Properties

Label 72.14
Level 72
Weight 14
Dimension 826
Nonzero newspaces 6
Sturm bound 4032
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) = \( 14 \)
Nonzero newspaces: \( 6 \)
Sturm bound: \(4032\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{14}(\Gamma_1(72))\).

Total New Old
Modular forms 1920 844 1076
Cusp forms 1824 826 998
Eisenstein series 96 18 78

Trace form

\( 826 q - 4 q^{2} - 135 q^{3} - 8558 q^{4} + 76646 q^{5} - 16388 q^{6} + 264358 q^{7} - 978598 q^{8} - 932445 q^{9} - 78912 q^{10} - 13463761 q^{11} + 9267706 q^{12} + 16094584 q^{13} - 78342382 q^{14} + 30888456 q^{15}+ \cdots - 49571340067986 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{14}^{\mathrm{new}}(\Gamma_1(72))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
72.14.a \(\chi_{72}(1, \cdot)\) 72.14.a.a 1 1
72.14.a.b 1
72.14.a.c 2
72.14.a.d 2
72.14.a.e 2
72.14.a.f 2
72.14.a.g 3
72.14.a.h 3
72.14.c \(\chi_{72}(71, \cdot)\) None 0 1
72.14.d \(\chi_{72}(37, \cdot)\) 72.14.d.a 2 1
72.14.d.b 2
72.14.d.c 10
72.14.d.d 24
72.14.d.e 26
72.14.f \(\chi_{72}(35, \cdot)\) 72.14.f.a 52 1
72.14.i \(\chi_{72}(25, \cdot)\) 72.14.i.a 38 2
72.14.i.b 40
72.14.l \(\chi_{72}(11, \cdot)\) n/a 308 2
72.14.n \(\chi_{72}(13, \cdot)\) n/a 308 2
72.14.o \(\chi_{72}(23, \cdot)\) None 0 2

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{14}^{\mathrm{old}}(\Gamma_1(72))\) into lower level spaces

\( S_{14}^{\mathrm{old}}(\Gamma_1(72)) \cong \) \(S_{14}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 9}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 3}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 3}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 2}\)