) 7.24996 0.377418
\(370\) −0.653958 −0.0339977
\(371\) 0 0
\(372\) −8.14713 −0.422409
\(373\) 18.6294 0.964595 0.482298 0.876007i \(-0.339802\pi\)
0.482298 + 0.876007i \(0.339802\pi\)
\(374\) −5.27719 −0.272877
\(375\) −11.0864 −0.572498
\(376\) −7.82740 −0.403668
\(377\) 15.9889 0.823471
\(378\) 0 0
\(379\) −34.2625 −1.75995 −0.879974 0.475021i \(-0.842440\pi\)
−0.879974 + 0.475021i \(0.842440\pi\)
\(380\) −18.1582 −0.931497
\(381\) 4.37273 0.224022
\(382\) −1.14033 −0.0583443
\(383\) 7.35822 0.375988 0.187994 0.982170i \(-0.439802\pi\)
0.187994 + 0.982170i \(0.439802\pi\)
\(384\) −8.92687 −0.455548
\(385\) 0 0
\(386\) −20.0632 −1.02119
\(387\) 8.97255 0.456100
\(388\) −14.7187 −0.747227
\(389\) −20.2773 −1.02810 −0.514049 0.857761i \(-0.671855\pi\)
−0.514049 + 0.857761i \(0.671855\pi\)
\(390\) 5.40386 0.273635
\(391\) 15.6942 0.793692
\(392\) 0 0
\(393\) −4.82488 −0.243383
\(394\) 15.7365 0.792794
\(395\) 29.0619 1.46226
\(396\) −1.40719 −0.0707141
\(397\) 23.3209 1.17044 0.585221 0.810874i \(-0.301008\pi\)
0.585221 + 0.810874i \(0.301008\pi\)
\(398\) −12.0810 −0.605564
\(399\) 0 0
\(400\) 0.0493006 0.00246503
\(401\) −4.33508 −0.216484 −0.108242 0.994125i \(-0.534522\pi\)
−0.108242 + 0.994125i \(0.534522\pi\)
\(402\) 7.52079 0.375103
\(403\) 17.9550 0.894402
\(404\) 3.93842 0.195944
\(405\) −2.25441 −0.112022
\(406\) 0 0
\(407\) −0.375301 −0.0186030
\(408\) −17.2458 −0.853793
\(409\) −12.1023 −0.598420 −0.299210 0.954187i \(-0.596723\pi\)
−0.299210 + 0.954187i \(0.596723\pi\)
\(410\) 13.0125 0.642640
\(411\) 0.925604 0.0456567
\(412\) −4.34892 −0.214256
\(413\) 0 0
\(414\) −1.94167 −0.0954279
\(415\) −5.97125 −0.293117
\(416\) 17.5725 0.861565
\(417\) 0.767472 0.0375833
\(418\) 4.83490 0.236483
\(419\) −17.0997 −0.835374 −0.417687 0.908591i \(-0.637159\pi\)
−0.417687 + 0.908591i \(0.637159\pi\)
\(420\) 0 0
\(421\) −16.3056 −0.794687 −0.397344 0.917670i \(-0.630068\pi\)
−0.397344 + 0.917670i \(0.630068\pi\)
\(422\) −20.3752 −0.991848
\(423\) −2.92073 −0.142011
\(424\) 4.17178 0.202600
\(425\) 0.529921 0.0257049
\(426\) 9.07616 0.439741
\(427\) 0 0
\(428\) −15.2991 −0.739510
\(429\) 3.10123 0.149729
\(430\) 16.1042 0.776615
\(431\) 10.2779 0.495068 0.247534 0.968879i \(-0.420380\pi\)
0.247534 + 0.968879i \(0.420380\pi\)
\(432\) −0.598684 −0.0288042
\(433\) −19.8322 −0.953076 −0.476538 0.879154i \(-0.658109\pi\)
−0.476538 + 0.879154i \(0.658109\pi\)
\(434\) 0 0
\(435\) −11.9721 −0.574019
\(436\) −18.2611 −0.874546
\(437\) −14.3789 −0.687835
\(438\) 9.94819 0.475343
\(439\) −32.6262 −1.55716 −0.778582 0.627543i \(-0.784061\pi\)
−0.778582 + 0.627543i \(0.784061\pi\)
\(440\) −6.22318 −0.296678
\(441\) 0 0
\(442\) 15.4251 0.733698
\(443\) 5.47971 0.260349 0.130174 0.991491i \(-0.458446\pi\)
0.130174 + 0.991491i \(0.458446\pi\)
\(444\) −0.497766 −0.0236229
\(445\) 4.45327 0.211105
\(446\) 1.72290 0.0815819
\(447\) 17.8730 0.845364
\(448\) 0 0
\(449\) 17.3854 0.820469 0.410234 0.911980i \(-0.365447\pi\)
0.410234 + 0.911980i \(0.365447\pi\)
\(450\) −0.0655611 −0.00309058
\(451\) 7.46775 0.351643
\(452\) −13.2471 −0.623093
\(453\) −19.0466 −0.894885
\(454\) 19.8888 0.933428
\(455\) 0 0
\(456\) 15.8004 0.739920
\(457\) −8.18572 −0.382912 −0.191456 0.981501i \(-0.561321\pi\)
−0.191456 + 0.981501i \(0.561321\pi\)
\(458\) 5.37358 0.251091
\(459\) −6.43512 −0.300366
\(460\) 7.51131 0.350216
\(461\) 12.7675 0.594642 0.297321 0.954778i \(-0.403907\pi\)
0.297321 + 0.954778i \(0.403907\pi\)
\(462\) 0 0
\(463\) 26.0124 1.20890 0.604449 0.796644i \(-0.293393\pi\)
0.604449 + 0.796644i \(0.293393\pi\)
\(464\) −3.17933 −0.147597
\(465\) −13.4443 −0.623463
\(466\) −17.5911 −0.814892
\(467\) −38.4256 −1.77812 −0.889062 0.457788i \(-0.848642\pi\)
−0.889062 + 0.457788i \(0.848642\pi\)
\(468\) 4.11320 0.190133
\(469\) 0 0
\(470\) −5.24223 −0.241806
\(471\) −14.7953 −0.681730
\(472\) −15.6781 −0.721642
\(473\) 9.24208 0.424951
\(474\) −10.2632 −0.471406
\(475\) −0.485508 −0.0222766
\(476\) 0 0
\(477\) 1.55667 0.0712748
\(478\) 11.2630 0.515156
\(479\) 3.22090 0.147167 0.0735834 0.997289i \(-0.476556\pi\)
0.0735834 + 0.997289i \(0.476556\pi\)
\(480\) −13.1579 −0.600574
\(481\) 1.09700 0.0500188
\(482\) 8.92994 0.406748
\(483\) 0 0
\(484\) 13.5782 0.617192
\(485\) −24.2885 −1.10288
\(486\) 0.796145 0.0361139
\(487\) −40.5598 −1.83794 −0.918970 0.394327i \(-0.870978\pi\)
−0.918970 + 0.394327i \(0.870978\pi\)
\(488\) −38.0332 −1.72168
\(489\) −9.53602 −0.431234
\(490\) 0 0
\(491\) −12.8273 −0.578888 −0.289444 0.957195i \(-0.593470\pi\)
−0.289444 + 0.957195i \(0.593470\pi\)
\(492\) 9.90456 0.446532
\(493\) −34.1740 −1.53912
\(494\) −14.1323 −0.635843
\(495\) −2.32213 −0.104372
\(496\) −3.57028 −0.160310
\(497\) 0 0
\(498\) 2.10875 0.0944954
\(499\) −30.5986 −1.36978 −0.684891 0.728646i \(-0.740150\pi\)
−0.684891 + 0.728646i \(0.740150\pi\)
\(500\) −15.1457 −0.677337
\(501\) −3.27141 −0.146156
\(502\) −20.6197 −0.920302
\(503\) −13.9565 −0.622291 −0.311145 0.950362i \(-0.600713\pi\)
−0.311145 + 0.950362i \(0.600713\pi\)
\(504\) 0 0
\(505\) 6.49912 0.289207
\(506\) −2.00000 −0.0889108
\(507\) 3.93516 0.174767
\(508\) 5.97382 0.265045
\(509\) −18.1952 −0.806488 −0.403244 0.915093i \(-0.632117\pi\)
−0.403244 + 0.915093i \(0.632117\pi\)
\(510\) −11.5500 −0.511441
\(511\) 0 0
\(512\) −6.70311 −0.296239
\(513\) 5.89578 0.260305
\(514\) −6.63656 −0.292726
\(515\) −7.17651 −0.316235
\(516\) 12.2579 0.539623
\(517\) −3.00847 −0.132312
\(518\) 0 0
\(519\) 24.6552 1.08225
\(520\) 18.1902 0.797694
\(521\) −24.7653 −1.08499 −0.542493 0.840060i \(-0.682520\pi\)
−0.542493 + 0.840060i \(0.682520\pi\)
\(522\) 4.22796 0.185053
\(523\) −16.0281 −0.700862 −0.350431 0.936589i \(-0.613965\pi\)
−0.350431 + 0.936589i \(0.613965\pi\)
\(524\) −6.59152 −0.287952
\(525\) 0 0
\(526\) 19.5426 0.852100
\(527\) −38.3762 −1.67169
\(528\) −0.616668 −0.0268370
\(529\) −17.0520 −0.741393
\(530\) 2.79396 0.121362
\(531\) −5.85015 −0.253875
\(532\) 0 0
\(533\) −21.8281 −0.945480
\(534\) −1.57267 −0.0680562
\(535\) −25.2463 −1.09149
\(536\) 25.3161 1.09349
\(537\) 18.2211 0.786297
\(538\) −23.9743 −1.03361
\(539\) 0 0
\(540\) −3.07987 −0.132536
\(541\) −31.4594 −1.35254 −0.676272 0.736652i \(-0.736406\pi\)
−0.676272 + 0.736652i \(0.736406\pi\)
\(542\) 12.8101 0.550239
\(543\) 11.6879 0.501574
\(544\) −37.5588 −1.61032
\(545\) −30.1341 −1.29080
\(546\) 0 0
\(547\) 34.3727 1.46967 0.734836 0.678245i \(-0.237259\pi\)
0.734836 + 0.678245i \(0.237259\pi\)
\(548\) 1.26452 0.0540175
\(549\) −14.1918 −0.605690
\(550\) −0.0675306 −0.00287951
\(551\) 31.3098 1.33384
\(552\) −6.53596 −0.278189
\(553\) 0 0
\(554\) 15.8891 0.675062
\(555\) −0.821406 −0.0348668
\(556\) 1.04848 0.0444656
\(557\) −36.3491 −1.54016 −0.770080 0.637947i \(-0.779784\pi\)
−0.770080 + 0.637947i \(0.779784\pi\)
\(558\) 4.74785 0.200993
\(559\) −27.0144 −1.14259
\(560\) 0 0
\(561\) −6.62843 −0.279852
\(562\) 11.6754 0.492497
\(563\) 30.4008 1.28124 0.640620 0.767858i \(-0.278677\pi\)
0.640620 + 0.767858i \(0.278677\pi\)
\(564\) −3.99017 −0.168016
\(565\) −21.8602 −0.919666
\(566\) −0.703686 −0.0295781
\(567\) 0 0
\(568\) 30.5517 1.28192
\(569\) 22.2601 0.933191 0.466596 0.884471i \(-0.345480\pi\)
0.466596 + 0.884471i \(0.345480\pi\)
\(570\) 10.5819 0.443229
\(571\) 5.07223 0.212266 0.106133 0.994352i \(-0.466153\pi\)
0.106133 + 0.994352i \(0.466153\pi\)
\(572\) 4.23676 0.177148
\(573\) −1.43231 −0.0598358
\(574\) 0 0
\(575\) 0.200834 0.00837537
\(576\) 3.44935 0.143723
\(577\) 28.9860 1.20670 0.603352 0.797475i \(-0.293832\pi\)
0.603352 + 0.797475i \(0.293832\pi\)
\(578\) −19.4345 −0.808368
\(579\) −25.2004 −1.04729
\(580\) −16.3558 −0.679136
\(581\) 0 0
\(582\) 8.57750 0.355549
\(583\) 1.60343 0.0664072
\(584\) 33.4871 1.38571
\(585\) 6.78754 0.280630
\(586\) 8.93306 0.369021
\(587\) −9.06939 −0.374334 −0.187167 0.982328i \(-0.559931\pi\)
−0.187167 + 0.982328i \(0.559931\pi\)
\(588\) 0 0
\(589\) 35.1598 1.44874
\(590\) −10.5000 −0.432280
\(591\) 19.7659 0.813061
\(592\) −0.218134 −0.00896525
\(593\) 5.68143 0.233308 0.116654 0.993173i \(-0.462783\pi\)
0.116654 + 0.993173i \(0.462783\pi\)
\(594\) 0.820061 0.0336475
\(595\) 0 0
\(596\) 24.4173 1.00017
\(597\) −15.1743 −0.621045
\(598\) 5.84596 0.239059
\(599\) −25.0703 −1.02434 −0.512172 0.858883i \(-0.671159\pi\)
−0.512172 + 0.858883i \(0.671159\pi\)
\(600\) −0.220689 −0.00900959
\(601\) −1.25109 −0.0510329 −0.0255165 0.999674i \(-0.508123\pi\)
−0.0255165 + 0.999674i \(0.508123\pi\)
\(602\) 0 0
\(603\) 9.44651 0.384692
\(604\) −26.0205 −1.05876
\(605\) 22.4066 0.910957
\(606\) −2.29517 −0.0932348
\(607\) 20.8842 0.847664 0.423832 0.905741i \(-0.360685\pi\)
0.423832 + 0.905741i \(0.360685\pi\)
\(608\) 34.4109 1.39555
\(609\) 0 0
\(610\) −25.4719 −1.03133
\(611\) 8.79370 0.355755
\(612\) −8.79136 −0.355370
\(613\) 14.5959 0.589524 0.294762 0.955571i \(-0.404760\pi\)
0.294762 + 0.955571i \(0.404760\pi\)
\(614\) 12.6489 0.510467
\(615\) 16.3444 0.659068
\(616\) 0 0
\(617\) −1.51555 −0.0610136 −0.0305068 0.999535i \(-0.509712\pi\)
−0.0305068 + 0.999535i \(0.509712\pi\)
\(618\) 2.53439 0.101948
\(619\) −2.70353 −0.108664 −0.0543321 0.998523i \(-0.517303\pi\)
−0.0543321 + 0.998523i \(0.517303\pi\)
\(620\) −18.3669 −0.737634
\(621\) −2.43884 −0.0978674
\(622\) 18.9064 0.758079
\(623\) 0 0
\(624\) 1.80251 0.0721581
\(625\) −25.4050 −1.01620
\(626\) −4.62387 −0.184807
\(627\) 6.07289 0.242528
\(628\) −20.2126 −0.806571
\(629\) −2.34467 −0.0934883
\(630\) 0 0
\(631\) 23.2082 0.923904 0.461952 0.886905i \(-0.347149\pi\)
0.461952 + 0.886905i \(0.347149\pi\)
\(632\) −34.5476 −1.37423
\(633\) −25.5923 −1.01720
\(634\) −10.1149 −0.401713
\(635\) 9.85791 0.391199
\(636\) 2.12664 0.0843270
\(637\) 0 0
\(638\) 4.35497 0.172415
\(639\) 11.4001 0.450983
\(640\) −20.1248 −0.795503
\(641\) 19.4809 0.769450 0.384725 0.923031i \(-0.374296\pi\)
0.384725 + 0.923031i \(0.374296\pi\)
\(642\) 8.91575 0.351877
\(643\) 6.33940 0.250001 0.125001 0.992157i \(-0.460107\pi\)
0.125001 + 0.992157i \(0.460107\pi\)
\(644\) 0 0
\(645\) 20.2278 0.796467
\(646\) 30.2058 1.18843
\(647\) 1.87238 0.0736107 0.0368054 0.999322i \(-0.488282\pi\)
0.0368054 + 0.999322i \(0.488282\pi\)
\(648\) 2.67995 0.105278
\(649\) −6.02589 −0.236537
\(650\) 0.197391 0.00774230
\(651\) 0 0
\(652\) −13.0277 −0.510203
\(653\) 47.6133 1.86325 0.931626 0.363419i \(-0.118391\pi\)
0.931626 + 0.363419i \(0.118391\pi\)
\(654\) 10.6419 0.416131
\(655\) −10.8772 −0.425009
\(656\) 4.34043 0.169465
\(657\) 12.4955 0.487494
\(658\) 0 0
\(659\) −1.85049 −0.0720847 −0.0360423 0.999350i \(-0.511475\pi\)
−0.0360423 + 0.999350i \(0.511475\pi\)
\(660\) −3.17238 −0.123485
\(661\) −10.1613 −0.395228 −0.197614 0.980280i \(-0.563319\pi\)
−0.197614 + 0.980280i \(0.563319\pi\)
\(662\) −17.2042 −0.668660
\(663\) 19.3748 0.752454
\(664\) 7.09838 0.275470
\(665\) 0 0
\(666\) 0.290080 0.0112404
\(667\) −12.9516 −0.501487
\(668\) −4.46925 −0.172921
\(669\) 2.16406 0.0836673
\(670\) 16.9549 0.655026
\(671\) −14.6181 −0.564325
\(672\) 0 0
\(673\) 26.8581 1.03530 0.517652 0.855591i \(-0.326806\pi\)
0.517652 + 0.855591i \(0.326806\pi\)
\(674\) 11.6101 0.447205
\(675\) −0.0823483 −0.00316959
\(676\) 5.37603 0.206771
\(677\) −46.1013 −1.77182 −0.885908 0.463861i \(-0.846464\pi\)
−0.885908 + 0.463861i \(0.846464\pi\)
\(678\) 7.71994 0.296483
\(679\) 0 0
\(680\) −38.8790 −1.49094
\(681\) 24.9814 0.957289
\(682\) 4.89048 0.187266
\(683\) −12.0857 −0.462447 −0.231224 0.972901i \(-0.574273\pi\)
−0.231224 + 0.972901i \(0.574273\pi\)
\(684\) 8.05455 0.307973
\(685\) 2.08669 0.0797283
\(686\) 0 0
\(687\) 6.74951 0.257510
\(688\) 5.37172 0.204795
\(689\) −4.68679 −0.178552
\(690\) −4.37732 −0.166642
\(691\) 31.1572 1.18528 0.592638 0.805469i \(-0.298086\pi\)
0.592638 + 0.805469i \(0.298086\pi\)
\(692\) 33.6829 1.28043
\(693\) 0 0
\(694\) −5.72584 −0.217350
\(695\) 1.73019 0.0656300
\(696\) 14.2320 0.539461
\(697\) 46.6544 1.76716
\(698\) 6.56791 0.248599
\(699\) −22.0954 −0.835723
\(700\) 0 0
\(701\) −26.4543 −0.999163 −0.499582 0.866267i \(-0.666513\pi\)
−0.499582 + 0.866267i \(0.666513\pi\)
\(702\) −2.39702 −0.0904698
\(703\) 2.14816 0.0810195
\(704\) 3.55297 0.133908
\(705\) −6.58452 −0.247987
\(706\) 21.1917 0.797562
\(707\) 0 0
\(708\) −7.99220 −0.300365
\(709\) 2.60534 0.0978458 0.0489229 0.998803i \(-0.484421\pi\)
0.0489229 + 0.998803i \(0.484421\pi\)
\(710\) 20.4614 0.767901
\(711\) −12.8912 −0.483456
\(712\) −5.29386 −0.198396
\(713\) −14.5442 −0.544683
\(714\) 0 0
\(715\) 6.99143 0.261465
\(716\) 24.8928 0.930287
\(717\) 14.1469 0.528325
\(718\) −28.1241 −1.04958
\(719\) 21.5568 0.803934 0.401967 0.915654i \(-0.368327\pi\)
0.401967 + 0.915654i \(0.368327\pi\)
\(720\) −1.34968 −0.0502995
\(721\) 0 0
\(722\) −12.5474 −0.466968
\(723\) 11.2165 0.417145
\(724\) 15.9674 0.593424
\(725\) −0.437314 −0.0162414
\(726\) −7.91290 −0.293675
\(727\) 2.63775 0.0978288 0.0489144 0.998803i \(-0.484424\pi\)
0.0489144 + 0.998803i \(0.484424\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 22.4273 0.830071
\(731\) 57.7394 2.13557
\(732\) −19.3881 −0.716606
\(733\) 5.54876 0.204948 0.102474 0.994736i \(-0.467324\pi\)
0.102474 + 0.994736i \(0.467324\pi\)
\(734\) 10.0013 0.369156
\(735\) 0 0
\(736\) −14.2344 −0.524686
\(737\) 9.73029 0.358420
\(738\) −5.77202 −0.212471
\(739\) 37.5222 1.38028 0.690139 0.723677i \(-0.257549\pi\)
0.690139 + 0.723677i \(0.257549\pi\)
\(740\) −1.12217 −0.0412517
\(741\) −17.7509 −0.652097
\(742\) 0 0
\(743\) −20.5930 −0.755485 −0.377743 0.925911i \(-0.623300\pi\)
−0.377743 + 0.925911i \(0.623300\pi\)
\(744\) 15.9820 0.585928
\(745\) 40.2930 1.47622
\(746\) −14.8317 −0.543028
\(747\) 2.64870 0.0969110
\(748\) −9.05545 −0.331100
\(749\) 0 0
\(750\) 8.82637 0.322293
\(751\) −12.8974 −0.470632 −0.235316 0.971919i \(-0.575613\pi\)
−0.235316 + 0.971919i \(0.575613\pi\)
\(752\) −1.74859 −0.0637647
\(753\) −25.8994 −0.943828
\(754\) −12.7295 −0.463581
\(755\) −42.9387 −1.56270
\(756\) 0 0
\(757\) 41.4852 1.50781 0.753903 0.656986i \(-0.228169\pi\)
0.753903 + 0.656986i \(0.228169\pi\)
\(758\) 27.2779 0.990779
\(759\) −2.51210 −0.0911836
\(760\) 35.6205 1.29209
\(761\) 2.76709 0.100307 0.0501534 0.998742i \(-0.484029\pi\)
0.0501534 + 0.998742i \(0.484029\pi\)
\(762\) −3.48132 −0.126115
\(763\) 0 0
\(764\) −1.95676 −0.0707931
\(765\) −14.5074 −0.524515
\(766\) −5.85821 −0.211666
\(767\) 17.6135 0.635988
\(768\) 14.0058 0.505390
\(769\) −10.4907 −0.378306 −0.189153 0.981948i \(-0.560574\pi\)
−0.189153 + 0.981948i \(0.560574\pi\)
\(770\) 0 0
\(771\) −8.33587 −0.300209
\(772\) −34.4276 −1.23908
\(773\) −31.6774 −1.13936 −0.569678 0.821868i \(-0.692932\pi\)
−0.569678 + 0.821868i \(0.692932\pi\)
\(774\) −7.14344 −0.256766
\(775\) −0.491088 −0.0176404
\(776\) 28.8732 1.03649
\(777\) 0 0
\(778\) 16.1436 0.578778
\(779\) −42.7442 −1.53147
\(780\) 9.27282 0.332020
\(781\) 11.7426 0.420183
\(782\) −12.4949 −0.446816
\(783\) 5.31054 0.189783
\(784\) 0 0
\(785\) −33.3545 −1.19047
\(786\) 3.84130 0.137015
\(787\) −43.4596 −1.54917 −0.774583 0.632472i \(-0.782040\pi\)
−0.774583 + 0.632472i \(0.782040\pi\)
\(788\) 27.0033 0.961951
\(789\) 24.5466 0.873882
\(790\) −23.1375 −0.823195
\(791\) 0 0
\(792\) 2.76045 0.0980883
\(793\) 42.7284 1.51733
\(794\) −18.5668 −0.658911
\(795\) 3.50936 0.124464
\(796\) −20.7305 −0.734773
\(797\) −3.67444 −0.130155 −0.0650777 0.997880i \(-0.520730\pi\)
−0.0650777 + 0.997880i \(0.520730\pi\)
\(798\) 0 0
\(799\) −18.7953 −0.664929
\(800\) −0.480628 −0.0169928
\(801\) −1.97536 −0.0697960
\(802\) 3.45135 0.121871
\(803\) 12.8708 0.454201
\(804\) 12.9054 0.455138
\(805\) 0 0
\(806\) −14.2948 −0.503512
\(807\) −30.1130 −1.06003
\(808\) −7.72589 −0.271796
\(809\) 9.28813 0.326553 0.163277 0.986580i \(-0.447794\pi\)
0.163277 + 0.986580i \(0.447794\pi\)
\(810\) 1.79483 0.0630640
\(811\) −49.0017 −1.72068 −0.860341 0.509718i \(-0.829750\pi\)
−0.860341 + 0.509718i \(0.829750\pi\)
\(812\) 0 0
\(813\) 16.0901 0.564305
\(814\) 0.298794 0.0104727
\(815\) −21.4981 −0.753044
\(816\) −3.85260 −0.134868
\(817\) −52.9002 −1.85074
\(818\) 9.63517 0.336886
\(819\) 0 0
\(820\) 22.3289 0.779759
\(821\) −46.0214 −1.60616 −0.803079 0.595873i \(-0.796806\pi\)
−0.803079 + 0.595873i \(0.796806\pi\)
\(822\) −0.736915 −0.0257029
\(823\) −16.1078 −0.561484 −0.280742 0.959783i \(-0.590580\pi\)
−0.280742 + 0.959783i \(0.590580\pi\)
\(824\) 8.53114 0.297196
\(825\) −0.0848220 −0.00295312
\(826\) 0 0
\(827\) 19.0531 0.662542 0.331271 0.943536i \(-0.392522\pi\)
0.331271 + 0.943536i \(0.392522\pi\)
\(828\) −3.33183 −0.115789
\(829\) −15.6696 −0.544228 −0.272114 0.962265i \(-0.587723\pi\)
−0.272114 + 0.962265i \(0.587723\pi\)
\(830\) 4.75398 0.165013
\(831\) 19.9575 0.692318
\(832\) −10.3853 −0.360044
\(833\) 0 0
\(834\) −0.611019 −0.0211578
\(835\) −7.37509 −0.255226
\(836\) 8.29650 0.286941
\(837\) 5.96355 0.206131
\(838\) 13.6138 0.470282
\(839\) −15.3768 −0.530866 −0.265433 0.964129i \(-0.585515\pi\)
−0.265433 + 0.964129i \(0.585515\pi\)
\(840\) 0 0
\(841\) −0.798146 −0.0275223
\(842\) 12.9816 0.447376
\(843\) 14.6649 0.505087
\(844\) −34.9630 −1.20348
\(845\) 8.87145 0.305187
\(846\) 2.32533 0.0799463
\(847\) 0 0
\(848\) 0.931950 0.0320033
\(849\) −0.883867 −0.0303342
\(850\) −0.421894 −0.0144708
\(851\) −0.888607 −0.0304610
\(852\) 15.5743 0.533568
\(853\) −35.5627 −1.21764 −0.608822 0.793307i \(-0.708357\pi\)
−0.608822 + 0.793307i \(0.708357\pi\)
\(854\) 0 0
\(855\) 13.2915 0.454559
\(856\) 30.0118 1.02578
\(857\) 12.2667 0.419023 0.209512 0.977806i \(-0.432813\pi\)
0.209512 + 0.977806i \(0.432813\pi\)
\(858\) −2.46903 −0.0842912
\(859\) 39.9500 1.36308 0.681539 0.731782i \(-0.261311\pi\)
0.681539 + 0.731782i \(0.261311\pi\)
\(860\) 27.6342 0.942320
\(861\) 0 0
\(862\) −8.18268 −0.278703
\(863\) −24.7316 −0.841872 −0.420936 0.907090i \(-0.638298\pi\)
−0.420936 + 0.907090i \(0.638298\pi\)
\(864\) 5.83653 0.198563
\(865\) 55.5829 1.88988
\(866\) 15.7893 0.536543
\(867\) −24.4107 −0.829032
\(868\) 0 0
\(869\) −13.2784 −0.450439
\(870\) 9.53154 0.323149
\(871\) −28.4414 −0.963701
\(872\) 35.8222 1.21309
\(873\) 10.7738 0.364638
\(874\) 11.4477 0.387223
\(875\) 0 0
\(876\) 17.0707 0.576766
\(877\) 24.4944 0.827117 0.413558 0.910478i \(-0.364286\pi\)
0.413558 + 0.910478i \(0.364286\pi\)
\(878\) 25.9752 0.876620
\(879\) 11.2204 0.378455
\(880\) −1.39022 −0.0468643
\(881\) 56.3191 1.89744 0.948720 0.316118i \(-0.102379\pi\)
0.948720 + 0.316118i \(0.102379\pi\)
\(882\) 0 0
\(883\) −22.5309 −0.758224 −0.379112 0.925351i \(-0.623770\pi\)
−0.379112 + 0.925351i \(0.623770\pi\)
\(884\) 26.4689 0.890246
\(885\) −13.1886 −0.443330
\(886\) −4.36264 −0.146566
\(887\) 6.83879 0.229624 0.114812 0.993387i \(-0.463373\pi\)
0.114812 + 0.993387i \(0.463373\pi\)
\(888\) 0.976454 0.0327676
\(889\) 0 0
\(890\) −3.54544 −0.118844
\(891\) 1.03004 0.0345076
\(892\) 2.95644 0.0989888
\(893\) 17.2200 0.576246
\(894\) −14.2295 −0.475906
\(895\) 41.0777 1.37308
\(896\) 0 0
\(897\) 7.34283 0.245170
\(898\) −13.8413 −0.461890
\(899\) 31.6697 1.05624
\(900\) −0.112500 −0.00375001
\(901\) 10.0173 0.333726
\(902\) −5.94541 −0.197960
\(903\) 0 0
\(904\) 25.9865 0.864299
\(905\) 26.3492 0.875876
\(906\) 15.1638 0.503784
\(907\) −28.3167 −0.940239 −0.470120 0.882603i \(-0.655789\pi\)
−0.470120 + 0.882603i \(0.655789\pi\)
\(908\) 34.1284 1.13259
\(909\) −2.88285 −0.0956182
\(910\) 0 0
\(911\) 14.6206 0.484402 0.242201 0.970226i \(-0.422131\pi\)
0.242201 + 0.970226i \(0.422131\pi\)
\(912\) 3.52971 0.116880
\(913\) 2.72827 0.0902925
\(914\) 6.51702 0.215564
\(915\) −31.9940 −1.05769
\(916\) 9.22087 0.304666
\(917\) 0 0
\(918\) 5.12328 0.169094
\(919\) 27.0213 0.891349 0.445674 0.895195i \(-0.352964\pi\)
0.445674 + 0.895195i \(0.352964\pi\)
\(920\) −14.7347 −0.485789
\(921\) 15.8876 0.523516
\(922\) −10.1648 −0.334759
\(923\) −34.3234 −1.12977
\(924\) 0 0
\(925\) −0.0300041 −0.000986528 0
\(926\) −20.7096 −0.680560
\(927\) 3.18333 0.104554
\(928\) 30.9951 1.01747
\(929\) −32.8412 −1.07749 −0.538743 0.842470i \(-0.681101\pi\)
−0.538743 + 0.842470i \(0.681101\pi\)
\(930\) 10.7036 0.350984
\(931\) 0 0
\(932\) −30.1857 −0.988764
\(933\) 23.7475 0.777458
\(934\) 30.5923 1.00101
\(935\) −14.9432 −0.488694
\(936\) −8.06874 −0.263735
\(937\) −56.2631 −1.83803 −0.919017 0.394218i \(-0.871015\pi\)
−0.919017 + 0.394218i \(0.871015\pi\)
\(938\) 0 0
\(939\) −5.80782 −0.189531
\(940\) −8.99546 −0.293400
\(941\) −27.9290 −0.910460 −0.455230 0.890374i \(-0.650443\pi\)
−0.455230 + 0.890374i \(0.650443\pi\)
\(942\) 11.7792 0.383786
\(943\) 17.6815 0.575789
\(944\) −3.50239 −0.113993
\(945\) 0 0
\(946\) −7.35803 −0.239230
\(947\) −36.0960 −1.17296 −0.586481 0.809963i \(-0.699487\pi\)
−0.586481 + 0.809963i \(0.699487\pi\)
\(948\) −17.6113 −0.571989
\(949\) −37.6212 −1.22123
\(950\) 0.386534 0.0125408
\(951\) −12.7048 −0.411982
\(952\) 0 0
\(953\) −5.49666 −0.178054 −0.0890271 0.996029i \(-0.528376\pi\)
−0.0890271 + 0.996029i \(0.528376\pi\)
\(954\) −1.23933 −0.0401248
\(955\) −3.22902 −0.104489
\(956\) 19.3268 0.625074
\(957\) 5.47007 0.176822
\(958\) −2.56431 −0.0828490
\(959\) 0 0
\(960\) 7.77625 0.250977
\(961\) 4.56397 0.147225
\(962\) −0.873369 −0.0281586
\(963\) 11.1987 0.360872
\(964\) 15.3234 0.493535
\(965\) −56.8120 −1.82884
\(966\) 0 0
\(967\) 2.15529 0.0693093 0.0346547 0.999399i \(-0.488967\pi\)
0.0346547 + 0.999399i \(0.488967\pi\)
\(968\) −26.6360 −0.856114
\(969\) 37.9401 1.21881
\(970\) 19.3372 0.620879
\(971\) 49.0664 1.57462 0.787308 0.616560i \(-0.211474\pi\)
0.787308 + 0.616560i \(0.211474\pi\)
\(972\) 1.36615 0.0438194
\(973\) 0 0
\(974\) 32.2915 1.03469
\(975\) 0.247933 0.00794022
\(976\) −8.49638 −0.271962
\(977\) −45.8282 −1.46618 −0.733088 0.680134i \(-0.761922\pi\)
−0.733088 + 0.680134i \(0.761922\pi\)
\(978\) 7.59205 0.242767
\(979\) −2.03470 −0.0650293
\(980\) 0 0
\(981\) 13.3668 0.426768
\(982\) 10.2124 0.325890
\(983\) 9.93572 0.316900 0.158450 0.987367i \(-0.449350\pi\)
0.158450 + 0.987367i \(0.449350\pi\)
\(984\) −19.4295 −0.619390
\(985\) 44.5604 1.41981
\(986\) 27.2074 0.866461
\(987\) 0 0
\(988\) −24.2505 −0.771512
\(989\) 21.8826 0.695827
\(990\) 1.84875 0.0587571
\(991\) 15.4631 0.491202 0.245601 0.969371i \(-0.421015\pi\)
0.245601 + 0.969371i \(0.421015\pi\)
\(992\) 34.8065 1.10511
\(993\) −21.6094 −0.685753
\(994\) 0 0
\(995\) −34.2091 −1.08450
\(996\) 3.61853 0.114658
\(997\) 9.13783 0.289398 0.144699 0.989476i \(-0.453779\pi\)
0.144699 + 0.989476i \(0.453779\pi\)
\(998\) 24.3609 0.771131
\(999\) 0.364356 0.0115277
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7203.2.a.j.1.10 24
7.6 odd 2 7203.2.a.l.1.10 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7203.2.a.j.1.10 24 1.1 even 1 trivial
7203.2.a.l.1.10 yes 24 7.6 odd 2