Properties

Label 720.3.j.g
Level 720720
Weight 33
Character orbit 720.j
Analytic conductor 19.61919.619
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [720,3,Mod(559,720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(720, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("720.559"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: N N == 720=24325 720 = 2^{4} \cdot 3^{2} \cdot 5
Weight: k k == 3 3
Character orbit: [χ][\chi] == 720.j (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.618579033919.6185790339
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 2103 2^{10}\cdot 3
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+5q5β1q7β2q11+β3q13β3q172β2q19+5β1q23+25q2510q29β2q315β1q35β3q37+4β3q97+O(q100) q + 5 q^{5} - \beta_1 q^{7} - \beta_{2} q^{11} + \beta_{3} q^{13} - \beta_{3} q^{17} - 2 \beta_{2} q^{19} + 5 \beta_1 q^{23} + 25 q^{25} - 10 q^{29} - \beta_{2} q^{31} - 5 \beta_1 q^{35} - \beta_{3} q^{37}+ \cdots - 4 \beta_{3} q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+20q5+100q2540q29+136q414q49+280q61+56q89+O(q100) 4 q + 20 q^{5} + 100 q^{25} - 40 q^{29} + 136 q^{41} - 4 q^{49} + 280 q^{61} + 56 q^{89}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== 4ζ123+8ζ12 -4\zeta_{12}^{3} + 8\zeta_{12} Copy content Toggle raw display
β2\beta_{2}== 16ζ1228 16\zeta_{12}^{2} - 8 Copy content Toggle raw display
β3\beta_{3}== 24ζ123 24\zeta_{12}^{3} Copy content Toggle raw display
ζ12\zeta_{12}== (β3+6β1)/48 ( \beta_{3} + 6\beta_1 ) / 48 Copy content Toggle raw display
ζ122\zeta_{12}^{2}== (β2+8)/16 ( \beta_{2} + 8 ) / 16 Copy content Toggle raw display
ζ123\zeta_{12}^{3}== (β3)/24 ( \beta_{3} ) / 24 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/720Z)×\left(\mathbb{Z}/720\mathbb{Z}\right)^\times.

nn 181181 271271 577577 641641
χ(n)\chi(n) 11 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
559.1
0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
−0.866025 + 0.500000i
0 0 0 5.00000 0 −6.92820 0 0 0
559.2 0 0 0 5.00000 0 −6.92820 0 0 0
559.3 0 0 0 5.00000 0 6.92820 0 0 0
559.4 0 0 0 5.00000 0 6.92820 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
5.b even 2 1 inner
20.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 720.3.j.g 4
3.b odd 2 1 240.3.j.a 4
4.b odd 2 1 inner 720.3.j.g 4
5.b even 2 1 inner 720.3.j.g 4
5.c odd 4 1 3600.3.e.f 2
5.c odd 4 1 3600.3.e.x 2
12.b even 2 1 240.3.j.a 4
15.d odd 2 1 240.3.j.a 4
15.e even 4 1 1200.3.e.a 2
15.e even 4 1 1200.3.e.i 2
20.d odd 2 1 inner 720.3.j.g 4
20.e even 4 1 3600.3.e.f 2
20.e even 4 1 3600.3.e.x 2
24.f even 2 1 960.3.j.d 4
24.h odd 2 1 960.3.j.d 4
60.h even 2 1 240.3.j.a 4
60.l odd 4 1 1200.3.e.a 2
60.l odd 4 1 1200.3.e.i 2
120.i odd 2 1 960.3.j.d 4
120.m even 2 1 960.3.j.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
240.3.j.a 4 3.b odd 2 1
240.3.j.a 4 12.b even 2 1
240.3.j.a 4 15.d odd 2 1
240.3.j.a 4 60.h even 2 1
720.3.j.g 4 1.a even 1 1 trivial
720.3.j.g 4 4.b odd 2 1 inner
720.3.j.g 4 5.b even 2 1 inner
720.3.j.g 4 20.d odd 2 1 inner
960.3.j.d 4 24.f even 2 1
960.3.j.d 4 24.h odd 2 1
960.3.j.d 4 120.i odd 2 1
960.3.j.d 4 120.m even 2 1
1200.3.e.a 2 15.e even 4 1
1200.3.e.a 2 60.l odd 4 1
1200.3.e.i 2 15.e even 4 1
1200.3.e.i 2 60.l odd 4 1
3600.3.e.f 2 5.c odd 4 1
3600.3.e.f 2 20.e even 4 1
3600.3.e.x 2 5.c odd 4 1
3600.3.e.x 2 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(720,[χ])S_{3}^{\mathrm{new}}(720, [\chi]):

T7248 T_{7}^{2} - 48 Copy content Toggle raw display
T112+192 T_{11}^{2} + 192 Copy content Toggle raw display
T29+10 T_{29} + 10 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 (T5)4 (T - 5)^{4} Copy content Toggle raw display
77 (T248)2 (T^{2} - 48)^{2} Copy content Toggle raw display
1111 (T2+192)2 (T^{2} + 192)^{2} Copy content Toggle raw display
1313 (T2+576)2 (T^{2} + 576)^{2} Copy content Toggle raw display
1717 (T2+576)2 (T^{2} + 576)^{2} Copy content Toggle raw display
1919 (T2+768)2 (T^{2} + 768)^{2} Copy content Toggle raw display
2323 (T21200)2 (T^{2} - 1200)^{2} Copy content Toggle raw display
2929 (T+10)4 (T + 10)^{4} Copy content Toggle raw display
3131 (T2+192)2 (T^{2} + 192)^{2} Copy content Toggle raw display
3737 (T2+576)2 (T^{2} + 576)^{2} Copy content Toggle raw display
4141 (T34)4 (T - 34)^{4} Copy content Toggle raw display
4343 (T2432)2 (T^{2} - 432)^{2} Copy content Toggle raw display
4747 (T248)2 (T^{2} - 48)^{2} Copy content Toggle raw display
5353 (T2+2304)2 (T^{2} + 2304)^{2} Copy content Toggle raw display
5959 (T2+192)2 (T^{2} + 192)^{2} Copy content Toggle raw display
6161 (T70)4 (T - 70)^{4} Copy content Toggle raw display
6767 (T28112)2 (T^{2} - 8112)^{2} Copy content Toggle raw display
7171 (T2+3072)2 (T^{2} + 3072)^{2} Copy content Toggle raw display
7373 (T2+2304)2 (T^{2} + 2304)^{2} Copy content Toggle raw display
7979 (T2+1728)2 (T^{2} + 1728)^{2} Copy content Toggle raw display
8383 (T28112)2 (T^{2} - 8112)^{2} Copy content Toggle raw display
8989 (T14)4 (T - 14)^{4} Copy content Toggle raw display
9797 (T2+9216)2 (T^{2} + 9216)^{2} Copy content Toggle raw display
show more
show less