gp: [N,k,chi] = [720,3,Mod(559,720)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(720, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
N = Newforms(chi, 3, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("720.559");
S:= CuspForms(chi, 3);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,0,0,20]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring
β 1 \beta_{1} β 1 = = =
− 4 ζ 12 3 + 8 ζ 12 -4\zeta_{12}^{3} + 8\zeta_{12} − 4 ζ 1 2 3 + 8 ζ 1 2
-4*v^3 + 8*v
β 2 \beta_{2} β 2 = = =
16 ζ 12 2 − 8 16\zeta_{12}^{2} - 8 1 6 ζ 1 2 2 − 8
16*v^2 - 8
β 3 \beta_{3} β 3 = = =
24 ζ 12 3 24\zeta_{12}^{3} 2 4 ζ 1 2 3
24*v^3
ζ 12 \zeta_{12} ζ 1 2 = = =
( β 3 + 6 β 1 ) / 48 ( \beta_{3} + 6\beta_1 ) / 48 ( β 3 + 6 β 1 ) / 4 8
(b3 + 6*b1) / 48
ζ 12 2 \zeta_{12}^{2} ζ 1 2 2 = = =
( β 2 + 8 ) / 16 ( \beta_{2} + 8 ) / 16 ( β 2 + 8 ) / 1 6
(b2 + 8) / 16
ζ 12 3 \zeta_{12}^{3} ζ 1 2 3 = = =
( β 3 ) / 24 ( \beta_{3} ) / 24 ( β 3 ) / 2 4
(b3) / 24
Character values
We give the values of χ \chi χ on generators for ( Z / 720 Z ) × \left(\mathbb{Z}/720\mathbb{Z}\right)^\times ( Z / 7 2 0 Z ) × .
n n n
181 181 1 8 1
271 271 2 7 1
577 577 5 7 7
641 641 6 4 1
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 3 n e w ( 720 , [ χ ] ) S_{3}^{\mathrm{new}}(720, [\chi]) S 3 n e w ( 7 2 0 , [ χ ] ) :
T 7 2 − 48 T_{7}^{2} - 48 T 7 2 − 4 8
T7^2 - 48
T 11 2 + 192 T_{11}^{2} + 192 T 1 1 2 + 1 9 2
T11^2 + 192
T 29 + 10 T_{29} + 10 T 2 9 + 1 0
T29 + 10
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
T 4 T^{4} T 4
T^4
5 5 5
( T − 5 ) 4 (T - 5)^{4} ( T − 5 ) 4
(T - 5)^4
7 7 7
( T 2 − 48 ) 2 (T^{2} - 48)^{2} ( T 2 − 4 8 ) 2
(T^2 - 48)^2
11 11 1 1
( T 2 + 192 ) 2 (T^{2} + 192)^{2} ( T 2 + 1 9 2 ) 2
(T^2 + 192)^2
13 13 1 3
( T 2 + 576 ) 2 (T^{2} + 576)^{2} ( T 2 + 5 7 6 ) 2
(T^2 + 576)^2
17 17 1 7
( T 2 + 576 ) 2 (T^{2} + 576)^{2} ( T 2 + 5 7 6 ) 2
(T^2 + 576)^2
19 19 1 9
( T 2 + 768 ) 2 (T^{2} + 768)^{2} ( T 2 + 7 6 8 ) 2
(T^2 + 768)^2
23 23 2 3
( T 2 − 1200 ) 2 (T^{2} - 1200)^{2} ( T 2 − 1 2 0 0 ) 2
(T^2 - 1200)^2
29 29 2 9
( T + 10 ) 4 (T + 10)^{4} ( T + 1 0 ) 4
(T + 10)^4
31 31 3 1
( T 2 + 192 ) 2 (T^{2} + 192)^{2} ( T 2 + 1 9 2 ) 2
(T^2 + 192)^2
37 37 3 7
( T 2 + 576 ) 2 (T^{2} + 576)^{2} ( T 2 + 5 7 6 ) 2
(T^2 + 576)^2
41 41 4 1
( T − 34 ) 4 (T - 34)^{4} ( T − 3 4 ) 4
(T - 34)^4
43 43 4 3
( T 2 − 432 ) 2 (T^{2} - 432)^{2} ( T 2 − 4 3 2 ) 2
(T^2 - 432)^2
47 47 4 7
( T 2 − 48 ) 2 (T^{2} - 48)^{2} ( T 2 − 4 8 ) 2
(T^2 - 48)^2
53 53 5 3
( T 2 + 2304 ) 2 (T^{2} + 2304)^{2} ( T 2 + 2 3 0 4 ) 2
(T^2 + 2304)^2
59 59 5 9
( T 2 + 192 ) 2 (T^{2} + 192)^{2} ( T 2 + 1 9 2 ) 2
(T^2 + 192)^2
61 61 6 1
( T − 70 ) 4 (T - 70)^{4} ( T − 7 0 ) 4
(T - 70)^4
67 67 6 7
( T 2 − 8112 ) 2 (T^{2} - 8112)^{2} ( T 2 − 8 1 1 2 ) 2
(T^2 - 8112)^2
71 71 7 1
( T 2 + 3072 ) 2 (T^{2} + 3072)^{2} ( T 2 + 3 0 7 2 ) 2
(T^2 + 3072)^2
73 73 7 3
( T 2 + 2304 ) 2 (T^{2} + 2304)^{2} ( T 2 + 2 3 0 4 ) 2
(T^2 + 2304)^2
79 79 7 9
( T 2 + 1728 ) 2 (T^{2} + 1728)^{2} ( T 2 + 1 7 2 8 ) 2
(T^2 + 1728)^2
83 83 8 3
( T 2 − 8112 ) 2 (T^{2} - 8112)^{2} ( T 2 − 8 1 1 2 ) 2
(T^2 - 8112)^2
89 89 8 9
( T − 14 ) 4 (T - 14)^{4} ( T − 1 4 ) 4
(T - 14)^4
97 97 9 7
( T 2 + 9216 ) 2 (T^{2} + 9216)^{2} ( T 2 + 9 2 1 6 ) 2
(T^2 + 9216)^2
show more
show less