Properties

Label 7203.2.a.d.1.4
Level $7203$
Weight $2$
Character 7203.1
Self dual yes
Analytic conductor $57.516$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7203,2,Mod(1,7203)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7203, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7203.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7203 = 3 \cdot 7^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7203.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,2,12,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.5162445759\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} - 16 x^{10} + 30 x^{9} + 92 x^{8} - 154 x^{7} - 244 x^{6} + 343 x^{5} + 295 x^{4} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.39887\) of defining polynomial
Character \(\chi\) \(=\) 7203.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.39887 q^{2} +1.00000 q^{3} -0.0431625 q^{4} +2.18055 q^{5} -1.39887 q^{6} +2.85812 q^{8} +1.00000 q^{9} -3.05030 q^{10} +6.48029 q^{11} -0.0431625 q^{12} +0.782484 q^{13} +2.18055 q^{15} -3.91181 q^{16} -5.53556 q^{17} -1.39887 q^{18} -0.140576 q^{19} -0.0941180 q^{20} -9.06509 q^{22} +6.13670 q^{23} +2.85812 q^{24} -0.245206 q^{25} -1.09459 q^{26} +1.00000 q^{27} -2.43168 q^{29} -3.05030 q^{30} +2.14201 q^{31} -0.244121 q^{32} +6.48029 q^{33} +7.74353 q^{34} -0.0431625 q^{36} -7.46623 q^{37} +0.196647 q^{38} +0.782484 q^{39} +6.23227 q^{40} +12.1118 q^{41} -8.75698 q^{43} -0.279706 q^{44} +2.18055 q^{45} -8.58445 q^{46} +9.39324 q^{47} -3.91181 q^{48} +0.343012 q^{50} -5.53556 q^{51} -0.0337740 q^{52} +3.55148 q^{53} -1.39887 q^{54} +14.1306 q^{55} -0.140576 q^{57} +3.40160 q^{58} -1.08597 q^{59} -0.0941180 q^{60} -4.30119 q^{61} -2.99639 q^{62} +8.16512 q^{64} +1.70624 q^{65} -9.06509 q^{66} +6.16236 q^{67} +0.238929 q^{68} +6.13670 q^{69} +5.52885 q^{71} +2.85812 q^{72} -5.14349 q^{73} +10.4443 q^{74} -0.245206 q^{75} +0.00606761 q^{76} -1.09459 q^{78} +13.4125 q^{79} -8.52990 q^{80} +1.00000 q^{81} -16.9429 q^{82} +17.0840 q^{83} -12.0706 q^{85} +12.2499 q^{86} -2.43168 q^{87} +18.5214 q^{88} -4.54396 q^{89} -3.05030 q^{90} -0.264876 q^{92} +2.14201 q^{93} -13.1399 q^{94} -0.306533 q^{95} -0.244121 q^{96} -6.51297 q^{97} +6.48029 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} + 12 q^{3} + 12 q^{4} + 3 q^{5} + 2 q^{6} + 6 q^{8} + 12 q^{9} - 3 q^{11} + 12 q^{12} + 13 q^{13} + 3 q^{15} + 8 q^{16} + 3 q^{17} + 2 q^{18} - 3 q^{20} - 11 q^{22} + 18 q^{23} + 6 q^{24}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.39887 −0.989151 −0.494575 0.869135i \(-0.664676\pi\)
−0.494575 + 0.869135i \(0.664676\pi\)
\(3\) 1.00000 0.577350
\(4\) −0.0431625 −0.0215813
\(5\) 2.18055 0.975171 0.487586 0.873075i \(-0.337878\pi\)
0.487586 + 0.873075i \(0.337878\pi\)
\(6\) −1.39887 −0.571086
\(7\) 0 0
\(8\) 2.85812 1.01050
\(9\) 1.00000 0.333333
\(10\) −3.05030 −0.964591
\(11\) 6.48029 1.95388 0.976941 0.213510i \(-0.0684897\pi\)
0.976941 + 0.213510i \(0.0684897\pi\)
\(12\) −0.0431625 −0.0124600
\(13\) 0.782484 0.217022 0.108511 0.994095i \(-0.465392\pi\)
0.108511 + 0.994095i \(0.465392\pi\)
\(14\) 0 0
\(15\) 2.18055 0.563015
\(16\) −3.91181 −0.977953
\(17\) −5.53556 −1.34257 −0.671286 0.741199i \(-0.734258\pi\)
−0.671286 + 0.741199i \(0.734258\pi\)
\(18\) −1.39887 −0.329717
\(19\) −0.140576 −0.0322503 −0.0161252 0.999870i \(-0.505133\pi\)
−0.0161252 + 0.999870i \(0.505133\pi\)
\(20\) −0.0941180 −0.0210454
\(21\) 0 0
\(22\) −9.06509 −1.93268
\(23\) 6.13670 1.27959 0.639796 0.768545i \(-0.279019\pi\)
0.639796 + 0.768545i \(0.279019\pi\)
\(24\) 2.85812 0.583411
\(25\) −0.245206 −0.0490413
\(26\) −1.09459 −0.214667
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −2.43168 −0.451551 −0.225776 0.974179i \(-0.572492\pi\)
−0.225776 + 0.974179i \(0.572492\pi\)
\(30\) −3.05030 −0.556907
\(31\) 2.14201 0.384716 0.192358 0.981325i \(-0.438387\pi\)
0.192358 + 0.981325i \(0.438387\pi\)
\(32\) −0.244121 −0.0431549
\(33\) 6.48029 1.12807
\(34\) 7.74353 1.32801
\(35\) 0 0
\(36\) −0.0431625 −0.00719376
\(37\) −7.46623 −1.22744 −0.613720 0.789524i \(-0.710328\pi\)
−0.613720 + 0.789524i \(0.710328\pi\)
\(38\) 0.196647 0.0319004
\(39\) 0.782484 0.125298
\(40\) 6.23227 0.985408
\(41\) 12.1118 1.89155 0.945776 0.324819i \(-0.105303\pi\)
0.945776 + 0.324819i \(0.105303\pi\)
\(42\) 0 0
\(43\) −8.75698 −1.33543 −0.667713 0.744419i \(-0.732727\pi\)
−0.667713 + 0.744419i \(0.732727\pi\)
\(44\) −0.279706 −0.0421673
\(45\) 2.18055 0.325057
\(46\) −8.58445 −1.26571
\(47\) 9.39324 1.37015 0.685073 0.728475i \(-0.259770\pi\)
0.685073 + 0.728475i \(0.259770\pi\)
\(48\) −3.91181 −0.564621
\(49\) 0 0
\(50\) 0.343012 0.0485092
\(51\) −5.53556 −0.775134
\(52\) −0.0337740 −0.00468361
\(53\) 3.55148 0.487834 0.243917 0.969796i \(-0.421568\pi\)
0.243917 + 0.969796i \(0.421568\pi\)
\(54\) −1.39887 −0.190362
\(55\) 14.1306 1.90537
\(56\) 0 0
\(57\) −0.140576 −0.0186197
\(58\) 3.40160 0.446652
\(59\) −1.08597 −0.141381 −0.0706905 0.997498i \(-0.522520\pi\)
−0.0706905 + 0.997498i \(0.522520\pi\)
\(60\) −0.0941180 −0.0121506
\(61\) −4.30119 −0.550711 −0.275355 0.961342i \(-0.588796\pi\)
−0.275355 + 0.961342i \(0.588796\pi\)
\(62\) −2.99639 −0.380542
\(63\) 0 0
\(64\) 8.16512 1.02064
\(65\) 1.70624 0.211634
\(66\) −9.06509 −1.11584
\(67\) 6.16236 0.752852 0.376426 0.926447i \(-0.377153\pi\)
0.376426 + 0.926447i \(0.377153\pi\)
\(68\) 0.238929 0.0289744
\(69\) 6.13670 0.738772
\(70\) 0 0
\(71\) 5.52885 0.656154 0.328077 0.944651i \(-0.393600\pi\)
0.328077 + 0.944651i \(0.393600\pi\)
\(72\) 2.85812 0.336833
\(73\) −5.14349 −0.602000 −0.301000 0.953624i \(-0.597320\pi\)
−0.301000 + 0.953624i \(0.597320\pi\)
\(74\) 10.4443 1.21412
\(75\) −0.245206 −0.0283140
\(76\) 0.00606761 0.000696003 0
\(77\) 0 0
\(78\) −1.09459 −0.123938
\(79\) 13.4125 1.50902 0.754510 0.656288i \(-0.227874\pi\)
0.754510 + 0.656288i \(0.227874\pi\)
\(80\) −8.52990 −0.953672
\(81\) 1.00000 0.111111
\(82\) −16.9429 −1.87103
\(83\) 17.0840 1.87521 0.937605 0.347702i \(-0.113038\pi\)
0.937605 + 0.347702i \(0.113038\pi\)
\(84\) 0 0
\(85\) −12.0706 −1.30924
\(86\) 12.2499 1.32094
\(87\) −2.43168 −0.260703
\(88\) 18.5214 1.97439
\(89\) −4.54396 −0.481659 −0.240829 0.970567i \(-0.577419\pi\)
−0.240829 + 0.970567i \(0.577419\pi\)
\(90\) −3.05030 −0.321530
\(91\) 0 0
\(92\) −0.264876 −0.0276152
\(93\) 2.14201 0.222116
\(94\) −13.1399 −1.35528
\(95\) −0.306533 −0.0314496
\(96\) −0.244121 −0.0249155
\(97\) −6.51297 −0.661292 −0.330646 0.943755i \(-0.607267\pi\)
−0.330646 + 0.943755i \(0.607267\pi\)
\(98\) 0 0
\(99\) 6.48029 0.651294
\(100\) 0.0105837 0.00105837
\(101\) −2.93471 −0.292014 −0.146007 0.989284i \(-0.546642\pi\)
−0.146007 + 0.989284i \(0.546642\pi\)
\(102\) 7.74353 0.766724
\(103\) 10.8509 1.06918 0.534588 0.845113i \(-0.320467\pi\)
0.534588 + 0.845113i \(0.320467\pi\)
\(104\) 2.23643 0.219300
\(105\) 0 0
\(106\) −4.96806 −0.482541
\(107\) 3.45208 0.333725 0.166863 0.985980i \(-0.446636\pi\)
0.166863 + 0.985980i \(0.446636\pi\)
\(108\) −0.0431625 −0.00415332
\(109\) −16.9387 −1.62243 −0.811217 0.584745i \(-0.801195\pi\)
−0.811217 + 0.584745i \(0.801195\pi\)
\(110\) −19.7669 −1.88470
\(111\) −7.46623 −0.708663
\(112\) 0 0
\(113\) 5.89023 0.554106 0.277053 0.960855i \(-0.410642\pi\)
0.277053 + 0.960855i \(0.410642\pi\)
\(114\) 0.196647 0.0184177
\(115\) 13.3814 1.24782
\(116\) 0.104957 0.00974505
\(117\) 0.782484 0.0723407
\(118\) 1.51913 0.139847
\(119\) 0 0
\(120\) 6.23227 0.568926
\(121\) 30.9942 2.81765
\(122\) 6.01680 0.544736
\(123\) 12.1118 1.09209
\(124\) −0.0924545 −0.00830266
\(125\) −11.4374 −1.02299
\(126\) 0 0
\(127\) 2.93903 0.260797 0.130399 0.991462i \(-0.458374\pi\)
0.130399 + 0.991462i \(0.458374\pi\)
\(128\) −10.9337 −0.966411
\(129\) −8.75698 −0.771009
\(130\) −2.38681 −0.209337
\(131\) 12.3407 1.07821 0.539106 0.842238i \(-0.318762\pi\)
0.539106 + 0.842238i \(0.318762\pi\)
\(132\) −0.279706 −0.0243453
\(133\) 0 0
\(134\) −8.62035 −0.744684
\(135\) 2.18055 0.187672
\(136\) −15.8213 −1.35667
\(137\) −7.51568 −0.642108 −0.321054 0.947061i \(-0.604037\pi\)
−0.321054 + 0.947061i \(0.604037\pi\)
\(138\) −8.58445 −0.730757
\(139\) 1.73208 0.146914 0.0734568 0.997298i \(-0.476597\pi\)
0.0734568 + 0.997298i \(0.476597\pi\)
\(140\) 0 0
\(141\) 9.39324 0.791054
\(142\) −7.73414 −0.649035
\(143\) 5.07073 0.424035
\(144\) −3.91181 −0.325984
\(145\) −5.30239 −0.440340
\(146\) 7.19508 0.595469
\(147\) 0 0
\(148\) 0.322261 0.0264897
\(149\) −8.09135 −0.662869 −0.331435 0.943478i \(-0.607533\pi\)
−0.331435 + 0.943478i \(0.607533\pi\)
\(150\) 0.343012 0.0280068
\(151\) −5.19672 −0.422903 −0.211452 0.977388i \(-0.567819\pi\)
−0.211452 + 0.977388i \(0.567819\pi\)
\(152\) −0.401783 −0.0325889
\(153\) −5.53556 −0.447524
\(154\) 0 0
\(155\) 4.67075 0.375164
\(156\) −0.0337740 −0.00270408
\(157\) 1.55862 0.124391 0.0621957 0.998064i \(-0.480190\pi\)
0.0621957 + 0.998064i \(0.480190\pi\)
\(158\) −18.7623 −1.49265
\(159\) 3.55148 0.281651
\(160\) −0.532318 −0.0420835
\(161\) 0 0
\(162\) −1.39887 −0.109906
\(163\) 3.77617 0.295773 0.147886 0.989004i \(-0.452753\pi\)
0.147886 + 0.989004i \(0.452753\pi\)
\(164\) −0.522778 −0.0408221
\(165\) 14.1306 1.10007
\(166\) −23.8983 −1.85487
\(167\) 21.3137 1.64931 0.824653 0.565639i \(-0.191370\pi\)
0.824653 + 0.565639i \(0.191370\pi\)
\(168\) 0 0
\(169\) −12.3877 −0.952901
\(170\) 16.8852 1.29503
\(171\) −0.140576 −0.0107501
\(172\) 0.377973 0.0288202
\(173\) 22.3191 1.69689 0.848446 0.529282i \(-0.177539\pi\)
0.848446 + 0.529282i \(0.177539\pi\)
\(174\) 3.40160 0.257875
\(175\) 0 0
\(176\) −25.3497 −1.91080
\(177\) −1.08597 −0.0816264
\(178\) 6.35641 0.476433
\(179\) −13.3676 −0.999140 −0.499570 0.866273i \(-0.666509\pi\)
−0.499570 + 0.866273i \(0.666509\pi\)
\(180\) −0.0941180 −0.00701514
\(181\) −0.159415 −0.0118492 −0.00592460 0.999982i \(-0.501886\pi\)
−0.00592460 + 0.999982i \(0.501886\pi\)
\(182\) 0 0
\(183\) −4.30119 −0.317953
\(184\) 17.5394 1.29302
\(185\) −16.2805 −1.19696
\(186\) −2.99639 −0.219706
\(187\) −35.8721 −2.62323
\(188\) −0.405436 −0.0295695
\(189\) 0 0
\(190\) 0.428799 0.0311084
\(191\) −23.6260 −1.70952 −0.854758 0.519028i \(-0.826294\pi\)
−0.854758 + 0.519028i \(0.826294\pi\)
\(192\) 8.16512 0.589267
\(193\) −0.126858 −0.00913145 −0.00456573 0.999990i \(-0.501453\pi\)
−0.00456573 + 0.999990i \(0.501453\pi\)
\(194\) 9.11080 0.654117
\(195\) 1.70624 0.122187
\(196\) 0 0
\(197\) 20.8057 1.48234 0.741172 0.671316i \(-0.234270\pi\)
0.741172 + 0.671316i \(0.234270\pi\)
\(198\) −9.06509 −0.644228
\(199\) −10.8225 −0.767190 −0.383595 0.923501i \(-0.625314\pi\)
−0.383595 + 0.923501i \(0.625314\pi\)
\(200\) −0.700829 −0.0495561
\(201\) 6.16236 0.434660
\(202\) 4.10527 0.288846
\(203\) 0 0
\(204\) 0.238929 0.0167284
\(205\) 26.4105 1.84459
\(206\) −15.1791 −1.05758
\(207\) 6.13670 0.426530
\(208\) −3.06093 −0.212237
\(209\) −0.910973 −0.0630133
\(210\) 0 0
\(211\) −4.04533 −0.278492 −0.139246 0.990258i \(-0.544468\pi\)
−0.139246 + 0.990258i \(0.544468\pi\)
\(212\) −0.153291 −0.0105281
\(213\) 5.52885 0.378830
\(214\) −4.82901 −0.330105
\(215\) −19.0950 −1.30227
\(216\) 2.85812 0.194470
\(217\) 0 0
\(218\) 23.6951 1.60483
\(219\) −5.14349 −0.347565
\(220\) −0.609912 −0.0411203
\(221\) −4.33149 −0.291368
\(222\) 10.4443 0.700974
\(223\) −15.3809 −1.02998 −0.514991 0.857196i \(-0.672205\pi\)
−0.514991 + 0.857196i \(0.672205\pi\)
\(224\) 0 0
\(225\) −0.245206 −0.0163471
\(226\) −8.23967 −0.548095
\(227\) −14.0751 −0.934199 −0.467099 0.884205i \(-0.654701\pi\)
−0.467099 + 0.884205i \(0.654701\pi\)
\(228\) 0.00606761 0.000401838 0
\(229\) −4.31492 −0.285138 −0.142569 0.989785i \(-0.545536\pi\)
−0.142569 + 0.989785i \(0.545536\pi\)
\(230\) −18.7188 −1.23428
\(231\) 0 0
\(232\) −6.95003 −0.456292
\(233\) −16.3554 −1.07148 −0.535739 0.844384i \(-0.679967\pi\)
−0.535739 + 0.844384i \(0.679967\pi\)
\(234\) −1.09459 −0.0715558
\(235\) 20.4824 1.33613
\(236\) 0.0468732 0.00305118
\(237\) 13.4125 0.871233
\(238\) 0 0
\(239\) −11.0575 −0.715247 −0.357624 0.933866i \(-0.616413\pi\)
−0.357624 + 0.933866i \(0.616413\pi\)
\(240\) −8.52990 −0.550602
\(241\) −20.6777 −1.33197 −0.665983 0.745967i \(-0.731988\pi\)
−0.665983 + 0.745967i \(0.731988\pi\)
\(242\) −43.3568 −2.78708
\(243\) 1.00000 0.0641500
\(244\) 0.185650 0.0118850
\(245\) 0 0
\(246\) −16.9429 −1.08024
\(247\) −0.109998 −0.00699903
\(248\) 6.12211 0.388754
\(249\) 17.0840 1.08265
\(250\) 15.9995 1.01190
\(251\) 24.6124 1.55352 0.776760 0.629796i \(-0.216862\pi\)
0.776760 + 0.629796i \(0.216862\pi\)
\(252\) 0 0
\(253\) 39.7676 2.50017
\(254\) −4.11133 −0.257968
\(255\) −12.0706 −0.755888
\(256\) −1.03542 −0.0647134
\(257\) −13.4398 −0.838353 −0.419176 0.907905i \(-0.637681\pi\)
−0.419176 + 0.907905i \(0.637681\pi\)
\(258\) 12.2499 0.762644
\(259\) 0 0
\(260\) −0.0736459 −0.00456732
\(261\) −2.43168 −0.150517
\(262\) −17.2631 −1.06651
\(263\) 11.2887 0.696089 0.348045 0.937478i \(-0.386846\pi\)
0.348045 + 0.937478i \(0.386846\pi\)
\(264\) 18.5214 1.13992
\(265\) 7.74418 0.475721
\(266\) 0 0
\(267\) −4.54396 −0.278086
\(268\) −0.265983 −0.0162475
\(269\) −14.0668 −0.857666 −0.428833 0.903384i \(-0.641075\pi\)
−0.428833 + 0.903384i \(0.641075\pi\)
\(270\) −3.05030 −0.185636
\(271\) 23.1738 1.40771 0.703854 0.710345i \(-0.251461\pi\)
0.703854 + 0.710345i \(0.251461\pi\)
\(272\) 21.6541 1.31297
\(273\) 0 0
\(274\) 10.5135 0.635142
\(275\) −1.58901 −0.0958209
\(276\) −0.264876 −0.0159436
\(277\) −4.33550 −0.260495 −0.130247 0.991482i \(-0.541577\pi\)
−0.130247 + 0.991482i \(0.541577\pi\)
\(278\) −2.42296 −0.145320
\(279\) 2.14201 0.128239
\(280\) 0 0
\(281\) 24.4371 1.45780 0.728899 0.684621i \(-0.240032\pi\)
0.728899 + 0.684621i \(0.240032\pi\)
\(282\) −13.1399 −0.782471
\(283\) 20.7126 1.23124 0.615618 0.788045i \(-0.288906\pi\)
0.615618 + 0.788045i \(0.288906\pi\)
\(284\) −0.238639 −0.0141606
\(285\) −0.306533 −0.0181574
\(286\) −7.09329 −0.419435
\(287\) 0 0
\(288\) −0.244121 −0.0143850
\(289\) 13.6425 0.802498
\(290\) 7.41736 0.435562
\(291\) −6.51297 −0.381797
\(292\) 0.222006 0.0129919
\(293\) 12.8577 0.751156 0.375578 0.926791i \(-0.377444\pi\)
0.375578 + 0.926791i \(0.377444\pi\)
\(294\) 0 0
\(295\) −2.36801 −0.137871
\(296\) −21.3394 −1.24033
\(297\) 6.48029 0.376025
\(298\) 11.3188 0.655678
\(299\) 4.80187 0.277699
\(300\) 0.0105837 0.000611052 0
\(301\) 0 0
\(302\) 7.26954 0.418315
\(303\) −2.93471 −0.168594
\(304\) 0.549906 0.0315393
\(305\) −9.37895 −0.537037
\(306\) 7.74353 0.442668
\(307\) 17.1879 0.980964 0.490482 0.871451i \(-0.336821\pi\)
0.490482 + 0.871451i \(0.336821\pi\)
\(308\) 0 0
\(309\) 10.8509 0.617289
\(310\) −6.53377 −0.371093
\(311\) −14.7890 −0.838606 −0.419303 0.907846i \(-0.637726\pi\)
−0.419303 + 0.907846i \(0.637726\pi\)
\(312\) 2.23643 0.126613
\(313\) 31.7838 1.79653 0.898264 0.439457i \(-0.144829\pi\)
0.898264 + 0.439457i \(0.144829\pi\)
\(314\) −2.18031 −0.123042
\(315\) 0 0
\(316\) −0.578916 −0.0325666
\(317\) −6.52577 −0.366524 −0.183262 0.983064i \(-0.558666\pi\)
−0.183262 + 0.983064i \(0.558666\pi\)
\(318\) −4.96806 −0.278595
\(319\) −15.7580 −0.882278
\(320\) 17.8044 0.995298
\(321\) 3.45208 0.192676
\(322\) 0 0
\(323\) 0.778167 0.0432984
\(324\) −0.0431625 −0.00239792
\(325\) −0.191870 −0.0106430
\(326\) −5.28237 −0.292564
\(327\) −16.9387 −0.936713
\(328\) 34.6171 1.91141
\(329\) 0 0
\(330\) −19.7669 −1.08813
\(331\) 24.4510 1.34395 0.671974 0.740575i \(-0.265447\pi\)
0.671974 + 0.740575i \(0.265447\pi\)
\(332\) −0.737388 −0.0404694
\(333\) −7.46623 −0.409147
\(334\) −29.8151 −1.63141
\(335\) 13.4373 0.734160
\(336\) 0 0
\(337\) 4.31055 0.234811 0.117405 0.993084i \(-0.462542\pi\)
0.117405 + 0.993084i \(0.462542\pi\)
\(338\) 17.3288 0.942563
\(339\) 5.89023 0.319913
\(340\) 0.520996 0.0282550
\(341\) 13.8808 0.751689
\(342\) 0.196647 0.0106335
\(343\) 0 0
\(344\) −25.0285 −1.34945
\(345\) 13.3814 0.720429
\(346\) −31.2216 −1.67848
\(347\) 25.7393 1.38176 0.690879 0.722971i \(-0.257224\pi\)
0.690879 + 0.722971i \(0.257224\pi\)
\(348\) 0.104957 0.00562631
\(349\) 34.3791 1.84027 0.920136 0.391598i \(-0.128078\pi\)
0.920136 + 0.391598i \(0.128078\pi\)
\(350\) 0 0
\(351\) 0.782484 0.0417659
\(352\) −1.58198 −0.0843197
\(353\) −9.63624 −0.512885 −0.256443 0.966559i \(-0.582551\pi\)
−0.256443 + 0.966559i \(0.582551\pi\)
\(354\) 1.51913 0.0807408
\(355\) 12.0559 0.639862
\(356\) 0.196129 0.0103948
\(357\) 0 0
\(358\) 18.6995 0.988300
\(359\) −29.8557 −1.57572 −0.787861 0.615853i \(-0.788811\pi\)
−0.787861 + 0.615853i \(0.788811\pi\)
\(360\) 6.23227 0.328469
\(361\) −18.9802 −0.998960
\(362\) 0.223000 0.0117206
\(363\) 30.9942 1.62677
\(364\) 0 0
\(365\) −11.2156 −0.587053
\(366\) 6.01680 0.314503
\(367\) −20.6975 −1.08040 −0.540202 0.841536i \(-0.681652\pi\)
−0.540202 + 0.841536i \(0.681652\pi\)
\(368\) −24.0056 −1.25138
\(369\) 12.1118 0.630517
\(370\) 22.7743 1.18398
\(371\) 0 0
\(372\) −0.0924545 −0.00479354
\(373\) −31.5100 −1.63153 −0.815764 0.578385i \(-0.803683\pi\)
−0.815764 + 0.578385i \(0.803683\pi\)
\(374\) 50.1804 2.59477
\(375\) −11.4374 −0.590626
\(376\) 26.8470 1.38453
\(377\) −1.90275 −0.0979966
\(378\) 0 0
\(379\) 27.4692 1.41100 0.705500 0.708710i \(-0.250722\pi\)
0.705500 + 0.708710i \(0.250722\pi\)
\(380\) 0.0132307 0.000678722 0
\(381\) 2.93903 0.150571
\(382\) 33.0497 1.69097
\(383\) 23.5967 1.20574 0.602869 0.797840i \(-0.294024\pi\)
0.602869 + 0.797840i \(0.294024\pi\)
\(384\) −10.9337 −0.557958
\(385\) 0 0
\(386\) 0.177458 0.00903238
\(387\) −8.75698 −0.445142
\(388\) 0.281116 0.0142715
\(389\) −21.5794 −1.09412 −0.547059 0.837094i \(-0.684253\pi\)
−0.547059 + 0.837094i \(0.684253\pi\)
\(390\) −2.38681 −0.120861
\(391\) −33.9701 −1.71794
\(392\) 0 0
\(393\) 12.3407 0.622507
\(394\) −29.1044 −1.46626
\(395\) 29.2465 1.47155
\(396\) −0.279706 −0.0140558
\(397\) −25.2434 −1.26693 −0.633464 0.773772i \(-0.718368\pi\)
−0.633464 + 0.773772i \(0.718368\pi\)
\(398\) 15.1393 0.758866
\(399\) 0 0
\(400\) 0.959201 0.0479601
\(401\) 24.9827 1.24758 0.623789 0.781593i \(-0.285592\pi\)
0.623789 + 0.781593i \(0.285592\pi\)
\(402\) −8.62035 −0.429944
\(403\) 1.67609 0.0834918
\(404\) 0.126669 0.00630204
\(405\) 2.18055 0.108352
\(406\) 0 0
\(407\) −48.3833 −2.39827
\(408\) −15.8213 −0.783271
\(409\) 2.34152 0.115781 0.0578904 0.998323i \(-0.481563\pi\)
0.0578904 + 0.998323i \(0.481563\pi\)
\(410\) −36.9448 −1.82457
\(411\) −7.51568 −0.370721
\(412\) −0.468354 −0.0230742
\(413\) 0 0
\(414\) −8.58445 −0.421903
\(415\) 37.2524 1.82865
\(416\) −0.191021 −0.00936557
\(417\) 1.73208 0.0848206
\(418\) 1.27433 0.0623297
\(419\) −33.3174 −1.62766 −0.813830 0.581104i \(-0.802621\pi\)
−0.813830 + 0.581104i \(0.802621\pi\)
\(420\) 0 0
\(421\) 2.28334 0.111283 0.0556417 0.998451i \(-0.482280\pi\)
0.0556417 + 0.998451i \(0.482280\pi\)
\(422\) 5.65890 0.275471
\(423\) 9.39324 0.456715
\(424\) 10.1506 0.492955
\(425\) 1.35736 0.0658414
\(426\) −7.73414 −0.374720
\(427\) 0 0
\(428\) −0.149001 −0.00720222
\(429\) 5.07073 0.244817
\(430\) 26.7114 1.28814
\(431\) 15.5680 0.749884 0.374942 0.927048i \(-0.377663\pi\)
0.374942 + 0.927048i \(0.377663\pi\)
\(432\) −3.91181 −0.188207
\(433\) −23.6011 −1.13420 −0.567098 0.823650i \(-0.691934\pi\)
−0.567098 + 0.823650i \(0.691934\pi\)
\(434\) 0 0
\(435\) −5.30239 −0.254230
\(436\) 0.731118 0.0350142
\(437\) −0.862673 −0.0412672
\(438\) 7.19508 0.343794
\(439\) 20.0248 0.955730 0.477865 0.878433i \(-0.341411\pi\)
0.477865 + 0.878433i \(0.341411\pi\)
\(440\) 40.3869 1.92537
\(441\) 0 0
\(442\) 6.05919 0.288206
\(443\) −5.84019 −0.277476 −0.138738 0.990329i \(-0.544305\pi\)
−0.138738 + 0.990329i \(0.544305\pi\)
\(444\) 0.322261 0.0152939
\(445\) −9.90832 −0.469700
\(446\) 21.5159 1.01881
\(447\) −8.09135 −0.382708
\(448\) 0 0
\(449\) 3.94040 0.185959 0.0929795 0.995668i \(-0.470361\pi\)
0.0929795 + 0.995668i \(0.470361\pi\)
\(450\) 0.343012 0.0161697
\(451\) 78.4883 3.69587
\(452\) −0.254237 −0.0119583
\(453\) −5.19672 −0.244163
\(454\) 19.6893 0.924063
\(455\) 0 0
\(456\) −0.401783 −0.0188152
\(457\) 7.32815 0.342796 0.171398 0.985202i \(-0.445172\pi\)
0.171398 + 0.985202i \(0.445172\pi\)
\(458\) 6.03602 0.282045
\(459\) −5.53556 −0.258378
\(460\) −0.577574 −0.0269295
\(461\) −31.6277 −1.47305 −0.736525 0.676410i \(-0.763535\pi\)
−0.736525 + 0.676410i \(0.763535\pi\)
\(462\) 0 0
\(463\) 16.2417 0.754816 0.377408 0.926047i \(-0.376815\pi\)
0.377408 + 0.926047i \(0.376815\pi\)
\(464\) 9.51227 0.441596
\(465\) 4.67075 0.216601
\(466\) 22.8791 1.05985
\(467\) −22.7406 −1.05231 −0.526155 0.850389i \(-0.676367\pi\)
−0.526155 + 0.850389i \(0.676367\pi\)
\(468\) −0.0337740 −0.00156120
\(469\) 0 0
\(470\) −28.6523 −1.32163
\(471\) 1.55862 0.0718174
\(472\) −3.10383 −0.142865
\(473\) −56.7478 −2.60926
\(474\) −18.7623 −0.861781
\(475\) 0.0344701 0.00158160
\(476\) 0 0
\(477\) 3.55148 0.162611
\(478\) 15.4679 0.707487
\(479\) 23.7726 1.08620 0.543098 0.839669i \(-0.317251\pi\)
0.543098 + 0.839669i \(0.317251\pi\)
\(480\) −0.532318 −0.0242969
\(481\) −5.84221 −0.266382
\(482\) 28.9254 1.31751
\(483\) 0 0
\(484\) −1.33779 −0.0608085
\(485\) −14.2018 −0.644873
\(486\) −1.39887 −0.0634540
\(487\) 10.5562 0.478349 0.239175 0.970977i \(-0.423123\pi\)
0.239175 + 0.970977i \(0.423123\pi\)
\(488\) −12.2933 −0.556492
\(489\) 3.77617 0.170764
\(490\) 0 0
\(491\) −12.0238 −0.542628 −0.271314 0.962491i \(-0.587458\pi\)
−0.271314 + 0.962491i \(0.587458\pi\)
\(492\) −0.522778 −0.0235687
\(493\) 13.4607 0.606240
\(494\) 0.153873 0.00692309
\(495\) 14.1306 0.635123
\(496\) −8.37913 −0.376234
\(497\) 0 0
\(498\) −23.8983 −1.07091
\(499\) 9.96682 0.446176 0.223088 0.974798i \(-0.428386\pi\)
0.223088 + 0.974798i \(0.428386\pi\)
\(500\) 0.493669 0.0220775
\(501\) 21.3137 0.952227
\(502\) −34.4295 −1.53667
\(503\) −23.4438 −1.04531 −0.522654 0.852545i \(-0.675058\pi\)
−0.522654 + 0.852545i \(0.675058\pi\)
\(504\) 0 0
\(505\) −6.39927 −0.284764
\(506\) −55.6297 −2.47304
\(507\) −12.3877 −0.550158
\(508\) −0.126856 −0.00562833
\(509\) −18.5688 −0.823048 −0.411524 0.911399i \(-0.635003\pi\)
−0.411524 + 0.911399i \(0.635003\pi\)
\(510\) 16.8852 0.747687
\(511\) 0 0
\(512\) 23.3158 1.03042
\(513\) −0.140576 −0.00620658
\(514\) 18.8006 0.829257
\(515\) 23.6610 1.04263
\(516\) 0.377973 0.0166393
\(517\) 60.8710 2.67710
\(518\) 0 0
\(519\) 22.3191 0.979701
\(520\) 4.87665 0.213855
\(521\) −44.4176 −1.94597 −0.972985 0.230868i \(-0.925844\pi\)
−0.972985 + 0.230868i \(0.925844\pi\)
\(522\) 3.40160 0.148884
\(523\) 0.264831 0.0115803 0.00579013 0.999983i \(-0.498157\pi\)
0.00579013 + 0.999983i \(0.498157\pi\)
\(524\) −0.532656 −0.0232692
\(525\) 0 0
\(526\) −15.7914 −0.688537
\(527\) −11.8572 −0.516508
\(528\) −25.3497 −1.10320
\(529\) 14.6591 0.637353
\(530\) −10.8331 −0.470560
\(531\) −1.08597 −0.0471270
\(532\) 0 0
\(533\) 9.47732 0.410508
\(534\) 6.35641 0.275069
\(535\) 7.52743 0.325439
\(536\) 17.6128 0.760756
\(537\) −13.3676 −0.576854
\(538\) 19.6776 0.848361
\(539\) 0 0
\(540\) −0.0941180 −0.00405020
\(541\) 4.96320 0.213385 0.106692 0.994292i \(-0.465974\pi\)
0.106692 + 0.994292i \(0.465974\pi\)
\(542\) −32.4171 −1.39243
\(543\) −0.159415 −0.00684114
\(544\) 1.35135 0.0579386
\(545\) −36.9357 −1.58215
\(546\) 0 0
\(547\) −32.0123 −1.36875 −0.684374 0.729131i \(-0.739924\pi\)
−0.684374 + 0.729131i \(0.739924\pi\)
\(548\) 0.324396 0.0138575
\(549\) −4.30119 −0.183570
\(550\) 2.22282 0.0947813
\(551\) 0.341835 0.0145627
\(552\) 17.5394 0.746528
\(553\) 0 0
\(554\) 6.06480 0.257669
\(555\) −16.2805 −0.691068
\(556\) −0.0747612 −0.00317058
\(557\) 6.46297 0.273845 0.136922 0.990582i \(-0.456279\pi\)
0.136922 + 0.990582i \(0.456279\pi\)
\(558\) −2.99639 −0.126847
\(559\) −6.85219 −0.289817
\(560\) 0 0
\(561\) −35.8721 −1.51452
\(562\) −34.1844 −1.44198
\(563\) 34.4790 1.45312 0.726558 0.687105i \(-0.241119\pi\)
0.726558 + 0.687105i \(0.241119\pi\)
\(564\) −0.405436 −0.0170719
\(565\) 12.8439 0.540349
\(566\) −28.9742 −1.21788
\(567\) 0 0
\(568\) 15.8021 0.663042
\(569\) −39.9096 −1.67310 −0.836548 0.547893i \(-0.815430\pi\)
−0.836548 + 0.547893i \(0.815430\pi\)
\(570\) 0.428799 0.0179604
\(571\) −2.84961 −0.119252 −0.0596262 0.998221i \(-0.518991\pi\)
−0.0596262 + 0.998221i \(0.518991\pi\)
\(572\) −0.218865 −0.00915122
\(573\) −23.6260 −0.986989
\(574\) 0 0
\(575\) −1.50476 −0.0627528
\(576\) 8.16512 0.340213
\(577\) 19.6366 0.817483 0.408742 0.912650i \(-0.365968\pi\)
0.408742 + 0.912650i \(0.365968\pi\)
\(578\) −19.0840 −0.793792
\(579\) −0.126858 −0.00527205
\(580\) 0.228865 0.00950310
\(581\) 0 0
\(582\) 9.11080 0.377655
\(583\) 23.0146 0.953169
\(584\) −14.7007 −0.608320
\(585\) 1.70624 0.0705445
\(586\) −17.9863 −0.743007
\(587\) 41.7448 1.72299 0.861496 0.507765i \(-0.169528\pi\)
0.861496 + 0.507765i \(0.169528\pi\)
\(588\) 0 0
\(589\) −0.301115 −0.0124072
\(590\) 3.31253 0.136375
\(591\) 20.8057 0.855831
\(592\) 29.2065 1.20038
\(593\) 7.20053 0.295690 0.147845 0.989011i \(-0.452766\pi\)
0.147845 + 0.989011i \(0.452766\pi\)
\(594\) −9.06509 −0.371945
\(595\) 0 0
\(596\) 0.349243 0.0143056
\(597\) −10.8225 −0.442937
\(598\) −6.71720 −0.274687
\(599\) −31.4482 −1.28494 −0.642469 0.766312i \(-0.722090\pi\)
−0.642469 + 0.766312i \(0.722090\pi\)
\(600\) −0.700829 −0.0286112
\(601\) 2.88150 0.117539 0.0587694 0.998272i \(-0.481282\pi\)
0.0587694 + 0.998272i \(0.481282\pi\)
\(602\) 0 0
\(603\) 6.16236 0.250951
\(604\) 0.224304 0.00912679
\(605\) 67.5843 2.74769
\(606\) 4.10527 0.166765
\(607\) 28.4147 1.15332 0.576658 0.816985i \(-0.304356\pi\)
0.576658 + 0.816985i \(0.304356\pi\)
\(608\) 0.0343176 0.00139176
\(609\) 0 0
\(610\) 13.1199 0.531211
\(611\) 7.35006 0.297352
\(612\) 0.238929 0.00965813
\(613\) 28.1992 1.13896 0.569478 0.822007i \(-0.307145\pi\)
0.569478 + 0.822007i \(0.307145\pi\)
\(614\) −24.0436 −0.970321
\(615\) 26.4105 1.06497
\(616\) 0 0
\(617\) 1.53526 0.0618074 0.0309037 0.999522i \(-0.490161\pi\)
0.0309037 + 0.999522i \(0.490161\pi\)
\(618\) −15.1791 −0.610591
\(619\) −0.440861 −0.0177197 −0.00885986 0.999961i \(-0.502820\pi\)
−0.00885986 + 0.999961i \(0.502820\pi\)
\(620\) −0.201601 −0.00809651
\(621\) 6.13670 0.246257
\(622\) 20.6879 0.829508
\(623\) 0 0
\(624\) −3.06093 −0.122535
\(625\) −23.7138 −0.948554
\(626\) −44.4614 −1.77704
\(627\) −0.910973 −0.0363808
\(628\) −0.0672740 −0.00268452
\(629\) 41.3298 1.64793
\(630\) 0 0
\(631\) 26.2628 1.04551 0.522753 0.852484i \(-0.324905\pi\)
0.522753 + 0.852484i \(0.324905\pi\)
\(632\) 38.3344 1.52486
\(633\) −4.04533 −0.160788
\(634\) 9.12870 0.362547
\(635\) 6.40871 0.254322
\(636\) −0.153291 −0.00607838
\(637\) 0 0
\(638\) 22.0434 0.872706
\(639\) 5.52885 0.218718
\(640\) −23.8415 −0.942416
\(641\) −1.97181 −0.0778817 −0.0389408 0.999242i \(-0.512398\pi\)
−0.0389408 + 0.999242i \(0.512398\pi\)
\(642\) −4.82901 −0.190586
\(643\) −10.5785 −0.417174 −0.208587 0.978004i \(-0.566886\pi\)
−0.208587 + 0.978004i \(0.566886\pi\)
\(644\) 0 0
\(645\) −19.0950 −0.751865
\(646\) −1.08855 −0.0428286
\(647\) 7.08860 0.278682 0.139341 0.990244i \(-0.455502\pi\)
0.139341 + 0.990244i \(0.455502\pi\)
\(648\) 2.85812 0.112278
\(649\) −7.03739 −0.276242
\(650\) 0.268401 0.0105276
\(651\) 0 0
\(652\) −0.162989 −0.00638315
\(653\) 30.0519 1.17602 0.588012 0.808852i \(-0.299911\pi\)
0.588012 + 0.808852i \(0.299911\pi\)
\(654\) 23.6951 0.926550
\(655\) 26.9095 1.05144
\(656\) −47.3793 −1.84985
\(657\) −5.14349 −0.200667
\(658\) 0 0
\(659\) 14.0423 0.547009 0.273504 0.961871i \(-0.411817\pi\)
0.273504 + 0.961871i \(0.411817\pi\)
\(660\) −0.609912 −0.0237408
\(661\) −24.6070 −0.957102 −0.478551 0.878060i \(-0.658838\pi\)
−0.478551 + 0.878060i \(0.658838\pi\)
\(662\) −34.2038 −1.32937
\(663\) −4.33149 −0.168221
\(664\) 48.8280 1.89490
\(665\) 0 0
\(666\) 10.4443 0.404708
\(667\) −14.9225 −0.577801
\(668\) −0.919955 −0.0355941
\(669\) −15.3809 −0.594660
\(670\) −18.7971 −0.726195
\(671\) −27.8730 −1.07602
\(672\) 0 0
\(673\) −2.02401 −0.0780197 −0.0390098 0.999239i \(-0.512420\pi\)
−0.0390098 + 0.999239i \(0.512420\pi\)
\(674\) −6.02990 −0.232263
\(675\) −0.245206 −0.00943800
\(676\) 0.534685 0.0205648
\(677\) 27.5915 1.06043 0.530214 0.847864i \(-0.322112\pi\)
0.530214 + 0.847864i \(0.322112\pi\)
\(678\) −8.23967 −0.316443
\(679\) 0 0
\(680\) −34.4991 −1.32298
\(681\) −14.0751 −0.539360
\(682\) −19.4175 −0.743534
\(683\) −3.41209 −0.130560 −0.0652799 0.997867i \(-0.520794\pi\)
−0.0652799 + 0.997867i \(0.520794\pi\)
\(684\) 0.00606761 0.000232001 0
\(685\) −16.3883 −0.626165
\(686\) 0 0
\(687\) −4.31492 −0.164625
\(688\) 34.2556 1.30598
\(689\) 2.77898 0.105871
\(690\) −18.7188 −0.712613
\(691\) −25.0397 −0.952556 −0.476278 0.879295i \(-0.658014\pi\)
−0.476278 + 0.879295i \(0.658014\pi\)
\(692\) −0.963351 −0.0366211
\(693\) 0 0
\(694\) −36.0059 −1.36677
\(695\) 3.77690 0.143266
\(696\) −6.95003 −0.263440
\(697\) −67.0459 −2.53954
\(698\) −48.0919 −1.82031
\(699\) −16.3554 −0.618618
\(700\) 0 0
\(701\) −4.99223 −0.188554 −0.0942769 0.995546i \(-0.530054\pi\)
−0.0942769 + 0.995546i \(0.530054\pi\)
\(702\) −1.09459 −0.0413128
\(703\) 1.04957 0.0395854
\(704\) 52.9123 1.99421
\(705\) 20.4824 0.771413
\(706\) 13.4799 0.507321
\(707\) 0 0
\(708\) 0.0468732 0.00176160
\(709\) −23.3049 −0.875234 −0.437617 0.899162i \(-0.644177\pi\)
−0.437617 + 0.899162i \(0.644177\pi\)
\(710\) −16.8647 −0.632920
\(711\) 13.4125 0.503007
\(712\) −12.9872 −0.486715
\(713\) 13.1449 0.492279
\(714\) 0 0
\(715\) 11.0570 0.413507
\(716\) 0.576979 0.0215627
\(717\) −11.0575 −0.412948
\(718\) 41.7642 1.55863
\(719\) 8.05817 0.300519 0.150260 0.988647i \(-0.451989\pi\)
0.150260 + 0.988647i \(0.451989\pi\)
\(720\) −8.52990 −0.317891
\(721\) 0 0
\(722\) 26.5509 0.988122
\(723\) −20.6777 −0.769011
\(724\) 0.00688074 0.000255721 0
\(725\) 0.596263 0.0221447
\(726\) −43.3568 −1.60912
\(727\) 1.05207 0.0390191 0.0195095 0.999810i \(-0.493790\pi\)
0.0195095 + 0.999810i \(0.493790\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 15.6892 0.580684
\(731\) 48.4748 1.79291
\(732\) 0.185650 0.00686183
\(733\) 36.5748 1.35092 0.675460 0.737397i \(-0.263945\pi\)
0.675460 + 0.737397i \(0.263945\pi\)
\(734\) 28.9532 1.06868
\(735\) 0 0
\(736\) −1.49810 −0.0552207
\(737\) 39.9339 1.47098
\(738\) −16.9429 −0.623677
\(739\) 37.5524 1.38139 0.690694 0.723147i \(-0.257305\pi\)
0.690694 + 0.723147i \(0.257305\pi\)
\(740\) 0.702707 0.0258320
\(741\) −0.109998 −0.00404089
\(742\) 0 0
\(743\) −46.4337 −1.70349 −0.851744 0.523958i \(-0.824455\pi\)
−0.851744 + 0.523958i \(0.824455\pi\)
\(744\) 6.12211 0.224447
\(745\) −17.6436 −0.646411
\(746\) 44.0784 1.61383
\(747\) 17.0840 0.625070
\(748\) 1.54833 0.0566125
\(749\) 0 0
\(750\) 15.9995 0.584218
\(751\) −7.12646 −0.260048 −0.130024 0.991511i \(-0.541505\pi\)
−0.130024 + 0.991511i \(0.541505\pi\)
\(752\) −36.7446 −1.33994
\(753\) 24.6124 0.896926
\(754\) 2.66170 0.0969334
\(755\) −11.3317 −0.412403
\(756\) 0 0
\(757\) −40.8034 −1.48302 −0.741512 0.670940i \(-0.765891\pi\)
−0.741512 + 0.670940i \(0.765891\pi\)
\(758\) −38.4259 −1.39569
\(759\) 39.7676 1.44347
\(760\) −0.876107 −0.0317797
\(761\) −5.37874 −0.194979 −0.0974896 0.995237i \(-0.531081\pi\)
−0.0974896 + 0.995237i \(0.531081\pi\)
\(762\) −4.11133 −0.148938
\(763\) 0 0
\(764\) 1.01976 0.0368935
\(765\) −12.0706 −0.436412
\(766\) −33.0088 −1.19266
\(767\) −0.849753 −0.0306828
\(768\) −1.03542 −0.0373623
\(769\) 16.7793 0.605077 0.302539 0.953137i \(-0.402166\pi\)
0.302539 + 0.953137i \(0.402166\pi\)
\(770\) 0 0
\(771\) −13.4398 −0.484023
\(772\) 0.00547552 0.000197068 0
\(773\) 39.5951 1.42414 0.712069 0.702110i \(-0.247758\pi\)
0.712069 + 0.702110i \(0.247758\pi\)
\(774\) 12.2499 0.440313
\(775\) −0.525234 −0.0188670
\(776\) −18.6148 −0.668234
\(777\) 0 0
\(778\) 30.1868 1.08225
\(779\) −1.70263 −0.0610032
\(780\) −0.0736459 −0.00263694
\(781\) 35.8285 1.28205
\(782\) 47.5198 1.69930
\(783\) −2.43168 −0.0869011
\(784\) 0 0
\(785\) 3.39865 0.121303
\(786\) −17.2631 −0.615753
\(787\) 34.8958 1.24390 0.621950 0.783057i \(-0.286341\pi\)
0.621950 + 0.783057i \(0.286341\pi\)
\(788\) −0.898026 −0.0319909
\(789\) 11.2887 0.401887
\(790\) −40.9121 −1.45559
\(791\) 0 0
\(792\) 18.5214 0.658131
\(793\) −3.36561 −0.119516
\(794\) 35.3122 1.25318
\(795\) 7.74418 0.274658
\(796\) 0.467128 0.0165569
\(797\) 26.6968 0.945649 0.472825 0.881157i \(-0.343234\pi\)
0.472825 + 0.881157i \(0.343234\pi\)
\(798\) 0 0
\(799\) −51.9969 −1.83952
\(800\) 0.0598601 0.00211637
\(801\) −4.54396 −0.160553
\(802\) −34.9476 −1.23404
\(803\) −33.3313 −1.17624
\(804\) −0.265983 −0.00938051
\(805\) 0 0
\(806\) −2.34463 −0.0825860
\(807\) −14.0668 −0.495174
\(808\) −8.38774 −0.295080
\(809\) −14.6103 −0.513673 −0.256836 0.966455i \(-0.582680\pi\)
−0.256836 + 0.966455i \(0.582680\pi\)
\(810\) −3.05030 −0.107177
\(811\) −24.5472 −0.861968 −0.430984 0.902360i \(-0.641833\pi\)
−0.430984 + 0.902360i \(0.641833\pi\)
\(812\) 0 0
\(813\) 23.1738 0.812740
\(814\) 67.6820 2.37225
\(815\) 8.23412 0.288429
\(816\) 21.6541 0.758045
\(817\) 1.23102 0.0430679
\(818\) −3.27549 −0.114525
\(819\) 0 0
\(820\) −1.13994 −0.0398085
\(821\) 1.98558 0.0692971 0.0346485 0.999400i \(-0.488969\pi\)
0.0346485 + 0.999400i \(0.488969\pi\)
\(822\) 10.5135 0.366699
\(823\) 18.5909 0.648040 0.324020 0.946050i \(-0.394966\pi\)
0.324020 + 0.946050i \(0.394966\pi\)
\(824\) 31.0133 1.08040
\(825\) −1.58901 −0.0553222
\(826\) 0 0
\(827\) −14.5988 −0.507649 −0.253824 0.967250i \(-0.581689\pi\)
−0.253824 + 0.967250i \(0.581689\pi\)
\(828\) −0.264876 −0.00920507
\(829\) 20.7737 0.721502 0.360751 0.932662i \(-0.382520\pi\)
0.360751 + 0.932662i \(0.382520\pi\)
\(830\) −52.1113 −1.80881
\(831\) −4.33550 −0.150397
\(832\) 6.38907 0.221501
\(833\) 0 0
\(834\) −2.42296 −0.0839003
\(835\) 46.4756 1.60836
\(836\) 0.0393199 0.00135991
\(837\) 2.14201 0.0740386
\(838\) 46.6066 1.61000
\(839\) −10.4581 −0.361053 −0.180526 0.983570i \(-0.557780\pi\)
−0.180526 + 0.983570i \(0.557780\pi\)
\(840\) 0 0
\(841\) −23.0869 −0.796101
\(842\) −3.19410 −0.110076
\(843\) 24.4371 0.841660
\(844\) 0.174607 0.00601022
\(845\) −27.0120 −0.929242
\(846\) −13.1399 −0.451760
\(847\) 0 0
\(848\) −13.8927 −0.477078
\(849\) 20.7126 0.710855
\(850\) −1.89876 −0.0651271
\(851\) −45.8180 −1.57062
\(852\) −0.238639 −0.00817564
\(853\) −18.9134 −0.647582 −0.323791 0.946129i \(-0.604957\pi\)
−0.323791 + 0.946129i \(0.604957\pi\)
\(854\) 0 0
\(855\) −0.306533 −0.0104832
\(856\) 9.86646 0.337229
\(857\) 29.5970 1.01101 0.505506 0.862823i \(-0.331306\pi\)
0.505506 + 0.862823i \(0.331306\pi\)
\(858\) −7.09329 −0.242161
\(859\) 33.7465 1.15142 0.575709 0.817655i \(-0.304726\pi\)
0.575709 + 0.817655i \(0.304726\pi\)
\(860\) 0.824189 0.0281046
\(861\) 0 0
\(862\) −21.7776 −0.741748
\(863\) 1.93942 0.0660187 0.0330093 0.999455i \(-0.489491\pi\)
0.0330093 + 0.999455i \(0.489491\pi\)
\(864\) −0.244121 −0.00830517
\(865\) 48.6680 1.65476
\(866\) 33.0149 1.12189
\(867\) 13.6425 0.463323
\(868\) 0 0
\(869\) 86.9167 2.94845
\(870\) 7.41736 0.251472
\(871\) 4.82195 0.163386
\(872\) −48.4129 −1.63947
\(873\) −6.51297 −0.220431
\(874\) 1.20677 0.0408195
\(875\) 0 0
\(876\) 0.222006 0.00750090
\(877\) 11.8809 0.401190 0.200595 0.979674i \(-0.435712\pi\)
0.200595 + 0.979674i \(0.435712\pi\)
\(878\) −28.0120 −0.945361
\(879\) 12.8577 0.433680
\(880\) −55.2762 −1.86336
\(881\) −14.6006 −0.491906 −0.245953 0.969282i \(-0.579101\pi\)
−0.245953 + 0.969282i \(0.579101\pi\)
\(882\) 0 0
\(883\) −23.0586 −0.775984 −0.387992 0.921663i \(-0.626831\pi\)
−0.387992 + 0.921663i \(0.626831\pi\)
\(884\) 0.186958 0.00628808
\(885\) −2.36801 −0.0795997
\(886\) 8.16967 0.274466
\(887\) −5.55359 −0.186471 −0.0932357 0.995644i \(-0.529721\pi\)
−0.0932357 + 0.995644i \(0.529721\pi\)
\(888\) −21.3394 −0.716102
\(889\) 0 0
\(890\) 13.8605 0.464604
\(891\) 6.48029 0.217098
\(892\) 0.663879 0.0222283
\(893\) −1.32046 −0.0441876
\(894\) 11.3188 0.378556
\(895\) −29.1487 −0.974333
\(896\) 0 0
\(897\) 4.80187 0.160330
\(898\) −5.51211 −0.183942
\(899\) −5.20867 −0.173719
\(900\) 0.0105837 0.000352791 0
\(901\) −19.6595 −0.654951
\(902\) −109.795 −3.65577
\(903\) 0 0
\(904\) 16.8350 0.559923
\(905\) −0.347612 −0.0115550
\(906\) 7.26954 0.241514
\(907\) −21.1469 −0.702172 −0.351086 0.936343i \(-0.614188\pi\)
−0.351086 + 0.936343i \(0.614188\pi\)
\(908\) 0.607518 0.0201612
\(909\) −2.93471 −0.0973381
\(910\) 0 0
\(911\) 33.7471 1.11809 0.559045 0.829137i \(-0.311168\pi\)
0.559045 + 0.829137i \(0.311168\pi\)
\(912\) 0.549906 0.0182092
\(913\) 110.709 3.66394
\(914\) −10.2511 −0.339077
\(915\) −9.37895 −0.310059
\(916\) 0.186243 0.00615364
\(917\) 0 0
\(918\) 7.74353 0.255575
\(919\) 17.9477 0.592038 0.296019 0.955182i \(-0.404341\pi\)
0.296019 + 0.955182i \(0.404341\pi\)
\(920\) 38.2456 1.26092
\(921\) 17.1879 0.566360
\(922\) 44.2431 1.45707
\(923\) 4.32624 0.142400
\(924\) 0 0
\(925\) 1.83077 0.0601953
\(926\) −22.7200 −0.746627
\(927\) 10.8509 0.356392
\(928\) 0.593625 0.0194867
\(929\) 16.3051 0.534952 0.267476 0.963565i \(-0.413810\pi\)
0.267476 + 0.963565i \(0.413810\pi\)
\(930\) −6.53377 −0.214251
\(931\) 0 0
\(932\) 0.705940 0.0231238
\(933\) −14.7890 −0.484170
\(934\) 31.8112 1.04089
\(935\) −78.2208 −2.55809
\(936\) 2.23643 0.0731001
\(937\) −13.5618 −0.443044 −0.221522 0.975155i \(-0.571102\pi\)
−0.221522 + 0.975155i \(0.571102\pi\)
\(938\) 0 0
\(939\) 31.7838 1.03723
\(940\) −0.884074 −0.0288353
\(941\) −5.78287 −0.188516 −0.0942580 0.995548i \(-0.530048\pi\)
−0.0942580 + 0.995548i \(0.530048\pi\)
\(942\) −2.18031 −0.0710382
\(943\) 74.3268 2.42041
\(944\) 4.24810 0.138264
\(945\) 0 0
\(946\) 79.3827 2.58096
\(947\) 1.05397 0.0342493 0.0171246 0.999853i \(-0.494549\pi\)
0.0171246 + 0.999853i \(0.494549\pi\)
\(948\) −0.578916 −0.0188023
\(949\) −4.02470 −0.130647
\(950\) −0.0482192 −0.00156444
\(951\) −6.52577 −0.211612
\(952\) 0 0
\(953\) 9.16338 0.296831 0.148416 0.988925i \(-0.452583\pi\)
0.148416 + 0.988925i \(0.452583\pi\)
\(954\) −4.96806 −0.160847
\(955\) −51.5176 −1.66707
\(956\) 0.477268 0.0154359
\(957\) −15.7580 −0.509383
\(958\) −33.2547 −1.07441
\(959\) 0 0
\(960\) 17.8044 0.574636
\(961\) −26.4118 −0.851994
\(962\) 8.17249 0.263492
\(963\) 3.45208 0.111242
\(964\) 0.892501 0.0287455
\(965\) −0.276620 −0.00890473
\(966\) 0 0
\(967\) −16.5819 −0.533238 −0.266619 0.963802i \(-0.585907\pi\)
−0.266619 + 0.963802i \(0.585907\pi\)
\(968\) 88.5851 2.84723
\(969\) 0.778167 0.0249983
\(970\) 19.8665 0.637876
\(971\) −9.36097 −0.300408 −0.150204 0.988655i \(-0.547993\pi\)
−0.150204 + 0.988655i \(0.547993\pi\)
\(972\) −0.0431625 −0.00138444
\(973\) 0 0
\(974\) −14.7668 −0.473159
\(975\) −0.191870 −0.00614476
\(976\) 16.8254 0.538569
\(977\) 17.7953 0.569322 0.284661 0.958628i \(-0.408119\pi\)
0.284661 + 0.958628i \(0.408119\pi\)
\(978\) −5.28237 −0.168912
\(979\) −29.4462 −0.941104
\(980\) 0 0
\(981\) −16.9387 −0.540812
\(982\) 16.8198 0.536741
\(983\) 12.3653 0.394392 0.197196 0.980364i \(-0.436816\pi\)
0.197196 + 0.980364i \(0.436816\pi\)
\(984\) 34.6171 1.10355
\(985\) 45.3678 1.44554
\(986\) −18.8298 −0.599663
\(987\) 0 0
\(988\) 0.00474781 0.000151048 0
\(989\) −53.7390 −1.70880
\(990\) −19.7669 −0.628232
\(991\) 51.0709 1.62232 0.811161 0.584823i \(-0.198836\pi\)
0.811161 + 0.584823i \(0.198836\pi\)
\(992\) −0.522909 −0.0166024
\(993\) 24.4510 0.775929
\(994\) 0 0
\(995\) −23.5991 −0.748141
\(996\) −0.737388 −0.0233650
\(997\) −0.725343 −0.0229718 −0.0114859 0.999934i \(-0.503656\pi\)
−0.0114859 + 0.999934i \(0.503656\pi\)
\(998\) −13.9423 −0.441335
\(999\) −7.46623 −0.236221
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7203.2.a.d.1.4 yes 12
7.6 odd 2 7203.2.a.c.1.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7203.2.a.c.1.4 12 7.6 odd 2
7203.2.a.d.1.4 yes 12 1.1 even 1 trivial