gp: [N,k,chi] = [714,2,Mod(25,714)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(714, base_ring=CyclotomicField(24))
chi = DirichletCharacter(H, H._module([0, 16, 15]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("714.25");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [96,0,0,0,8,0,0,0,0,8]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{96} - 8 T_{5}^{95} + 20 T_{5}^{94} + 64 T_{5}^{93} - 568 T_{5}^{92} + 1488 T_{5}^{91} + \cdots + 15527402881 \)
T5^96 - 8*T5^95 + 20*T5^94 + 64*T5^93 - 568*T5^92 + 1488*T5^91 - 1352*T5^90 + 776*T5^89 - 40666*T5^88 + 162656*T5^87 + 523124*T5^86 - 6772640*T5^85 + 23174144*T5^84 - 19441904*T5^83 - 88232500*T5^82 + 326244864*T5^81 - 38364139*T5^80 - 783234416*T5^79 - 11545689212*T5^78 + 99936694192*T5^77 - 284073137968*T5^76 + 92510443184*T5^75 + 1406305152628*T5^74 - 4490594183120*T5^73 + 3903686525490*T5^72 - 5719614258952*T5^71 + 160901459078720*T5^70 - 1116658328947744*T5^69 + 2777608180621576*T5^68 + 135980591788576*T5^67 - 15834761363743876*T5^66 + 50725359417165848*T5^65 - 87757376764624246*T5^64 + 153996474110091048*T5^63 - 664970774546080780*T5^62 + 3716375030968936512*T5^61 - 6711153565720254696*T5^60 - 6507418907023120112*T5^59 + 34676843969914906608*T5^58 - 95616833154237122440*T5^57 + 351268433973564141054*T5^56 - 945792867948083029744*T5^55 + 2082063031940232680716*T5^54 - 10071180329793331084768*T5^53 + 22975766487481573902032*T5^52 - 5981738562825023049872*T5^51 + 8216613214215787691948*T5^50 - 43177417362599466371248*T5^49 - 86615853101094062608547*T5^48 + 193581334011869946880976*T5^47 - 784876873286298380155652*T5^46 + 4865653528656924676519024*T5^45 - 3308958010699575627903152*T5^44 - 14576498220426241444123120*T5^43 - 5416755455903396704543172*T5^42 + 23517296828456997538553968*T5^41 + 53375623026111831854184318*T5^40 - 126860859990764047233725976*T5^39 + 24875884783978288718726384*T5^38 + 134736951297874163064364608*T5^37 + 843828818038824257377526872*T5^36 + 555152263423525323981931552*T5^35 - 213982268141482928197424060*T5^34 - 2725771770800986568675278936*T5^33 - 3733040350787153814623791478*T5^32 - 3583227006708913939507413704*T5^31 + 152168536830164758326304268*T5^30 + 4028150196706777542127363584*T5^29 + 7835397189945706436679061576*T5^28 + 8638585076580997570350737712*T5^27 + 9038682267383528955071403776*T5^26 + 9030559832896215093225509704*T5^25 + 10679136849403400028933205170*T5^24 + 12046149039406097339797691728*T5^23 + 12454921531193677312089399076*T5^22 + 10488900755477493743924275648*T5^21 + 7300512189273757318584617552*T5^20 + 3861954655599715538130323728*T5^19 + 1494187808448604204302725908*T5^18 + 274692397224121783707022736*T5^17 - 69505399032329444215999467*T5^16 - 84504859580703143171724384*T5^15 - 25644796238826103082132452*T5^14 - 2809000994189646995360400*T5^13 + 1209095642532106491386624*T5^12 + 478798673862604473969360*T5^11 + 90338906505036710599812*T5^10 + 897327161857589249792*T5^9 - 2300374774063984253274*T5^8 - 555534642776203351752*T5^7 - 14071704409597315880*T5^6 + 4612290790356745344*T5^5 + 946696835390787720*T5^4 + 7660333835491264*T5^3 - 43937384113308*T5^2 + 1118676799064*T5 + 15527402881
acting on \(S_{2}^{\mathrm{new}}(714, [\chi])\).