Properties

Label 7056.2.a.cs
Level 7056
Weight 2
Character orbit 7056.a
Self dual yes
Analytic conductor 56.342
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 7056 = 2^{4} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7056.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(56.3424436662\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Defining polynomial: \(x^{2} - 2\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 882)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{5} +O(q^{10})\) \( q + \beta q^{5} + 4 q^{11} -3 \beta q^{13} -5 \beta q^{17} -4 \beta q^{19} + 8 q^{23} -3 q^{25} -2 q^{29} + 4 q^{37} + 7 \beta q^{41} + 4 q^{43} -4 \beta q^{47} -4 q^{53} + 4 \beta q^{55} + 8 \beta q^{59} -\beta q^{61} -6 q^{65} + 12 q^{67} + 11 \beta q^{73} + 16 q^{79} + 4 \beta q^{83} -10 q^{85} + 5 \beta q^{89} -8 q^{95} -5 \beta q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + O(q^{10}) \) \( 2q + 8q^{11} + 16q^{23} - 6q^{25} - 4q^{29} + 8q^{37} + 8q^{43} - 8q^{53} - 12q^{65} + 24q^{67} + 32q^{79} - 20q^{85} - 16q^{95} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 0 0 −1.41421 0 0 0 0 0
1.2 0 0 0 1.41421 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(7\) \(1\)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7056.2.a.cs 2
3.b odd 2 1 7056.2.a.ci 2
4.b odd 2 1 882.2.a.m 2
7.b odd 2 1 inner 7056.2.a.cs 2
12.b even 2 1 882.2.a.o yes 2
21.c even 2 1 7056.2.a.ci 2
28.d even 2 1 882.2.a.m 2
28.f even 6 2 882.2.g.m 4
28.g odd 6 2 882.2.g.m 4
84.h odd 2 1 882.2.a.o yes 2
84.j odd 6 2 882.2.g.k 4
84.n even 6 2 882.2.g.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
882.2.a.m 2 4.b odd 2 1
882.2.a.m 2 28.d even 2 1
882.2.a.o yes 2 12.b even 2 1
882.2.a.o yes 2 84.h odd 2 1
882.2.g.k 4 84.j odd 6 2
882.2.g.k 4 84.n even 6 2
882.2.g.m 4 28.f even 6 2
882.2.g.m 4 28.g odd 6 2
7056.2.a.ci 2 3.b odd 2 1
7056.2.a.ci 2 21.c even 2 1
7056.2.a.cs 2 1.a even 1 1 trivial
7056.2.a.cs 2 7.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7056))\):

\( T_{5}^{2} - 2 \)
\( T_{11} - 4 \)
\( T_{13}^{2} - 18 \)
\( T_{17}^{2} - 50 \)
\( T_{23} - 8 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( 1 + 8 T^{2} + 25 T^{4} \)
$7$ 1
$11$ \( ( 1 - 4 T + 11 T^{2} )^{2} \)
$13$ \( 1 + 8 T^{2} + 169 T^{4} \)
$17$ \( 1 - 16 T^{2} + 289 T^{4} \)
$19$ \( 1 + 6 T^{2} + 361 T^{4} \)
$23$ \( ( 1 - 8 T + 23 T^{2} )^{2} \)
$29$ \( ( 1 + 2 T + 29 T^{2} )^{2} \)
$31$ \( ( 1 + 31 T^{2} )^{2} \)
$37$ \( ( 1 - 4 T + 37 T^{2} )^{2} \)
$41$ \( 1 - 16 T^{2} + 1681 T^{4} \)
$43$ \( ( 1 - 4 T + 43 T^{2} )^{2} \)
$47$ \( 1 + 62 T^{2} + 2209 T^{4} \)
$53$ \( ( 1 + 4 T + 53 T^{2} )^{2} \)
$59$ \( 1 - 10 T^{2} + 3481 T^{4} \)
$61$ \( 1 + 120 T^{2} + 3721 T^{4} \)
$67$ \( ( 1 - 12 T + 67 T^{2} )^{2} \)
$71$ \( ( 1 + 71 T^{2} )^{2} \)
$73$ \( 1 - 96 T^{2} + 5329 T^{4} \)
$79$ \( ( 1 - 16 T + 79 T^{2} )^{2} \)
$83$ \( 1 + 134 T^{2} + 6889 T^{4} \)
$89$ \( 1 + 128 T^{2} + 7921 T^{4} \)
$97$ \( 1 + 144 T^{2} + 9409 T^{4} \)
show more
show less