Defining parameters
| Level: | \( N \) | \(=\) | \( 72 = 2^{3} \cdot 3^{2} \) |
| Weight: | \( k \) | \(=\) | \( 14 \) |
| Character orbit: | \([\chi]\) | \(=\) | 72.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 8 \) | ||
| Sturm bound: | \(168\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{14}(\Gamma_0(72))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 164 | 16 | 148 |
| Cusp forms | 148 | 16 | 132 |
| Eisenstein series | 16 | 0 | 16 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(40\) | \(3\) | \(37\) | \(36\) | \(3\) | \(33\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(-\) | \(41\) | \(5\) | \(36\) | \(37\) | \(5\) | \(32\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(-\) | \(42\) | \(3\) | \(39\) | \(38\) | \(3\) | \(35\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(+\) | \(41\) | \(5\) | \(36\) | \(37\) | \(5\) | \(32\) | \(4\) | \(0\) | \(4\) | |||
| Plus space | \(+\) | \(81\) | \(8\) | \(73\) | \(73\) | \(8\) | \(65\) | \(8\) | \(0\) | \(8\) | ||||
| Minus space | \(-\) | \(83\) | \(8\) | \(75\) | \(75\) | \(8\) | \(67\) | \(8\) | \(0\) | \(8\) | ||||
Trace form
Decomposition of \(S_{14}^{\mathrm{new}}(\Gamma_0(72))\) into newform subspaces
Decomposition of \(S_{14}^{\mathrm{old}}(\Gamma_0(72))\) into lower level spaces
\( S_{14}^{\mathrm{old}}(\Gamma_0(72)) \simeq \) \(S_{14}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 9}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 3}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 3}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 2}\)