Properties

Label 7098.2.a.bg
Level $7098$
Weight $2$
Character orbit 7098.a
Self dual yes
Analytic conductor $56.678$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7098,2,Mod(1,7098)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7098.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7098, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7098 = 2 \cdot 3 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7098.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,-2,2,-3,2,-2,-2,2,3,7,-2,0,2,3,2,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.6778153547\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} - q^{3} + q^{4} + ( - \beta - 1) q^{5} + q^{6} - q^{7} - q^{8} + q^{9} + (\beta + 1) q^{10} + (\beta + 3) q^{11} - q^{12} + q^{14} + (\beta + 1) q^{15} + q^{16} + (3 \beta - 1) q^{17}+ \cdots + (\beta + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} - 3 q^{5} + 2 q^{6} - 2 q^{7} - 2 q^{8} + 2 q^{9} + 3 q^{10} + 7 q^{11} - 2 q^{12} + 2 q^{14} + 3 q^{15} + 2 q^{16} + q^{17} - 2 q^{18} - q^{19} - 3 q^{20} + 2 q^{21}+ \cdots + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
−1.00000 −1.00000 1.00000 −3.56155 1.00000 −1.00000 −1.00000 1.00000 3.56155
1.2 −1.00000 −1.00000 1.00000 0.561553 1.00000 −1.00000 −1.00000 1.00000 −0.561553
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(7\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7098.2.a.bg 2
13.b even 2 1 7098.2.a.bv 2
13.d odd 4 2 546.2.c.e 4
39.f even 4 2 1638.2.c.h 4
52.f even 4 2 4368.2.h.n 4
91.i even 4 2 3822.2.c.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.c.e 4 13.d odd 4 2
1638.2.c.h 4 39.f even 4 2
3822.2.c.h 4 91.i even 4 2
4368.2.h.n 4 52.f even 4 2
7098.2.a.bg 2 1.a even 1 1 trivial
7098.2.a.bv 2 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7098))\):

\( T_{5}^{2} + 3T_{5} - 2 \) Copy content Toggle raw display
\( T_{11}^{2} - 7T_{11} + 8 \) Copy content Toggle raw display
\( T_{17}^{2} - T_{17} - 38 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 3T - 2 \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 7T + 8 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - T - 38 \) Copy content Toggle raw display
$19$ \( T^{2} + T - 4 \) Copy content Toggle raw display
$23$ \( T^{2} - T - 38 \) Copy content Toggle raw display
$29$ \( T^{2} + T - 4 \) Copy content Toggle raw display
$31$ \( T^{2} + 4T - 64 \) Copy content Toggle raw display
$37$ \( T^{2} - 9T - 18 \) Copy content Toggle raw display
$41$ \( (T + 4)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 17T + 68 \) Copy content Toggle raw display
$47$ \( T^{2} + 4T - 64 \) Copy content Toggle raw display
$53$ \( T^{2} - 18T + 64 \) Copy content Toggle raw display
$59$ \( T^{2} + 8T - 52 \) Copy content Toggle raw display
$61$ \( T^{2} - T - 4 \) Copy content Toggle raw display
$67$ \( T^{2} + 6T - 8 \) Copy content Toggle raw display
$71$ \( T^{2} - 6T - 144 \) Copy content Toggle raw display
$73$ \( T^{2} - 19T + 86 \) Copy content Toggle raw display
$79$ \( (T - 16)^{2} \) Copy content Toggle raw display
$83$ \( (T - 2)^{2} \) Copy content Toggle raw display
$89$ \( (T + 8)^{2} \) Copy content Toggle raw display
$97$ \( (T + 10)^{2} \) Copy content Toggle raw display
show more
show less