Properties

Label 72.14.a
Level $72$
Weight $14$
Character orbit 72.a
Rep. character $\chi_{72}(1,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $8$
Sturm bound $168$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 72.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(168\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{14}(\Gamma_0(72))\).

Total New Old
Modular forms 164 16 148
Cusp forms 148 16 132
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(40\)\(3\)\(37\)\(36\)\(3\)\(33\)\(4\)\(0\)\(4\)
\(+\)\(-\)\(-\)\(41\)\(5\)\(36\)\(37\)\(5\)\(32\)\(4\)\(0\)\(4\)
\(-\)\(+\)\(-\)\(42\)\(3\)\(39\)\(38\)\(3\)\(35\)\(4\)\(0\)\(4\)
\(-\)\(-\)\(+\)\(41\)\(5\)\(36\)\(37\)\(5\)\(32\)\(4\)\(0\)\(4\)
Plus space\(+\)\(81\)\(8\)\(73\)\(73\)\(8\)\(65\)\(8\)\(0\)\(8\)
Minus space\(-\)\(83\)\(8\)\(75\)\(75\)\(8\)\(67\)\(8\)\(0\)\(8\)

Trace form

\( 16 q + 45396 q^{5} + 29064 q^{7} - 5029128 q^{11} + 16094584 q^{13} + 1786284 q^{17} + 597489512 q^{19} + 421440912 q^{23} + 5189153624 q^{25} - 1464068988 q^{29} - 4641056104 q^{31} - 16796644992 q^{35}+ \cdots + 2482183898984 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{14}^{\mathrm{new}}(\Gamma_0(72))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
72.14.a.a 72.a 1.a $1$ $77.206$ \(\Q\) None 8.14.a.a \(0\) \(0\) \(4330\) \(-139992\) $-$ $-$ $\mathrm{SU}(2)$ \(q+4330q^{5}-139992q^{7}+6484324q^{11}+\cdots\)
72.14.a.b 72.a 1.a $1$ $77.206$ \(\Q\) None 24.14.a.a \(0\) \(0\) \(22490\) \(181272\) $+$ $-$ $\mathrm{SU}(2)$ \(q+22490q^{5}+181272q^{7}+9261428q^{11}+\cdots\)
72.14.a.c 72.a 1.a $2$ $77.206$ \(\Q(\sqrt{781}) \) None 8.14.a.b \(0\) \(0\) \(-18476\) \(110928\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-9238-4\beta )q^{5}+(55464-74\beta )q^{7}+\cdots\)
72.14.a.d 72.a 1.a $2$ $77.206$ \(\Q(\sqrt{62869}) \) None 24.14.a.d \(0\) \(0\) \(-5068\) \(104880\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-2534-\beta )q^{5}+(52440+5\beta )q^{7}+\cdots\)
72.14.a.e 72.a 1.a $2$ $77.206$ \(\Q(\sqrt{1621}) \) None 24.14.a.c \(0\) \(0\) \(11204\) \(275808\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(5602-\beta )q^{5}+(137904-13\beta )q^{7}+\cdots\)
72.14.a.f 72.a 1.a $2$ $77.206$ \(\Q(\sqrt{406}) \) None 24.14.a.b \(0\) \(0\) \(30916\) \(-532896\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(15458+7\beta )q^{5}+(-266448-37\beta )q^{7}+\cdots\)
72.14.a.g 72.a 1.a $3$ $77.206$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 72.14.a.g \(0\) \(0\) \(-50256\) \(14532\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-16752+\beta _{2})q^{5}+(4844-\beta _{1}+\cdots)q^{7}+\cdots\)
72.14.a.h 72.a 1.a $3$ $77.206$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 72.14.a.g \(0\) \(0\) \(50256\) \(14532\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(16752-\beta _{2})q^{5}+(4844-\beta _{1}-3\beta _{2})q^{7}+\cdots\)

Decomposition of \(S_{14}^{\mathrm{old}}(\Gamma_0(72))\) into lower level spaces

\( S_{14}^{\mathrm{old}}(\Gamma_0(72)) \simeq \) \(S_{14}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 9}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 3}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 3}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 2}\)