Properties

Label 712.1.w.a
Level $712$
Weight $1$
Character orbit 712.w
Analytic conductor $0.355$
Analytic rank $0$
Dimension $10$
Projective image $D_{22}$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [712,1,Mod(11,712)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(712, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([11, 11, 21])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("712.11"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 712 = 2^{3} \cdot 89 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 712.w (of order \(22\), degree \(10\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.355334288995\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{22}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{22} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{22}^{9} q^{2} + ( - \zeta_{22}^{5} + \zeta_{22}^{3}) q^{3} - \zeta_{22}^{7} q^{4} + ( - \zeta_{22}^{3} + \zeta_{22}) q^{6} - \zeta_{22}^{5} q^{8} + (\zeta_{22}^{10} + \cdots + \zeta_{22}^{6}) q^{9} + \cdots + ( - \zeta_{22}^{10} - \zeta_{22}^{9} + \cdots - 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - q^{2} - q^{4} - q^{8} - q^{9} - 9 q^{11} - q^{16} - 9 q^{17} - q^{18} + 2 q^{22} - q^{25} + 11 q^{27} - q^{32} + 2 q^{34} - q^{36} + 11 q^{38} + 2 q^{44} + q^{49} - q^{50} - 11 q^{54}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/712\mathbb{Z}\right)^\times\).

\(n\) \(357\) \(535\) \(537\)
\(\chi(n)\) \(-1\) \(-1\) \(-\zeta_{22}^{8}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
11.1
−0.415415 0.909632i
−0.841254 + 0.540641i
0.654861 + 0.755750i
0.654861 0.755750i
−0.841254 0.540641i
−0.415415 + 0.909632i
0.142315 0.989821i
0.959493 0.281733i
0.959493 + 0.281733i
0.142315 + 0.989821i
−0.654861 0.755750i 1.80075 0.258908i −0.142315 + 0.989821i 0 −1.37491 1.19136i 0 0.841254 0.540641i 2.21616 0.650724i 0
139.1 0.415415 + 0.909632i −0.817178 + 0.708089i −0.654861 + 0.755750i 0 −0.983568 0.449181i 0 −0.959493 0.281733i 0.0240754 0.167448i 0
203.1 −0.142315 0.989821i −0.425839 + 1.45027i −0.959493 + 0.281733i 0 1.49611 + 0.215109i 0 0.415415 + 0.909632i −1.08070 0.694523i 0
235.1 −0.142315 + 0.989821i −0.425839 1.45027i −0.959493 0.281733i 0 1.49611 0.215109i 0 0.415415 0.909632i −1.08070 + 0.694523i 0
251.1 0.415415 0.909632i −0.817178 0.708089i −0.654861 0.755750i 0 −0.983568 + 0.449181i 0 −0.959493 + 0.281733i 0.0240754 + 0.167448i 0
259.1 −0.654861 + 0.755750i 1.80075 + 0.258908i −0.142315 0.989821i 0 −1.37491 + 1.19136i 0 0.841254 + 0.540641i 2.21616 + 0.650724i 0
443.1 −0.959493 + 0.281733i −1.07028 + 1.66538i 0.841254 0.540641i 0 0.557730 1.89945i 0 −0.654861 + 0.755750i −1.21259 2.65520i 0
467.1 0.841254 + 0.540641i 0.512546 + 0.234072i 0.415415 + 0.909632i 0 0.304632 + 0.474017i 0 −0.142315 + 0.989821i −0.446947 0.515804i 0
619.1 0.841254 0.540641i 0.512546 0.234072i 0.415415 0.909632i 0 0.304632 0.474017i 0 −0.142315 0.989821i −0.446947 + 0.515804i 0
667.1 −0.959493 0.281733i −1.07028 1.66538i 0.841254 + 0.540641i 0 0.557730 + 1.89945i 0 −0.654861 0.755750i −1.21259 + 2.65520i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 11.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
89.f even 22 1 inner
712.w odd 22 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 712.1.w.a 10
4.b odd 2 1 2848.1.by.a 10
8.b even 2 1 2848.1.by.a 10
8.d odd 2 1 CM 712.1.w.a 10
89.f even 22 1 inner 712.1.w.a 10
356.j odd 22 1 2848.1.by.a 10
712.t even 22 1 2848.1.by.a 10
712.w odd 22 1 inner 712.1.w.a 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
712.1.w.a 10 1.a even 1 1 trivial
712.1.w.a 10 8.d odd 2 1 CM
712.1.w.a 10 89.f even 22 1 inner
712.1.w.a 10 712.w odd 22 1 inner
2848.1.by.a 10 4.b odd 2 1
2848.1.by.a 10 8.b even 2 1
2848.1.by.a 10 356.j odd 22 1
2848.1.by.a 10 712.t even 22 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(712, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} + T^{9} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{10} - 11 T^{7} + \cdots + 11 \) Copy content Toggle raw display
$5$ \( T^{10} \) Copy content Toggle raw display
$7$ \( T^{10} \) Copy content Toggle raw display
$11$ \( T^{10} + 9 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{10} \) Copy content Toggle raw display
$17$ \( T^{10} + 9 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{10} + 11 T^{6} + \cdots + 11 \) Copy content Toggle raw display
$23$ \( T^{10} \) Copy content Toggle raw display
$29$ \( T^{10} \) Copy content Toggle raw display
$31$ \( T^{10} \) Copy content Toggle raw display
$37$ \( T^{10} \) Copy content Toggle raw display
$41$ \( T^{10} \) Copy content Toggle raw display
$43$ \( T^{10} + 11 T^{4} + \cdots + 11 \) Copy content Toggle raw display
$47$ \( T^{10} \) Copy content Toggle raw display
$53$ \( T^{10} \) Copy content Toggle raw display
$59$ \( T^{10} + 22 T^{5} + \cdots + 11 \) Copy content Toggle raw display
$61$ \( T^{10} \) Copy content Toggle raw display
$67$ \( T^{10} - 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{10} \) Copy content Toggle raw display
$73$ \( T^{10} - 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( T^{10} \) Copy content Toggle raw display
$83$ \( T^{10} + 11 T^{6} + \cdots + 11 \) Copy content Toggle raw display
$89$ \( T^{10} + T^{9} + \cdots + 1 \) Copy content Toggle raw display
$97$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
show more
show less