Properties

Label 720.2.w.d.17.1
Level $720$
Weight $2$
Character 720.17
Analytic conductor $5.749$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [720,2,Mod(17,720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("720.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(720, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 2, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.w (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,8,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 17.1
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 720.17
Dual form 720.2.w.d.593.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.12132 - 0.707107i) q^{5} +(2.00000 + 2.00000i) q^{7} -2.82843i q^{11} +(1.00000 - 1.00000i) q^{13} +(2.82843 - 2.82843i) q^{17} +(2.82843 + 2.82843i) q^{23} +(4.00000 + 3.00000i) q^{25} +4.24264 q^{29} +4.00000 q^{31} +(-2.82843 - 5.65685i) q^{35} +(1.00000 + 1.00000i) q^{37} -1.41421i q^{41} +(8.00000 - 8.00000i) q^{43} +(5.65685 - 5.65685i) q^{47} +1.00000i q^{49} +(-2.82843 - 2.82843i) q^{53} +(-2.00000 + 6.00000i) q^{55} -8.48528 q^{59} +8.00000 q^{61} +(-2.82843 + 1.41421i) q^{65} +(-4.00000 - 4.00000i) q^{67} +5.65685i q^{71} +(1.00000 - 1.00000i) q^{73} +(5.65685 - 5.65685i) q^{77} +12.0000i q^{79} +(2.82843 + 2.82843i) q^{83} +(-8.00000 + 4.00000i) q^{85} -12.7279 q^{89} +4.00000 q^{91} +(-11.0000 - 11.0000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{7} + 4 q^{13} + 16 q^{25} + 16 q^{31} + 4 q^{37} + 32 q^{43} - 8 q^{55} + 32 q^{61} - 16 q^{67} + 4 q^{73} - 32 q^{85} + 16 q^{91} - 44 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.12132 0.707107i −0.948683 0.316228i
\(6\) 0 0
\(7\) 2.00000 + 2.00000i 0.755929 + 0.755929i 0.975579 0.219650i \(-0.0704915\pi\)
−0.219650 + 0.975579i \(0.570491\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.82843i 0.852803i −0.904534 0.426401i \(-0.859781\pi\)
0.904534 0.426401i \(-0.140219\pi\)
\(12\) 0 0
\(13\) 1.00000 1.00000i 0.277350 0.277350i −0.554700 0.832050i \(-0.687167\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.82843 2.82843i 0.685994 0.685994i −0.275350 0.961344i \(-0.588794\pi\)
0.961344 + 0.275350i \(0.0887937\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.82843 + 2.82843i 0.589768 + 0.589768i 0.937568 0.347801i \(-0.113071\pi\)
−0.347801 + 0.937568i \(0.613071\pi\)
\(24\) 0 0
\(25\) 4.00000 + 3.00000i 0.800000 + 0.600000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.24264 0.787839 0.393919 0.919145i \(-0.371119\pi\)
0.393919 + 0.919145i \(0.371119\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.82843 5.65685i −0.478091 0.956183i
\(36\) 0 0
\(37\) 1.00000 + 1.00000i 0.164399 + 0.164399i 0.784512 0.620113i \(-0.212913\pi\)
−0.620113 + 0.784512i \(0.712913\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.41421i 0.220863i −0.993884 0.110432i \(-0.964777\pi\)
0.993884 0.110432i \(-0.0352233\pi\)
\(42\) 0 0
\(43\) 8.00000 8.00000i 1.21999 1.21999i 0.252353 0.967635i \(-0.418795\pi\)
0.967635 0.252353i \(-0.0812046\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.65685 5.65685i 0.825137 0.825137i −0.161703 0.986840i \(-0.551699\pi\)
0.986840 + 0.161703i \(0.0516985\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2.82843 2.82843i −0.388514 0.388514i 0.485643 0.874157i \(-0.338586\pi\)
−0.874157 + 0.485643i \(0.838586\pi\)
\(54\) 0 0
\(55\) −2.00000 + 6.00000i −0.269680 + 0.809040i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.48528 −1.10469 −0.552345 0.833616i \(-0.686267\pi\)
−0.552345 + 0.833616i \(0.686267\pi\)
\(60\) 0 0
\(61\) 8.00000 1.02430 0.512148 0.858898i \(-0.328850\pi\)
0.512148 + 0.858898i \(0.328850\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.82843 + 1.41421i −0.350823 + 0.175412i
\(66\) 0 0
\(67\) −4.00000 4.00000i −0.488678 0.488678i 0.419211 0.907889i \(-0.362307\pi\)
−0.907889 + 0.419211i \(0.862307\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.65685i 0.671345i 0.941979 + 0.335673i \(0.108964\pi\)
−0.941979 + 0.335673i \(0.891036\pi\)
\(72\) 0 0
\(73\) 1.00000 1.00000i 0.117041 0.117041i −0.646160 0.763202i \(-0.723626\pi\)
0.763202 + 0.646160i \(0.223626\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.65685 5.65685i 0.644658 0.644658i
\(78\) 0 0
\(79\) 12.0000i 1.35011i 0.737769 + 0.675053i \(0.235879\pi\)
−0.737769 + 0.675053i \(0.764121\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.82843 + 2.82843i 0.310460 + 0.310460i 0.845088 0.534628i \(-0.179548\pi\)
−0.534628 + 0.845088i \(0.679548\pi\)
\(84\) 0 0
\(85\) −8.00000 + 4.00000i −0.867722 + 0.433861i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −12.7279 −1.34916 −0.674579 0.738203i \(-0.735675\pi\)
−0.674579 + 0.738203i \(0.735675\pi\)
\(90\) 0 0
\(91\) 4.00000 0.419314
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −11.0000 11.0000i −1.11688 1.11688i −0.992196 0.124684i \(-0.960208\pi\)
−0.124684 0.992196i \(-0.539792\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 15.5563i 1.54791i 0.633238 + 0.773957i \(0.281726\pi\)
−0.633238 + 0.773957i \(0.718274\pi\)
\(102\) 0 0
\(103\) −10.0000 + 10.0000i −0.985329 + 0.985329i −0.999894 0.0145647i \(-0.995364\pi\)
0.0145647 + 0.999894i \(0.495364\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.82843 + 2.82843i −0.273434 + 0.273434i −0.830481 0.557047i \(-0.811934\pi\)
0.557047 + 0.830481i \(0.311934\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.89949 + 9.89949i 0.931266 + 0.931266i 0.997785 0.0665190i \(-0.0211893\pi\)
−0.0665190 + 0.997785i \(0.521189\pi\)
\(114\) 0 0
\(115\) −4.00000 8.00000i −0.373002 0.746004i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 11.3137 1.03713
\(120\) 0 0
\(121\) 3.00000 0.272727
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −6.36396 9.19239i −0.569210 0.822192i
\(126\) 0 0
\(127\) −10.0000 10.0000i −0.887357 0.887357i 0.106912 0.994268i \(-0.465904\pi\)
−0.994268 + 0.106912i \(0.965904\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 14.1421i 1.23560i 0.786334 + 0.617802i \(0.211977\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.07107 7.07107i 0.604122 0.604122i −0.337282 0.941404i \(-0.609507\pi\)
0.941404 + 0.337282i \(0.109507\pi\)
\(138\) 0 0
\(139\) 12.0000i 1.01783i −0.860818 0.508913i \(-0.830047\pi\)
0.860818 0.508913i \(-0.169953\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.82843 2.82843i −0.236525 0.236525i
\(144\) 0 0
\(145\) −9.00000 3.00000i −0.747409 0.249136i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.24264 −0.347571 −0.173785 0.984784i \(-0.555600\pi\)
−0.173785 + 0.984784i \(0.555600\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −8.48528 2.82843i −0.681554 0.227185i
\(156\) 0 0
\(157\) −5.00000 5.00000i −0.399043 0.399043i 0.478852 0.877896i \(-0.341053\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 11.3137i 0.891645i
\(162\) 0 0
\(163\) 8.00000 8.00000i 0.626608 0.626608i −0.320605 0.947213i \(-0.603886\pi\)
0.947213 + 0.320605i \(0.103886\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 14.1421 14.1421i 1.09435 1.09435i 0.0992931 0.995058i \(-0.468342\pi\)
0.995058 0.0992931i \(-0.0316581\pi\)
\(168\) 0 0
\(169\) 11.0000i 0.846154i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.89949 + 9.89949i 0.752645 + 0.752645i 0.974972 0.222327i \(-0.0713654\pi\)
−0.222327 + 0.974972i \(0.571365\pi\)
\(174\) 0 0
\(175\) 2.00000 + 14.0000i 0.151186 + 1.05830i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −25.4558 −1.90266 −0.951330 0.308175i \(-0.900282\pi\)
−0.951330 + 0.308175i \(0.900282\pi\)
\(180\) 0 0
\(181\) −16.0000 −1.18927 −0.594635 0.803996i \(-0.702704\pi\)
−0.594635 + 0.803996i \(0.702704\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.41421 2.82843i −0.103975 0.207950i
\(186\) 0 0
\(187\) −8.00000 8.00000i −0.585018 0.585018i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 22.6274i 1.63726i 0.574320 + 0.818631i \(0.305267\pi\)
−0.574320 + 0.818631i \(0.694733\pi\)
\(192\) 0 0
\(193\) 1.00000 1.00000i 0.0719816 0.0719816i −0.670199 0.742181i \(-0.733791\pi\)
0.742181 + 0.670199i \(0.233791\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −9.89949 + 9.89949i −0.705310 + 0.705310i −0.965545 0.260235i \(-0.916200\pi\)
0.260235 + 0.965545i \(0.416200\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 8.48528 + 8.48528i 0.595550 + 0.595550i
\(204\) 0 0
\(205\) −1.00000 + 3.00000i −0.0698430 + 0.209529i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −22.6274 + 11.3137i −1.54318 + 0.771589i
\(216\) 0 0
\(217\) 8.00000 + 8.00000i 0.543075 + 0.543075i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5.65685i 0.380521i
\(222\) 0 0
\(223\) −10.0000 + 10.0000i −0.669650 + 0.669650i −0.957635 0.287985i \(-0.907015\pi\)
0.287985 + 0.957635i \(0.407015\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.65685 5.65685i 0.375459 0.375459i −0.494002 0.869461i \(-0.664466\pi\)
0.869461 + 0.494002i \(0.164466\pi\)
\(228\) 0 0
\(229\) 6.00000i 0.396491i −0.980152 0.198246i \(-0.936476\pi\)
0.980152 0.198246i \(-0.0635244\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.82843 2.82843i −0.185296 0.185296i 0.608363 0.793659i \(-0.291827\pi\)
−0.793659 + 0.608363i \(0.791827\pi\)
\(234\) 0 0
\(235\) −16.0000 + 8.00000i −1.04372 + 0.521862i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 16.9706 1.09773 0.548867 0.835910i \(-0.315059\pi\)
0.548867 + 0.835910i \(0.315059\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.707107 2.12132i 0.0451754 0.135526i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 19.7990i 1.24970i −0.780744 0.624851i \(-0.785160\pi\)
0.780744 0.624851i \(-0.214840\pi\)
\(252\) 0 0
\(253\) 8.00000 8.00000i 0.502956 0.502956i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.41421 + 1.41421i −0.0882162 + 0.0882162i −0.749838 0.661622i \(-0.769869\pi\)
0.661622 + 0.749838i \(0.269869\pi\)
\(258\) 0 0
\(259\) 4.00000i 0.248548i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.82843 + 2.82843i 0.174408 + 0.174408i 0.788913 0.614505i \(-0.210644\pi\)
−0.614505 + 0.788913i \(0.710644\pi\)
\(264\) 0 0
\(265\) 4.00000 + 8.00000i 0.245718 + 0.491436i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −12.7279 −0.776035 −0.388018 0.921652i \(-0.626840\pi\)
−0.388018 + 0.921652i \(0.626840\pi\)
\(270\) 0 0
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.48528 11.3137i 0.511682 0.682242i
\(276\) 0 0
\(277\) −11.0000 11.0000i −0.660926 0.660926i 0.294672 0.955598i \(-0.404789\pi\)
−0.955598 + 0.294672i \(0.904789\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9.89949i 0.590554i −0.955412 0.295277i \(-0.904588\pi\)
0.955412 0.295277i \(-0.0954120\pi\)
\(282\) 0 0
\(283\) 8.00000 8.00000i 0.475551 0.475551i −0.428155 0.903705i \(-0.640836\pi\)
0.903705 + 0.428155i \(0.140836\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.82843 2.82843i 0.166957 0.166957i
\(288\) 0 0
\(289\) 1.00000i 0.0588235i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.89949 + 9.89949i 0.578335 + 0.578335i 0.934444 0.356110i \(-0.115897\pi\)
−0.356110 + 0.934444i \(0.615897\pi\)
\(294\) 0 0
\(295\) 18.0000 + 6.00000i 1.04800 + 0.349334i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.65685 0.327144
\(300\) 0 0
\(301\) 32.0000 1.84445
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −16.9706 5.65685i −0.971732 0.323911i
\(306\) 0 0
\(307\) 8.00000 + 8.00000i 0.456584 + 0.456584i 0.897532 0.440948i \(-0.145358\pi\)
−0.440948 + 0.897532i \(0.645358\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 11.3137i 0.641542i −0.947157 0.320771i \(-0.896058\pi\)
0.947157 0.320771i \(-0.103942\pi\)
\(312\) 0 0
\(313\) 19.0000 19.0000i 1.07394 1.07394i 0.0769051 0.997038i \(-0.475496\pi\)
0.997038 0.0769051i \(-0.0245038\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 19.7990 19.7990i 1.11202 1.11202i 0.119145 0.992877i \(-0.461985\pi\)
0.992877 0.119145i \(-0.0380154\pi\)
\(318\) 0 0
\(319\) 12.0000i 0.671871i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 7.00000 1.00000i 0.388290 0.0554700i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 22.6274 1.24749
\(330\) 0 0
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.65685 + 11.3137i 0.309067 + 0.618134i
\(336\) 0 0
\(337\) −5.00000 5.00000i −0.272367 0.272367i 0.557685 0.830053i \(-0.311690\pi\)
−0.830053 + 0.557685i \(0.811690\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 11.3137i 0.612672i
\(342\) 0 0
\(343\) 12.0000 12.0000i 0.647939 0.647939i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −11.3137 + 11.3137i −0.607352 + 0.607352i −0.942253 0.334901i \(-0.891297\pi\)
0.334901 + 0.942253i \(0.391297\pi\)
\(348\) 0 0
\(349\) 24.0000i 1.28469i 0.766415 + 0.642345i \(0.222038\pi\)
−0.766415 + 0.642345i \(0.777962\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −2.82843 2.82843i −0.150542 0.150542i 0.627818 0.778360i \(-0.283948\pi\)
−0.778360 + 0.627818i \(0.783948\pi\)
\(354\) 0 0
\(355\) 4.00000 12.0000i 0.212298 0.636894i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.82843 + 1.41421i −0.148047 + 0.0740233i
\(366\) 0 0
\(367\) 2.00000 + 2.00000i 0.104399 + 0.104399i 0.757377 0.652978i \(-0.226481\pi\)
−0.652978 + 0.757377i \(0.726481\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 11.3137i 0.587378i
\(372\) 0 0
\(373\) −17.0000 + 17.0000i −0.880227 + 0.880227i −0.993557 0.113331i \(-0.963848\pi\)
0.113331 + 0.993557i \(0.463848\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.24264 4.24264i 0.218507 0.218507i
\(378\) 0 0
\(379\) 36.0000i 1.84920i 0.380945 + 0.924598i \(0.375599\pi\)
−0.380945 + 0.924598i \(0.624401\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −22.6274 22.6274i −1.15621 1.15621i −0.985284 0.170923i \(-0.945325\pi\)
−0.170923 0.985284i \(-0.554675\pi\)
\(384\) 0 0
\(385\) −16.0000 + 8.00000i −0.815436 + 0.407718i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 4.24264 0.215110 0.107555 0.994199i \(-0.465698\pi\)
0.107555 + 0.994199i \(0.465698\pi\)
\(390\) 0 0
\(391\) 16.0000 0.809155
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 8.48528 25.4558i 0.426941 1.28082i
\(396\) 0 0
\(397\) 19.0000 + 19.0000i 0.953583 + 0.953583i 0.998969 0.0453868i \(-0.0144520\pi\)
−0.0453868 + 0.998969i \(0.514452\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 24.0416i 1.20058i 0.799782 + 0.600291i \(0.204949\pi\)
−0.799782 + 0.600291i \(0.795051\pi\)
\(402\) 0 0
\(403\) 4.00000 4.00000i 0.199254 0.199254i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.82843 2.82843i 0.140200 0.140200i
\(408\) 0 0
\(409\) 24.0000i 1.18672i −0.804936 0.593362i \(-0.797800\pi\)
0.804936 0.593362i \(-0.202200\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −16.9706 16.9706i −0.835067 0.835067i
\(414\) 0 0
\(415\) −4.00000 8.00000i −0.196352 0.392705i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −8.48528 −0.414533 −0.207267 0.978285i \(-0.566457\pi\)
−0.207267 + 0.978285i \(0.566457\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 19.7990 2.82843i 0.960392 0.137199i
\(426\) 0 0
\(427\) 16.0000 + 16.0000i 0.774294 + 0.774294i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 5.65685i 0.272481i 0.990676 + 0.136241i \(0.0435020\pi\)
−0.990676 + 0.136241i \(0.956498\pi\)
\(432\) 0 0
\(433\) −17.0000 + 17.0000i −0.816968 + 0.816968i −0.985668 0.168700i \(-0.946043\pi\)
0.168700 + 0.985668i \(0.446043\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 24.0000i 1.14546i −0.819745 0.572729i \(-0.805885\pi\)
0.819745 0.572729i \(-0.194115\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 28.2843 + 28.2843i 1.34383 + 1.34383i 0.892215 + 0.451612i \(0.149151\pi\)
0.451612 + 0.892215i \(0.350849\pi\)
\(444\) 0 0
\(445\) 27.0000 + 9.00000i 1.27992 + 0.426641i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −12.7279 −0.600668 −0.300334 0.953834i \(-0.597098\pi\)
−0.300334 + 0.953834i \(0.597098\pi\)
\(450\) 0 0
\(451\) −4.00000 −0.188353
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −8.48528 2.82843i −0.397796 0.132599i
\(456\) 0 0
\(457\) 25.0000 + 25.0000i 1.16945 + 1.16945i 0.982339 + 0.187112i \(0.0599128\pi\)
0.187112 + 0.982339i \(0.440087\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 9.89949i 0.461065i −0.973065 0.230533i \(-0.925953\pi\)
0.973065 0.230533i \(-0.0740469\pi\)
\(462\) 0 0
\(463\) −10.0000 + 10.0000i −0.464739 + 0.464739i −0.900205 0.435466i \(-0.856584\pi\)
0.435466 + 0.900205i \(0.356584\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2.82843 + 2.82843i −0.130884 + 0.130884i −0.769514 0.638630i \(-0.779501\pi\)
0.638630 + 0.769514i \(0.279501\pi\)
\(468\) 0 0
\(469\) 16.0000i 0.738811i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −22.6274 22.6274i −1.04041 1.04041i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −16.9706 −0.775405 −0.387702 0.921785i \(-0.626731\pi\)
−0.387702 + 0.921785i \(0.626731\pi\)
\(480\) 0 0
\(481\) 2.00000 0.0911922
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 15.5563 + 31.1127i 0.706377 + 1.41275i
\(486\) 0 0
\(487\) −10.0000 10.0000i −0.453143 0.453143i 0.443253 0.896396i \(-0.353824\pi\)
−0.896396 + 0.443253i \(0.853824\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 14.1421i 0.638226i 0.947717 + 0.319113i \(0.103385\pi\)
−0.947717 + 0.319113i \(0.896615\pi\)
\(492\) 0 0
\(493\) 12.0000 12.0000i 0.540453 0.540453i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −11.3137 + 11.3137i −0.507489 + 0.507489i
\(498\) 0 0
\(499\) 24.0000i 1.07439i 0.843459 + 0.537194i \(0.180516\pi\)
−0.843459 + 0.537194i \(0.819484\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −22.6274 22.6274i −1.00891 1.00891i −0.999960 0.00894668i \(-0.997152\pi\)
−0.00894668 0.999960i \(-0.502848\pi\)
\(504\) 0 0
\(505\) 11.0000 33.0000i 0.489494 1.46848i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −4.24264 −0.188052 −0.0940259 0.995570i \(-0.529974\pi\)
−0.0940259 + 0.995570i \(0.529974\pi\)
\(510\) 0 0
\(511\) 4.00000 0.176950
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 28.2843 14.1421i 1.24635 0.623177i
\(516\) 0 0
\(517\) −16.0000 16.0000i −0.703679 0.703679i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 18.3848i 0.805452i −0.915321 0.402726i \(-0.868063\pi\)
0.915321 0.402726i \(-0.131937\pi\)
\(522\) 0 0
\(523\) 8.00000 8.00000i 0.349816 0.349816i −0.510225 0.860041i \(-0.670438\pi\)
0.860041 + 0.510225i \(0.170438\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 11.3137 11.3137i 0.492833 0.492833i
\(528\) 0 0
\(529\) 7.00000i 0.304348i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.41421 1.41421i −0.0612564 0.0612564i
\(534\) 0 0
\(535\) 8.00000 4.00000i 0.345870 0.172935i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.82843 0.121829
\(540\) 0 0
\(541\) −16.0000 −0.687894 −0.343947 0.938989i \(-0.611764\pi\)
−0.343947 + 0.938989i \(0.611764\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 20.0000 + 20.0000i 0.855138 + 0.855138i 0.990761 0.135622i \(-0.0433034\pi\)
−0.135622 + 0.990761i \(0.543303\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −24.0000 + 24.0000i −1.02058 + 1.02058i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.82843 2.82843i 0.119844 0.119844i −0.644641 0.764485i \(-0.722993\pi\)
0.764485 + 0.644641i \(0.222993\pi\)
\(558\) 0 0
\(559\) 16.0000i 0.676728i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 28.2843 + 28.2843i 1.19204 + 1.19204i 0.976494 + 0.215546i \(0.0691532\pi\)
0.215546 + 0.976494i \(0.430847\pi\)
\(564\) 0 0
\(565\) −14.0000 28.0000i −0.588984 1.17797i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 29.6985 1.24503 0.622513 0.782610i \(-0.286112\pi\)
0.622513 + 0.782610i \(0.286112\pi\)
\(570\) 0 0
\(571\) −32.0000 −1.33916 −0.669579 0.742741i \(-0.733526\pi\)
−0.669579 + 0.742741i \(0.733526\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.82843 + 19.7990i 0.117954 + 0.825675i
\(576\) 0 0
\(577\) −17.0000 17.0000i −0.707719 0.707719i 0.258336 0.966055i \(-0.416826\pi\)
−0.966055 + 0.258336i \(0.916826\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 11.3137i 0.469372i
\(582\) 0 0
\(583\) −8.00000 + 8.00000i −0.331326 + 0.331326i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −19.7990 + 19.7990i −0.817192 + 0.817192i −0.985700 0.168508i \(-0.946105\pi\)
0.168508 + 0.985700i \(0.446105\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.89949 + 9.89949i 0.406524 + 0.406524i 0.880524 0.474001i \(-0.157191\pi\)
−0.474001 + 0.880524i \(0.657191\pi\)
\(594\) 0 0
\(595\) −24.0000 8.00000i −0.983904 0.327968i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 16.9706 0.693398 0.346699 0.937976i \(-0.387302\pi\)
0.346699 + 0.937976i \(0.387302\pi\)
\(600\) 0 0
\(601\) 8.00000 0.326327 0.163163 0.986599i \(-0.447830\pi\)
0.163163 + 0.986599i \(0.447830\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6.36396 2.12132i −0.258732 0.0862439i
\(606\) 0 0
\(607\) −22.0000 22.0000i −0.892952 0.892952i 0.101848 0.994800i \(-0.467525\pi\)
−0.994800 + 0.101848i \(0.967525\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 11.3137i 0.457704i
\(612\) 0 0
\(613\) 1.00000 1.00000i 0.0403896 0.0403896i −0.686624 0.727013i \(-0.740908\pi\)
0.727013 + 0.686624i \(0.240908\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −14.1421 + 14.1421i −0.569341 + 0.569341i −0.931944 0.362603i \(-0.881888\pi\)
0.362603 + 0.931944i \(0.381888\pi\)
\(618\) 0 0
\(619\) 12.0000i 0.482321i 0.970485 + 0.241160i \(0.0775280\pi\)
−0.970485 + 0.241160i \(0.922472\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −25.4558 25.4558i −1.01987 1.01987i
\(624\) 0 0
\(625\) 7.00000 + 24.0000i 0.280000 + 0.960000i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 5.65685 0.225554
\(630\) 0 0
\(631\) −20.0000 −0.796187 −0.398094 0.917345i \(-0.630328\pi\)
−0.398094 + 0.917345i \(0.630328\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 14.1421 + 28.2843i 0.561214 + 1.12243i
\(636\) 0 0
\(637\) 1.00000 + 1.00000i 0.0396214 + 0.0396214i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 15.5563i 0.614439i 0.951639 + 0.307219i \(0.0993986\pi\)
−0.951639 + 0.307219i \(0.900601\pi\)
\(642\) 0 0
\(643\) −28.0000 + 28.0000i −1.10421 + 1.10421i −0.110316 + 0.993897i \(0.535186\pi\)
−0.993897 + 0.110316i \(0.964814\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −28.2843 + 28.2843i −1.11197 + 1.11197i −0.119085 + 0.992884i \(0.537996\pi\)
−0.992884 + 0.119085i \(0.962004\pi\)
\(648\) 0 0
\(649\) 24.0000i 0.942082i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −2.82843 2.82843i −0.110685 0.110685i 0.649595 0.760280i \(-0.274938\pi\)
−0.760280 + 0.649595i \(0.774938\pi\)
\(654\) 0 0
\(655\) 10.0000 30.0000i 0.390732 1.17220i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 8.48528 0.330540 0.165270 0.986248i \(-0.447151\pi\)
0.165270 + 0.986248i \(0.447151\pi\)
\(660\) 0 0
\(661\) −40.0000 −1.55582 −0.777910 0.628376i \(-0.783720\pi\)
−0.777910 + 0.628376i \(0.783720\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 12.0000 + 12.0000i 0.464642 + 0.464642i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 22.6274i 0.873522i
\(672\) 0 0
\(673\) 1.00000 1.00000i 0.0385472 0.0385472i −0.687570 0.726118i \(-0.741323\pi\)
0.726118 + 0.687570i \(0.241323\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −31.1127 + 31.1127i −1.19576 + 1.19576i −0.220334 + 0.975425i \(0.570715\pi\)
−0.975425 + 0.220334i \(0.929285\pi\)
\(678\) 0 0
\(679\) 44.0000i 1.68857i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 2.82843 + 2.82843i 0.108227 + 0.108227i 0.759147 0.650920i \(-0.225617\pi\)
−0.650920 + 0.759147i \(0.725617\pi\)
\(684\) 0 0
\(685\) −20.0000 + 10.0000i −0.764161 + 0.382080i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −5.65685 −0.215509
\(690\) 0 0
\(691\) −8.00000 −0.304334 −0.152167 0.988355i \(-0.548625\pi\)
−0.152167 + 0.988355i \(0.548625\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −8.48528 + 25.4558i −0.321865 + 0.965595i
\(696\) 0 0
\(697\) −4.00000 4.00000i −0.151511 0.151511i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 7.07107i 0.267071i 0.991044 + 0.133535i \(0.0426329\pi\)
−0.991044 + 0.133535i \(0.957367\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −31.1127 + 31.1127i −1.17011 + 1.17011i
\(708\) 0 0
\(709\) 6.00000i 0.225335i 0.993633 + 0.112667i \(0.0359394\pi\)
−0.993633 + 0.112667i \(0.964061\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 11.3137 + 11.3137i 0.423702 + 0.423702i
\(714\) 0 0
\(715\) 4.00000 + 8.00000i 0.149592 + 0.299183i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −40.0000 −1.48968
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 16.9706 + 12.7279i 0.630271 + 0.472703i
\(726\) 0 0
\(727\) 2.00000 + 2.00000i 0.0741759 + 0.0741759i 0.743221 0.669046i \(-0.233297\pi\)
−0.669046 + 0.743221i \(0.733297\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 45.2548i 1.67381i
\(732\) 0 0
\(733\) 1.00000 1.00000i 0.0369358 0.0369358i −0.688398 0.725333i \(-0.741686\pi\)
0.725333 + 0.688398i \(0.241686\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −11.3137 + 11.3137i −0.416746 + 0.416746i
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −22.6274 22.6274i −0.830119 0.830119i 0.157413 0.987533i \(-0.449684\pi\)
−0.987533 + 0.157413i \(0.949684\pi\)
\(744\) 0 0
\(745\) 9.00000 + 3.00000i 0.329734 + 0.109911i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −11.3137 −0.413394
\(750\) 0 0
\(751\) 4.00000 0.145962 0.0729810 0.997333i \(-0.476749\pi\)
0.0729810 + 0.997333i \(0.476749\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 16.9706 + 5.65685i 0.617622 + 0.205874i
\(756\) 0 0
\(757\) 19.0000 + 19.0000i 0.690567 + 0.690567i 0.962357 0.271790i \(-0.0876156\pi\)
−0.271790 + 0.962357i \(0.587616\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 52.3259i 1.89681i −0.317058 0.948406i \(-0.602695\pi\)
0.317058 0.948406i \(-0.397305\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8.48528 + 8.48528i −0.306386 + 0.306386i
\(768\) 0 0
\(769\) 24.0000i 0.865462i −0.901523 0.432731i \(-0.857550\pi\)
0.901523 0.432731i \(-0.142450\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −2.82843 2.82843i −0.101731 0.101731i 0.654409 0.756141i \(-0.272917\pi\)
−0.756141 + 0.654409i \(0.772917\pi\)
\(774\) 0 0
\(775\) 16.0000 + 12.0000i 0.574737 + 0.431053i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 16.0000 0.572525
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 7.07107 + 14.1421i 0.252377 + 0.504754i
\(786\) 0 0
\(787\) −4.00000 4.00000i −0.142585 0.142585i 0.632211 0.774796i \(-0.282147\pi\)
−0.774796 + 0.632211i \(0.782147\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 39.5980i 1.40794i
\(792\) 0 0
\(793\) 8.00000 8.00000i 0.284088 0.284088i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1.41421 + 1.41421i −0.0500940 + 0.0500940i −0.731710 0.681616i \(-0.761277\pi\)
0.681616 + 0.731710i \(0.261277\pi\)
\(798\) 0 0
\(799\) 32.0000i 1.13208i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −2.82843 2.82843i −0.0998130 0.0998130i
\(804\) 0 0
\(805\) 8.00000 24.0000i 0.281963 0.845889i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 12.7279 0.447490 0.223745 0.974648i \(-0.428172\pi\)
0.223745 + 0.974648i \(0.428172\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −22.6274 + 11.3137i −0.792604 + 0.396302i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 35.3553i 1.23391i −0.786998 0.616955i \(-0.788366\pi\)
0.786998 0.616955i \(-0.211634\pi\)
\(822\) 0 0
\(823\) −10.0000 + 10.0000i −0.348578 + 0.348578i −0.859580 0.511002i \(-0.829275\pi\)
0.511002 + 0.859580i \(0.329275\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 22.6274 22.6274i 0.786832 0.786832i −0.194141 0.980974i \(-0.562192\pi\)
0.980974 + 0.194141i \(0.0621920\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.82843 + 2.82843i 0.0979992 + 0.0979992i
\(834\) 0 0
\(835\) −40.0000 + 20.0000i −1.38426 + 0.692129i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 33.9411 1.17178 0.585889 0.810391i \(-0.300745\pi\)
0.585889 + 0.810391i \(0.300745\pi\)
\(840\) 0 0
\(841\) −11.0000 −0.379310
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 7.77817 23.3345i 0.267577 0.802732i
\(846\) 0 0
\(847\) 6.00000 + 6.00000i 0.206162 + 0.206162i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 5.65685i 0.193914i
\(852\) 0 0
\(853\) −17.0000 + 17.0000i −0.582069 + 0.582069i −0.935471 0.353402i \(-0.885025\pi\)
0.353402 + 0.935471i \(0.385025\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −31.1127 + 31.1127i −1.06279 + 1.06279i −0.0648976 + 0.997892i \(0.520672\pi\)
−0.997892 + 0.0648976i \(0.979328\pi\)
\(858\) 0 0
\(859\) 12.0000i 0.409435i −0.978821 0.204717i \(-0.934372\pi\)
0.978821 0.204717i \(-0.0656275\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.82843 + 2.82843i 0.0962808 + 0.0962808i 0.753607 0.657326i \(-0.228312\pi\)
−0.657326 + 0.753607i \(0.728312\pi\)
\(864\) 0 0
\(865\) −14.0000 28.0000i −0.476014 0.952029i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 33.9411 1.15137
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 5.65685 31.1127i 0.191237 1.05180i
\(876\) 0 0
\(877\) 13.0000 + 13.0000i 0.438979 + 0.438979i 0.891668 0.452689i \(-0.149535\pi\)
−0.452689 + 0.891668i \(0.649535\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 7.07107i 0.238230i 0.992880 + 0.119115i \(0.0380058\pi\)
−0.992880 + 0.119115i \(0.961994\pi\)
\(882\) 0 0
\(883\) 8.00000 8.00000i 0.269221 0.269221i −0.559565 0.828786i \(-0.689032\pi\)
0.828786 + 0.559565i \(0.189032\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 14.1421 14.1421i 0.474846 0.474846i −0.428632 0.903479i \(-0.641004\pi\)
0.903479 + 0.428632i \(0.141004\pi\)
\(888\) 0 0
\(889\) 40.0000i 1.34156i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 54.0000 + 18.0000i 1.80502 + 0.601674i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 16.9706 0.566000
\(900\) 0 0
\(901\) −16.0000 −0.533037
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 33.9411 + 11.3137i 1.12824 + 0.376080i
\(906\) 0 0
\(907\) 20.0000 + 20.0000i 0.664089 + 0.664089i 0.956341 0.292252i \(-0.0944047\pi\)
−0.292252 + 0.956341i \(0.594405\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 22.6274i 0.749680i 0.927090 + 0.374840i \(0.122302\pi\)
−0.927090 + 0.374840i \(0.877698\pi\)
\(912\) 0 0
\(913\) 8.00000 8.00000i 0.264761 0.264761i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −28.2843 + 28.2843i −0.934029 + 0.934029i
\(918\) 0 0
\(919\) 36.0000i 1.18753i 0.804638 + 0.593765i \(0.202359\pi\)
−0.804638 + 0.593765i \(0.797641\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 5.65685 + 5.65685i 0.186198 + 0.186198i
\(924\) 0 0
\(925\) 1.00000 + 7.00000i 0.0328798 + 0.230159i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −46.6690 −1.53116 −0.765581 0.643340i \(-0.777548\pi\)
−0.765581 + 0.643340i \(0.777548\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 11.3137 + 22.6274i 0.369998 + 0.739996i
\(936\) 0 0
\(937\) 37.0000 + 37.0000i 1.20874 + 1.20874i 0.971436 + 0.237301i \(0.0762628\pi\)
0.237301 + 0.971436i \(0.423737\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.41421i 0.0461020i −0.999734 0.0230510i \(-0.992662\pi\)
0.999734 0.0230510i \(-0.00733802\pi\)
\(942\) 0 0
\(943\) 4.00000 4.00000i 0.130258 0.130258i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.65685 5.65685i 0.183823 0.183823i −0.609196 0.793019i \(-0.708508\pi\)
0.793019 + 0.609196i \(0.208508\pi\)
\(948\) 0 0
\(949\) 2.00000i 0.0649227i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −15.5563 15.5563i −0.503920 0.503920i 0.408734 0.912654i \(-0.365970\pi\)
−0.912654 + 0.408734i \(0.865970\pi\)
\(954\) 0 0
\(955\) 16.0000 48.0000i 0.517748 1.55324i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 28.2843 0.913347
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −2.82843 + 1.41421i −0.0910503 + 0.0455251i
\(966\) 0 0
\(967\) −22.0000 22.0000i −0.707472 0.707472i 0.258531 0.966003i \(-0.416762\pi\)
−0.966003 + 0.258531i \(0.916762\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 19.7990i 0.635380i −0.948195 0.317690i \(-0.897093\pi\)
0.948195 0.317690i \(-0.102907\pi\)
\(972\) 0 0
\(973\) 24.0000 24.0000i 0.769405 0.769405i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 36.7696 36.7696i 1.17636 1.17636i 0.195698 0.980664i \(-0.437303\pi\)
0.980664 0.195698i \(-0.0626972\pi\)
\(978\) 0 0
\(979\) 36.0000i 1.15056i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −22.6274 22.6274i −0.721703 0.721703i 0.247249 0.968952i \(-0.420473\pi\)
−0.968952 + 0.247249i \(0.920473\pi\)
\(984\) 0 0
\(985\) 28.0000 14.0000i 0.892154 0.446077i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 45.2548 1.43902
\(990\) 0 0
\(991\) 16.0000 0.508257 0.254128 0.967170i \(-0.418211\pi\)
0.254128 + 0.967170i \(0.418211\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 25.0000 + 25.0000i 0.791758 + 0.791758i 0.981780 0.190022i \(-0.0608559\pi\)
−0.190022 + 0.981780i \(0.560856\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.2.w.d.17.1 4
3.2 odd 2 inner 720.2.w.d.17.2 4
4.3 odd 2 45.2.f.a.17.2 yes 4
5.2 odd 4 3600.2.w.b.593.1 4
5.3 odd 4 inner 720.2.w.d.593.2 4
5.4 even 2 3600.2.w.b.1457.1 4
8.3 odd 2 2880.2.w.b.2177.2 4
8.5 even 2 2880.2.w.k.2177.2 4
12.11 even 2 45.2.f.a.17.1 yes 4
15.2 even 4 3600.2.w.b.593.2 4
15.8 even 4 inner 720.2.w.d.593.1 4
15.14 odd 2 3600.2.w.b.1457.2 4
20.3 even 4 45.2.f.a.8.1 4
20.7 even 4 225.2.f.a.143.2 4
20.19 odd 2 225.2.f.a.107.1 4
24.5 odd 2 2880.2.w.k.2177.1 4
24.11 even 2 2880.2.w.b.2177.1 4
36.7 odd 6 405.2.m.a.377.1 8
36.11 even 6 405.2.m.a.377.2 8
36.23 even 6 405.2.m.a.107.1 8
36.31 odd 6 405.2.m.a.107.2 8
40.3 even 4 2880.2.w.b.2753.1 4
40.13 odd 4 2880.2.w.k.2753.1 4
60.23 odd 4 45.2.f.a.8.2 yes 4
60.47 odd 4 225.2.f.a.143.1 4
60.59 even 2 225.2.f.a.107.2 4
120.53 even 4 2880.2.w.k.2753.2 4
120.83 odd 4 2880.2.w.b.2753.2 4
180.23 odd 12 405.2.m.a.188.1 8
180.43 even 12 405.2.m.a.53.1 8
180.83 odd 12 405.2.m.a.53.2 8
180.103 even 12 405.2.m.a.188.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.2.f.a.8.1 4 20.3 even 4
45.2.f.a.8.2 yes 4 60.23 odd 4
45.2.f.a.17.1 yes 4 12.11 even 2
45.2.f.a.17.2 yes 4 4.3 odd 2
225.2.f.a.107.1 4 20.19 odd 2
225.2.f.a.107.2 4 60.59 even 2
225.2.f.a.143.1 4 60.47 odd 4
225.2.f.a.143.2 4 20.7 even 4
405.2.m.a.53.1 8 180.43 even 12
405.2.m.a.53.2 8 180.83 odd 12
405.2.m.a.107.1 8 36.23 even 6
405.2.m.a.107.2 8 36.31 odd 6
405.2.m.a.188.1 8 180.23 odd 12
405.2.m.a.188.2 8 180.103 even 12
405.2.m.a.377.1 8 36.7 odd 6
405.2.m.a.377.2 8 36.11 even 6
720.2.w.d.17.1 4 1.1 even 1 trivial
720.2.w.d.17.2 4 3.2 odd 2 inner
720.2.w.d.593.1 4 15.8 even 4 inner
720.2.w.d.593.2 4 5.3 odd 4 inner
2880.2.w.b.2177.1 4 24.11 even 2
2880.2.w.b.2177.2 4 8.3 odd 2
2880.2.w.b.2753.1 4 40.3 even 4
2880.2.w.b.2753.2 4 120.83 odd 4
2880.2.w.k.2177.1 4 24.5 odd 2
2880.2.w.k.2177.2 4 8.5 even 2
2880.2.w.k.2753.1 4 40.13 odd 4
2880.2.w.k.2753.2 4 120.53 even 4
3600.2.w.b.593.1 4 5.2 odd 4
3600.2.w.b.593.2 4 15.2 even 4
3600.2.w.b.1457.1 4 5.4 even 2
3600.2.w.b.1457.2 4 15.14 odd 2