Properties

Label 702.2.t.a.415.9
Level $702$
Weight $2$
Character 702.415
Analytic conductor $5.605$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [702,2,Mod(181,702)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(702, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("702.181"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 415.9
Character \(\chi\) \(=\) 702.415
Dual form 702.2.t.a.181.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(-2.53992 - 1.46642i) q^{5} +(-1.90832 + 1.10177i) q^{7} -1.00000i q^{8} -2.93284 q^{10} +(-4.47678 + 2.58467i) q^{11} +(2.72585 - 2.36003i) q^{13} +(-1.10177 + 1.90832i) q^{14} +(-0.500000 - 0.866025i) q^{16} -2.31124 q^{17} +5.16934i q^{19} +(-2.53992 + 1.46642i) q^{20} +(-2.58467 + 4.47678i) q^{22} +(-4.19626 + 7.26814i) q^{23} +(1.80079 + 3.11906i) q^{25} +(1.18064 - 3.40677i) q^{26} +2.20354i q^{28} +(-4.72655 - 8.18662i) q^{29} +(-5.38944 - 3.11159i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(-2.00159 + 1.15562i) q^{34} +6.46263 q^{35} -0.646136i q^{37} +(2.58467 + 4.47678i) q^{38} +(-1.46642 + 2.53992i) q^{40} +(0.674934 + 0.389673i) q^{41} +(-1.74579 - 3.02379i) q^{43} +5.16934i q^{44} +8.39252i q^{46} +(4.79295 - 2.76721i) q^{47} +(-1.07221 + 1.85713i) q^{49} +(3.11906 + 1.80079i) q^{50} +(-0.680923 - 3.54067i) q^{52} +8.68475 q^{53} +15.1609 q^{55} +(1.10177 + 1.90832i) q^{56} +(-8.18662 - 4.72655i) q^{58} +(-2.59002 - 1.49535i) q^{59} +(0.432428 + 0.748988i) q^{61} -6.22318 q^{62} -1.00000 q^{64} +(-10.3842 + 1.99704i) q^{65} +(-9.68023 - 5.58888i) q^{67} +(-1.15562 + 2.00159i) q^{68} +(5.59680 - 3.23131i) q^{70} -12.9489i q^{71} -4.27533i q^{73} +(-0.323068 - 0.559571i) q^{74} +(4.47678 + 2.58467i) q^{76} +(5.69541 - 9.86475i) q^{77} +(1.52175 + 2.63575i) q^{79} +2.93284i q^{80} +0.779346 q^{82} +(3.19308 - 1.84352i) q^{83} +(5.87036 + 3.38925i) q^{85} +(-3.02379 - 1.74579i) q^{86} +(2.58467 + 4.47678i) q^{88} +3.34650i q^{89} +(-2.60158 + 7.50694i) q^{91} +(4.19626 + 7.26814i) q^{92} +(2.76721 - 4.79295i) q^{94} +(7.58044 - 13.1297i) q^{95} +(-1.29119 + 0.745470i) q^{97} +2.14443i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 14 q^{4} + 2 q^{13} - 8 q^{14} - 14 q^{16} - 16 q^{17} + 8 q^{23} + 14 q^{25} - 8 q^{26} + 16 q^{29} + 68 q^{35} - 4 q^{43} + 10 q^{49} - 2 q^{52} + 120 q^{53} + 8 q^{56} + 28 q^{61} - 68 q^{62}+ \cdots - 8 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −2.53992 1.46642i −1.13589 0.655804i −0.190477 0.981692i \(-0.561004\pi\)
−0.945409 + 0.325888i \(0.894337\pi\)
\(6\) 0 0
\(7\) −1.90832 + 1.10177i −0.721276 + 0.416429i −0.815222 0.579148i \(-0.803385\pi\)
0.0939459 + 0.995577i \(0.470052\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −2.93284 −0.927447
\(11\) −4.47678 + 2.58467i −1.34980 + 0.779307i −0.988221 0.153034i \(-0.951096\pi\)
−0.361579 + 0.932341i \(0.617762\pi\)
\(12\) 0 0
\(13\) 2.72585 2.36003i 0.756014 0.654555i
\(14\) −1.10177 + 1.90832i −0.294460 + 0.510019i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −2.31124 −0.560558 −0.280279 0.959919i \(-0.590427\pi\)
−0.280279 + 0.959919i \(0.590427\pi\)
\(18\) 0 0
\(19\) 5.16934i 1.18593i 0.805229 + 0.592964i \(0.202042\pi\)
−0.805229 + 0.592964i \(0.797958\pi\)
\(20\) −2.53992 + 1.46642i −0.567943 + 0.327902i
\(21\) 0 0
\(22\) −2.58467 + 4.47678i −0.551054 + 0.954453i
\(23\) −4.19626 + 7.26814i −0.874981 + 1.51551i −0.0181984 + 0.999834i \(0.505793\pi\)
−0.856783 + 0.515677i \(0.827540\pi\)
\(24\) 0 0
\(25\) 1.80079 + 3.11906i 0.360158 + 0.623812i
\(26\) 1.18064 3.40677i 0.231542 0.668123i
\(27\) 0 0
\(28\) 2.20354i 0.416429i
\(29\) −4.72655 8.18662i −0.877698 1.52022i −0.853860 0.520502i \(-0.825745\pi\)
−0.0238379 0.999716i \(-0.507589\pi\)
\(30\) 0 0
\(31\) −5.38944 3.11159i −0.967971 0.558858i −0.0693541 0.997592i \(-0.522094\pi\)
−0.898617 + 0.438734i \(0.855427\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 0 0
\(34\) −2.00159 + 1.15562i −0.343270 + 0.198187i
\(35\) 6.46263 1.09238
\(36\) 0 0
\(37\) 0.646136i 0.106224i −0.998589 0.0531121i \(-0.983086\pi\)
0.998589 0.0531121i \(-0.0169141\pi\)
\(38\) 2.58467 + 4.47678i 0.419289 + 0.726230i
\(39\) 0 0
\(40\) −1.46642 + 2.53992i −0.231862 + 0.401596i
\(41\) 0.674934 + 0.389673i 0.105407 + 0.0608567i 0.551777 0.833992i \(-0.313950\pi\)
−0.446370 + 0.894849i \(0.647283\pi\)
\(42\) 0 0
\(43\) −1.74579 3.02379i −0.266230 0.461124i 0.701655 0.712517i \(-0.252445\pi\)
−0.967885 + 0.251393i \(0.919111\pi\)
\(44\) 5.16934i 0.779307i
\(45\) 0 0
\(46\) 8.39252i 1.23741i
\(47\) 4.79295 2.76721i 0.699124 0.403639i −0.107897 0.994162i \(-0.534412\pi\)
0.807021 + 0.590523i \(0.201078\pi\)
\(48\) 0 0
\(49\) −1.07221 + 1.85713i −0.153174 + 0.265304i
\(50\) 3.11906 + 1.80079i 0.441102 + 0.254670i
\(51\) 0 0
\(52\) −0.680923 3.54067i −0.0944270 0.491003i
\(53\) 8.68475 1.19294 0.596471 0.802635i \(-0.296569\pi\)
0.596471 + 0.802635i \(0.296569\pi\)
\(54\) 0 0
\(55\) 15.1609 2.04429
\(56\) 1.10177 + 1.90832i 0.147230 + 0.255010i
\(57\) 0 0
\(58\) −8.18662 4.72655i −1.07496 0.620626i
\(59\) −2.59002 1.49535i −0.337192 0.194678i 0.321838 0.946795i \(-0.395700\pi\)
−0.659030 + 0.752117i \(0.729033\pi\)
\(60\) 0 0
\(61\) 0.432428 + 0.748988i 0.0553668 + 0.0958981i 0.892380 0.451284i \(-0.149034\pi\)
−0.837014 + 0.547182i \(0.815701\pi\)
\(62\) −6.22318 −0.790345
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −10.3842 + 1.99704i −1.28801 + 0.247703i
\(66\) 0 0
\(67\) −9.68023 5.58888i −1.18263 0.682791i −0.226007 0.974126i \(-0.572567\pi\)
−0.956621 + 0.291335i \(0.905901\pi\)
\(68\) −1.15562 + 2.00159i −0.140139 + 0.242729i
\(69\) 0 0
\(70\) 5.59680 3.23131i 0.668946 0.386216i
\(71\) 12.9489i 1.53675i −0.639998 0.768376i \(-0.721065\pi\)
0.639998 0.768376i \(-0.278935\pi\)
\(72\) 0 0
\(73\) 4.27533i 0.500390i −0.968196 0.250195i \(-0.919505\pi\)
0.968196 0.250195i \(-0.0804947\pi\)
\(74\) −0.323068 0.559571i −0.0375559 0.0650488i
\(75\) 0 0
\(76\) 4.47678 + 2.58467i 0.513522 + 0.296482i
\(77\) 5.69541 9.86475i 0.649053 1.12419i
\(78\) 0 0
\(79\) 1.52175 + 2.63575i 0.171210 + 0.296545i 0.938843 0.344345i \(-0.111899\pi\)
−0.767633 + 0.640890i \(0.778566\pi\)
\(80\) 2.93284i 0.327902i
\(81\) 0 0
\(82\) 0.779346 0.0860644
\(83\) 3.19308 1.84352i 0.350486 0.202353i −0.314413 0.949286i \(-0.601808\pi\)
0.664899 + 0.746933i \(0.268474\pi\)
\(84\) 0 0
\(85\) 5.87036 + 3.38925i 0.636730 + 0.367616i
\(86\) −3.02379 1.74579i −0.326064 0.188253i
\(87\) 0 0
\(88\) 2.58467 + 4.47678i 0.275527 + 0.477226i
\(89\) 3.34650i 0.354728i 0.984145 + 0.177364i \(0.0567570\pi\)
−0.984145 + 0.177364i \(0.943243\pi\)
\(90\) 0 0
\(91\) −2.60158 + 7.50694i −0.272720 + 0.786942i
\(92\) 4.19626 + 7.26814i 0.437491 + 0.757756i
\(93\) 0 0
\(94\) 2.76721 4.79295i 0.285416 0.494355i
\(95\) 7.58044 13.1297i 0.777736 1.34708i
\(96\) 0 0
\(97\) −1.29119 + 0.745470i −0.131101 + 0.0756910i −0.564116 0.825696i \(-0.690783\pi\)
0.433015 + 0.901387i \(0.357450\pi\)
\(98\) 2.14443i 0.216620i
\(99\) 0 0
\(100\) 3.60158 0.360158
\(101\) 0.203346 + 0.352206i 0.0202337 + 0.0350458i 0.875965 0.482375i \(-0.160226\pi\)
−0.855731 + 0.517421i \(0.826892\pi\)
\(102\) 0 0
\(103\) −8.58044 + 14.8618i −0.845456 + 1.46437i 0.0397695 + 0.999209i \(0.487338\pi\)
−0.885225 + 0.465163i \(0.845996\pi\)
\(104\) −2.36003 2.72585i −0.231420 0.267291i
\(105\) 0 0
\(106\) 7.52122 4.34238i 0.730525 0.421769i
\(107\) 0.329555 0.0318592 0.0159296 0.999873i \(-0.494929\pi\)
0.0159296 + 0.999873i \(0.494929\pi\)
\(108\) 0 0
\(109\) 9.64927i 0.924232i −0.886819 0.462116i \(-0.847090\pi\)
0.886819 0.462116i \(-0.152910\pi\)
\(110\) 13.1297 7.58044i 1.25187 0.722766i
\(111\) 0 0
\(112\) 1.90832 + 1.10177i 0.180319 + 0.104107i
\(113\) −1.51605 + 2.62588i −0.142618 + 0.247022i −0.928482 0.371378i \(-0.878885\pi\)
0.785864 + 0.618400i \(0.212219\pi\)
\(114\) 0 0
\(115\) 21.3163 12.3070i 1.98776 1.14763i
\(116\) −9.45310 −0.877698
\(117\) 0 0
\(118\) −2.99070 −0.275316
\(119\) 4.41058 2.54645i 0.404317 0.233433i
\(120\) 0 0
\(121\) 7.86104 13.6157i 0.714640 1.23779i
\(122\) 0.748988 + 0.432428i 0.0678102 + 0.0391502i
\(123\) 0 0
\(124\) −5.38944 + 3.11159i −0.483986 + 0.279429i
\(125\) 4.10135i 0.366836i
\(126\) 0 0
\(127\) −9.03355 −0.801598 −0.400799 0.916166i \(-0.631267\pi\)
−0.400799 + 0.916166i \(0.631267\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −7.99449 + 6.92161i −0.701163 + 0.607065i
\(131\) −8.70860 + 15.0837i −0.760874 + 1.31787i 0.181527 + 0.983386i \(0.441896\pi\)
−0.942401 + 0.334486i \(0.891437\pi\)
\(132\) 0 0
\(133\) −5.69541 9.86475i −0.493855 0.855382i
\(134\) −11.1778 −0.965612
\(135\) 0 0
\(136\) 2.31124i 0.198187i
\(137\) −4.20543 + 2.42800i −0.359294 + 0.207438i −0.668771 0.743468i \(-0.733179\pi\)
0.309477 + 0.950907i \(0.399846\pi\)
\(138\) 0 0
\(139\) 5.82263 10.0851i 0.493869 0.855406i −0.506106 0.862471i \(-0.668916\pi\)
0.999975 + 0.00706513i \(0.00224892\pi\)
\(140\) 3.23131 5.59680i 0.273096 0.473016i
\(141\) 0 0
\(142\) −6.47445 11.2141i −0.543324 0.941065i
\(143\) −6.10312 + 17.6108i −0.510369 + 1.47269i
\(144\) 0 0
\(145\) 27.7245i 2.30239i
\(146\) −2.13767 3.70254i −0.176914 0.306425i
\(147\) 0 0
\(148\) −0.559571 0.323068i −0.0459964 0.0265560i
\(149\) 18.8841 + 10.9027i 1.54704 + 0.893186i 0.998365 + 0.0571529i \(0.0182022\pi\)
0.548679 + 0.836033i \(0.315131\pi\)
\(150\) 0 0
\(151\) 12.6987 7.33161i 1.03341 0.596638i 0.115448 0.993313i \(-0.463170\pi\)
0.917959 + 0.396676i \(0.129836\pi\)
\(152\) 5.16934 0.419289
\(153\) 0 0
\(154\) 11.3908i 0.917899i
\(155\) 9.12582 + 15.8064i 0.733003 + 1.26960i
\(156\) 0 0
\(157\) −3.97434 + 6.88376i −0.317187 + 0.549384i −0.979900 0.199489i \(-0.936072\pi\)
0.662713 + 0.748874i \(0.269405\pi\)
\(158\) 2.63575 + 1.52175i 0.209689 + 0.121064i
\(159\) 0 0
\(160\) 1.46642 + 2.53992i 0.115931 + 0.200798i
\(161\) 18.4932i 1.45747i
\(162\) 0 0
\(163\) 0.222533i 0.0174302i 0.999962 + 0.00871508i \(0.00277413\pi\)
−0.999962 + 0.00871508i \(0.997226\pi\)
\(164\) 0.674934 0.389673i 0.0527035 0.0304284i
\(165\) 0 0
\(166\) 1.84352 3.19308i 0.143085 0.247831i
\(167\) −3.26552 1.88535i −0.252693 0.145893i 0.368303 0.929706i \(-0.379939\pi\)
−0.620997 + 0.783813i \(0.713272\pi\)
\(168\) 0 0
\(169\) 1.86050 12.8662i 0.143115 0.989706i
\(170\) 6.77851 0.519888
\(171\) 0 0
\(172\) −3.49158 −0.266230
\(173\) −5.42672 9.39936i −0.412586 0.714620i 0.582586 0.812769i \(-0.302041\pi\)
−0.995172 + 0.0981495i \(0.968708\pi\)
\(174\) 0 0
\(175\) −6.87296 3.96810i −0.519547 0.299960i
\(176\) 4.47678 + 2.58467i 0.337450 + 0.194827i
\(177\) 0 0
\(178\) 1.67325 + 2.89815i 0.125415 + 0.217226i
\(179\) 14.6400 1.09425 0.547123 0.837052i \(-0.315723\pi\)
0.547123 + 0.837052i \(0.315723\pi\)
\(180\) 0 0
\(181\) −2.81354 −0.209129 −0.104565 0.994518i \(-0.533345\pi\)
−0.104565 + 0.994518i \(0.533345\pi\)
\(182\) 1.50044 + 7.80199i 0.111220 + 0.578322i
\(183\) 0 0
\(184\) 7.26814 + 4.19626i 0.535814 + 0.309353i
\(185\) −0.947509 + 1.64113i −0.0696622 + 0.120659i
\(186\) 0 0
\(187\) 10.3469 5.97379i 0.756641 0.436847i
\(188\) 5.53442i 0.403639i
\(189\) 0 0
\(190\) 15.1609i 1.09989i
\(191\) −4.38820 7.60058i −0.317519 0.549959i 0.662451 0.749105i \(-0.269516\pi\)
−0.979970 + 0.199147i \(0.936183\pi\)
\(192\) 0 0
\(193\) −13.7032 7.91153i −0.986376 0.569485i −0.0821872 0.996617i \(-0.526191\pi\)
−0.904189 + 0.427132i \(0.859524\pi\)
\(194\) −0.745470 + 1.29119i −0.0535216 + 0.0927022i
\(195\) 0 0
\(196\) 1.07221 + 1.85713i 0.0765868 + 0.132652i
\(197\) 0.395717i 0.0281936i −0.999901 0.0140968i \(-0.995513\pi\)
0.999901 0.0140968i \(-0.00448731\pi\)
\(198\) 0 0
\(199\) 3.20316 0.227066 0.113533 0.993534i \(-0.463783\pi\)
0.113533 + 0.993534i \(0.463783\pi\)
\(200\) 3.11906 1.80079i 0.220551 0.127335i
\(201\) 0 0
\(202\) 0.352206 + 0.203346i 0.0247811 + 0.0143074i
\(203\) 18.0395 + 10.4151i 1.26613 + 0.730998i
\(204\) 0 0
\(205\) −1.14285 1.97948i −0.0798202 0.138253i
\(206\) 17.1609i 1.19565i
\(207\) 0 0
\(208\) −3.40677 1.18064i −0.236217 0.0818625i
\(209\) −13.3610 23.1420i −0.924202 1.60077i
\(210\) 0 0
\(211\) −4.13986 + 7.17045i −0.285000 + 0.493634i −0.972609 0.232447i \(-0.925327\pi\)
0.687609 + 0.726081i \(0.258660\pi\)
\(212\) 4.34238 7.52122i 0.298236 0.516559i
\(213\) 0 0
\(214\) 0.285403 0.164777i 0.0195097 0.0112639i
\(215\) 10.2403i 0.698380i
\(216\) 0 0
\(217\) 13.7130 0.930900
\(218\) −4.82463 8.35651i −0.326765 0.565974i
\(219\) 0 0
\(220\) 7.58044 13.1297i 0.511073 0.885204i
\(221\) −6.30009 + 5.45460i −0.423790 + 0.366916i
\(222\) 0 0
\(223\) −12.4014 + 7.15993i −0.830456 + 0.479464i −0.854009 0.520258i \(-0.825836\pi\)
0.0235526 + 0.999723i \(0.492502\pi\)
\(224\) 2.20354 0.147230
\(225\) 0 0
\(226\) 3.03210i 0.201692i
\(227\) 17.3351 10.0084i 1.15057 0.664284i 0.201546 0.979479i \(-0.435403\pi\)
0.949027 + 0.315195i \(0.102070\pi\)
\(228\) 0 0
\(229\) 2.23215 + 1.28873i 0.147505 + 0.0851619i 0.571936 0.820298i \(-0.306193\pi\)
−0.424431 + 0.905460i \(0.639526\pi\)
\(230\) 12.3070 21.3163i 0.811499 1.40556i
\(231\) 0 0
\(232\) −8.18662 + 4.72655i −0.537478 + 0.310313i
\(233\) −14.0412 −0.919866 −0.459933 0.887954i \(-0.652127\pi\)
−0.459933 + 0.887954i \(0.652127\pi\)
\(234\) 0 0
\(235\) −16.2316 −1.05883
\(236\) −2.59002 + 1.49535i −0.168596 + 0.0973390i
\(237\) 0 0
\(238\) 2.54645 4.41058i 0.165062 0.285895i
\(239\) 4.07262 + 2.35133i 0.263436 + 0.152095i 0.625901 0.779903i \(-0.284731\pi\)
−0.362465 + 0.931997i \(0.618065\pi\)
\(240\) 0 0
\(241\) −19.5733 + 11.3007i −1.26083 + 0.727939i −0.973235 0.229814i \(-0.926188\pi\)
−0.287593 + 0.957753i \(0.592855\pi\)
\(242\) 15.7221i 1.01065i
\(243\) 0 0
\(244\) 0.864857 0.0553668
\(245\) 5.44668 3.14464i 0.347975 0.200904i
\(246\) 0 0
\(247\) 12.1998 + 14.0908i 0.776255 + 0.896579i
\(248\) −3.11159 + 5.38944i −0.197586 + 0.342230i
\(249\) 0 0
\(250\) 2.05068 + 3.55188i 0.129696 + 0.224640i
\(251\) −3.40669 −0.215028 −0.107514 0.994204i \(-0.534289\pi\)
−0.107514 + 0.994204i \(0.534289\pi\)
\(252\) 0 0
\(253\) 43.3838i 2.72752i
\(254\) −7.82328 + 4.51677i −0.490876 + 0.283408i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −10.9148 + 18.9049i −0.680844 + 1.17926i 0.293880 + 0.955842i \(0.405053\pi\)
−0.974724 + 0.223414i \(0.928280\pi\)
\(258\) 0 0
\(259\) 0.711892 + 1.23303i 0.0442348 + 0.0766170i
\(260\) −3.46263 + 9.99153i −0.214743 + 0.619649i
\(261\) 0 0
\(262\) 17.4172i 1.07604i
\(263\) 2.95513 + 5.11843i 0.182221 + 0.315616i 0.942637 0.333821i \(-0.108338\pi\)
−0.760416 + 0.649437i \(0.775005\pi\)
\(264\) 0 0
\(265\) −22.0586 12.7355i −1.35505 0.782336i
\(266\) −9.86475 5.69541i −0.604846 0.349208i
\(267\) 0 0
\(268\) −9.68023 + 5.58888i −0.591314 + 0.341395i
\(269\) −1.05911 −0.0645751 −0.0322875 0.999479i \(-0.510279\pi\)
−0.0322875 + 0.999479i \(0.510279\pi\)
\(270\) 0 0
\(271\) 21.8135i 1.32508i 0.749027 + 0.662539i \(0.230521\pi\)
−0.749027 + 0.662539i \(0.769479\pi\)
\(272\) 1.15562 + 2.00159i 0.0700697 + 0.121364i
\(273\) 0 0
\(274\) −2.42800 + 4.20543i −0.146681 + 0.254059i
\(275\) −16.1235 9.30889i −0.972282 0.561347i
\(276\) 0 0
\(277\) 8.83826 + 15.3083i 0.531040 + 0.919788i 0.999344 + 0.0362206i \(0.0115319\pi\)
−0.468304 + 0.883567i \(0.655135\pi\)
\(278\) 11.6453i 0.698436i
\(279\) 0 0
\(280\) 6.46263i 0.386216i
\(281\) −11.5370 + 6.66092i −0.688243 + 0.397357i −0.802953 0.596042i \(-0.796739\pi\)
0.114711 + 0.993399i \(0.463406\pi\)
\(282\) 0 0
\(283\) −2.64908 + 4.58833i −0.157471 + 0.272748i −0.933956 0.357388i \(-0.883667\pi\)
0.776485 + 0.630136i \(0.217001\pi\)
\(284\) −11.2141 6.47445i −0.665433 0.384188i
\(285\) 0 0
\(286\) 3.51992 + 18.3029i 0.208137 + 1.08227i
\(287\) −1.71732 −0.101370
\(288\) 0 0
\(289\) −11.6582 −0.685775
\(290\) 13.8622 + 24.0101i 0.814019 + 1.40992i
\(291\) 0 0
\(292\) −3.70254 2.13767i −0.216675 0.125097i
\(293\) −12.7124 7.33950i −0.742666 0.428778i 0.0803721 0.996765i \(-0.474389\pi\)
−0.823038 + 0.567987i \(0.807722\pi\)
\(294\) 0 0
\(295\) 4.38563 + 7.59613i 0.255341 + 0.442264i
\(296\) −0.646136 −0.0375559
\(297\) 0 0
\(298\) 21.8055 1.26316
\(299\) 5.71466 + 29.7152i 0.330488 + 1.71847i
\(300\) 0 0
\(301\) 6.66304 + 3.84691i 0.384051 + 0.221732i
\(302\) 7.33161 12.6987i 0.421887 0.730729i
\(303\) 0 0
\(304\) 4.47678 2.58467i 0.256761 0.148241i
\(305\) 2.53649i 0.145239i
\(306\) 0 0
\(307\) 3.41724i 0.195032i −0.995234 0.0975160i \(-0.968910\pi\)
0.995234 0.0975160i \(-0.0310897\pi\)
\(308\) −5.69541 9.86475i −0.324526 0.562096i
\(309\) 0 0
\(310\) 15.8064 + 9.12582i 0.897742 + 0.518312i
\(311\) 5.41458 9.37832i 0.307033 0.531796i −0.670679 0.741747i \(-0.733997\pi\)
0.977712 + 0.209952i \(0.0673306\pi\)
\(312\) 0 0
\(313\) −9.67596 16.7593i −0.546918 0.947289i −0.998484 0.0550515i \(-0.982468\pi\)
0.451566 0.892238i \(-0.350866\pi\)
\(314\) 7.94869i 0.448570i
\(315\) 0 0
\(316\) 3.04350 0.171210
\(317\) 13.7615 7.94519i 0.772922 0.446247i −0.0609942 0.998138i \(-0.519427\pi\)
0.833916 + 0.551892i \(0.186094\pi\)
\(318\) 0 0
\(319\) 42.3194 + 24.4331i 2.36943 + 1.36799i
\(320\) 2.53992 + 1.46642i 0.141986 + 0.0819755i
\(321\) 0 0
\(322\) −9.24661 16.0156i −0.515294 0.892515i
\(323\) 11.9476i 0.664781i
\(324\) 0 0
\(325\) 12.2698 + 4.25216i 0.680604 + 0.235867i
\(326\) 0.111267 + 0.192720i 0.00616249 + 0.0106737i
\(327\) 0 0
\(328\) 0.389673 0.674934i 0.0215161 0.0372670i
\(329\) −6.09765 + 10.5614i −0.336174 + 0.582271i
\(330\) 0 0
\(331\) −24.7786 + 14.3059i −1.36195 + 0.786325i −0.989884 0.141880i \(-0.954685\pi\)
−0.372070 + 0.928204i \(0.621352\pi\)
\(332\) 3.68705i 0.202353i
\(333\) 0 0
\(334\) −3.77070 −0.206323
\(335\) 16.3913 + 28.3906i 0.895554 + 1.55115i
\(336\) 0 0
\(337\) 2.75329 4.76884i 0.149981 0.259775i −0.781239 0.624232i \(-0.785412\pi\)
0.931220 + 0.364457i \(0.118745\pi\)
\(338\) −4.82185 12.0727i −0.262274 0.656668i
\(339\) 0 0
\(340\) 5.87036 3.38925i 0.318365 0.183808i
\(341\) 32.1698 1.74209
\(342\) 0 0
\(343\) 20.1501i 1.08800i
\(344\) −3.02379 + 1.74579i −0.163032 + 0.0941266i
\(345\) 0 0
\(346\) −9.39936 5.42672i −0.505312 0.291742i
\(347\) −1.32309 + 2.29165i −0.0710271 + 0.123022i −0.899352 0.437226i \(-0.855961\pi\)
0.828325 + 0.560248i \(0.189294\pi\)
\(348\) 0 0
\(349\) −4.83660 + 2.79241i −0.258897 + 0.149474i −0.623831 0.781559i \(-0.714425\pi\)
0.364934 + 0.931033i \(0.381092\pi\)
\(350\) −7.93621 −0.424208
\(351\) 0 0
\(352\) 5.16934 0.275527
\(353\) −22.2107 + 12.8233i −1.18216 + 0.682518i −0.956512 0.291692i \(-0.905782\pi\)
−0.225643 + 0.974210i \(0.572448\pi\)
\(354\) 0 0
\(355\) −18.9886 + 32.8892i −1.00781 + 1.74558i
\(356\) 2.89815 + 1.67325i 0.153602 + 0.0886820i
\(357\) 0 0
\(358\) 12.6786 7.32001i 0.670086 0.386874i
\(359\) 5.78875i 0.305519i 0.988263 + 0.152759i \(0.0488160\pi\)
−0.988263 + 0.152759i \(0.951184\pi\)
\(360\) 0 0
\(361\) −7.72208 −0.406425
\(362\) −2.43660 + 1.40677i −0.128065 + 0.0739383i
\(363\) 0 0
\(364\) 5.20041 + 6.00651i 0.272576 + 0.314826i
\(365\) −6.26944 + 10.8590i −0.328158 + 0.568386i
\(366\) 0 0
\(367\) 15.3992 + 26.6722i 0.803831 + 1.39228i 0.917078 + 0.398708i \(0.130541\pi\)
−0.113247 + 0.993567i \(0.536125\pi\)
\(368\) 8.39252 0.437491
\(369\) 0 0
\(370\) 1.89502i 0.0985173i
\(371\) −16.5733 + 9.56858i −0.860441 + 0.496776i
\(372\) 0 0
\(373\) 15.6441 27.0964i 0.810021 1.40300i −0.102828 0.994699i \(-0.532789\pi\)
0.912849 0.408298i \(-0.133878\pi\)
\(374\) 5.97379 10.3469i 0.308897 0.535026i
\(375\) 0 0
\(376\) −2.76721 4.79295i −0.142708 0.247178i
\(377\) −32.2046 11.1607i −1.65862 0.574805i
\(378\) 0 0
\(379\) 5.29769i 0.272124i 0.990700 + 0.136062i \(0.0434447\pi\)
−0.990700 + 0.136062i \(0.956555\pi\)
\(380\) −7.58044 13.1297i −0.388868 0.673539i
\(381\) 0 0
\(382\) −7.60058 4.38820i −0.388880 0.224520i
\(383\) −19.2301 11.1025i −0.982611 0.567311i −0.0795536 0.996831i \(-0.525349\pi\)
−0.903057 + 0.429520i \(0.858683\pi\)
\(384\) 0 0
\(385\) −28.9318 + 16.7038i −1.47450 + 0.851303i
\(386\) −15.8231 −0.805373
\(387\) 0 0
\(388\) 1.49094i 0.0756910i
\(389\) −4.38589 7.59658i −0.222373 0.385162i 0.733155 0.680062i \(-0.238047\pi\)
−0.955528 + 0.294900i \(0.904714\pi\)
\(390\) 0 0
\(391\) 9.69857 16.7984i 0.490478 0.849532i
\(392\) 1.85713 + 1.07221i 0.0937993 + 0.0541550i
\(393\) 0 0
\(394\) −0.197858 0.342701i −0.00996796 0.0172650i
\(395\) 8.92611i 0.449121i
\(396\) 0 0
\(397\) 33.5447i 1.68356i 0.539819 + 0.841781i \(0.318492\pi\)
−0.539819 + 0.841781i \(0.681508\pi\)
\(398\) 2.77402 1.60158i 0.139049 0.0802799i
\(399\) 0 0
\(400\) 1.80079 3.11906i 0.0900395 0.155953i
\(401\) 1.76682 + 1.02008i 0.0882309 + 0.0509401i 0.543466 0.839431i \(-0.317112\pi\)
−0.455235 + 0.890371i \(0.650445\pi\)
\(402\) 0 0
\(403\) −22.0342 + 4.23751i −1.09760 + 0.211085i
\(404\) 0.406692 0.0202337
\(405\) 0 0
\(406\) 20.8302 1.03379
\(407\) 1.67005 + 2.89261i 0.0827813 + 0.143381i
\(408\) 0 0
\(409\) 28.2129 + 16.2887i 1.39504 + 0.805424i 0.993867 0.110580i \(-0.0352707\pi\)
0.401169 + 0.916004i \(0.368604\pi\)
\(410\) −1.97948 1.14285i −0.0977593 0.0564414i
\(411\) 0 0
\(412\) 8.58044 + 14.8618i 0.422728 + 0.732186i
\(413\) 6.59011 0.324278
\(414\) 0 0
\(415\) −10.8135 −0.530816
\(416\) −3.54067 + 0.680923i −0.173596 + 0.0333850i
\(417\) 0 0
\(418\) −23.1420 13.3610i −1.13191 0.653510i
\(419\) 5.83046 10.0986i 0.284837 0.493351i −0.687733 0.725964i \(-0.741394\pi\)
0.972570 + 0.232612i \(0.0747274\pi\)
\(420\) 0 0
\(421\) 1.41549 0.817233i 0.0689867 0.0398295i −0.465110 0.885253i \(-0.653985\pi\)
0.534097 + 0.845423i \(0.320652\pi\)
\(422\) 8.27972i 0.403051i
\(423\) 0 0
\(424\) 8.68475i 0.421769i
\(425\) −4.16206 7.20889i −0.201889 0.349683i
\(426\) 0 0
\(427\) −1.65042 0.952872i −0.0798695 0.0461127i
\(428\) 0.164777 0.285403i 0.00796481 0.0137955i
\(429\) 0 0
\(430\) 5.12013 + 8.86832i 0.246914 + 0.427668i
\(431\) 2.92645i 0.140962i −0.997513 0.0704810i \(-0.977547\pi\)
0.997513 0.0704810i \(-0.0224534\pi\)
\(432\) 0 0
\(433\) −33.9770 −1.63283 −0.816414 0.577467i \(-0.804041\pi\)
−0.816414 + 0.577467i \(0.804041\pi\)
\(434\) 11.8758 6.85651i 0.570057 0.329123i
\(435\) 0 0
\(436\) −8.35651 4.82463i −0.400204 0.231058i
\(437\) −37.5715 21.6919i −1.79729 1.03766i
\(438\) 0 0
\(439\) 8.24661 + 14.2836i 0.393589 + 0.681717i 0.992920 0.118785i \(-0.0378998\pi\)
−0.599331 + 0.800502i \(0.704566\pi\)
\(440\) 15.1609i 0.722766i
\(441\) 0 0
\(442\) −2.72874 + 7.87386i −0.129793 + 0.374522i
\(443\) −14.4784 25.0774i −0.687891 1.19146i −0.972519 0.232824i \(-0.925203\pi\)
0.284628 0.958638i \(-0.408130\pi\)
\(444\) 0 0
\(445\) 4.90738 8.49983i 0.232632 0.402930i
\(446\) −7.15993 + 12.4014i −0.339032 + 0.587221i
\(447\) 0 0
\(448\) 1.90832 1.10177i 0.0901596 0.0520536i
\(449\) 38.1292i 1.79943i 0.436478 + 0.899715i \(0.356226\pi\)
−0.436478 + 0.899715i \(0.643774\pi\)
\(450\) 0 0
\(451\) −4.02871 −0.189704
\(452\) 1.51605 + 2.62588i 0.0713090 + 0.123511i
\(453\) 0 0
\(454\) 10.0084 17.3351i 0.469719 0.813578i
\(455\) 17.6161 15.2520i 0.825858 0.715025i
\(456\) 0 0
\(457\) 27.1535 15.6771i 1.27019 0.733343i 0.295164 0.955447i \(-0.404626\pi\)
0.975023 + 0.222104i \(0.0712924\pi\)
\(458\) 2.57747 0.120437
\(459\) 0 0
\(460\) 24.6140i 1.14763i
\(461\) 20.5156 11.8447i 0.955507 0.551662i 0.0607196 0.998155i \(-0.480660\pi\)
0.894787 + 0.446493i \(0.147327\pi\)
\(462\) 0 0
\(463\) 5.85941 + 3.38293i 0.272310 + 0.157218i 0.629937 0.776646i \(-0.283081\pi\)
−0.357627 + 0.933865i \(0.616414\pi\)
\(464\) −4.72655 + 8.18662i −0.219425 + 0.380054i
\(465\) 0 0
\(466\) −12.1600 + 7.02058i −0.563301 + 0.325222i
\(467\) 28.8066 1.33301 0.666505 0.745500i \(-0.267789\pi\)
0.666505 + 0.745500i \(0.267789\pi\)
\(468\) 0 0
\(469\) 24.6306 1.13734
\(470\) −14.0570 + 8.11580i −0.648400 + 0.374354i
\(471\) 0 0
\(472\) −1.49535 + 2.59002i −0.0688291 + 0.119215i
\(473\) 15.6310 + 9.02458i 0.718715 + 0.414950i
\(474\) 0 0
\(475\) −16.1235 + 9.30889i −0.739796 + 0.427121i
\(476\) 5.09290i 0.233433i
\(477\) 0 0
\(478\) 4.70266 0.215095
\(479\) −34.9597 + 20.1840i −1.59735 + 0.922230i −0.605354 + 0.795957i \(0.706968\pi\)
−0.991996 + 0.126273i \(0.959698\pi\)
\(480\) 0 0
\(481\) −1.52490 1.76127i −0.0695296 0.0803070i
\(482\) −11.3007 + 19.5733i −0.514731 + 0.891540i
\(483\) 0 0
\(484\) −7.86104 13.6157i −0.357320 0.618896i
\(485\) 4.37270 0.198554
\(486\) 0 0
\(487\) 40.9866i 1.85728i −0.370982 0.928640i \(-0.620979\pi\)
0.370982 0.928640i \(-0.379021\pi\)
\(488\) 0.748988 0.432428i 0.0339051 0.0195751i
\(489\) 0 0
\(490\) 3.14464 5.44668i 0.142060 0.246056i
\(491\) −4.25969 + 7.37800i −0.192237 + 0.332965i −0.945991 0.324192i \(-0.894908\pi\)
0.753754 + 0.657157i \(0.228241\pi\)
\(492\) 0 0
\(493\) 10.9242 + 18.9212i 0.492001 + 0.852170i
\(494\) 17.6108 + 6.10312i 0.792346 + 0.274592i
\(495\) 0 0
\(496\) 6.22318i 0.279429i
\(497\) 14.2667 + 24.7106i 0.639949 + 1.10842i
\(498\) 0 0
\(499\) −18.9967 10.9677i −0.850408 0.490983i 0.0103807 0.999946i \(-0.496696\pi\)
−0.860788 + 0.508963i \(0.830029\pi\)
\(500\) 3.55188 + 2.05068i 0.158845 + 0.0917090i
\(501\) 0 0
\(502\) −2.95028 + 1.70335i −0.131678 + 0.0760241i
\(503\) −31.5620 −1.40728 −0.703641 0.710556i \(-0.748444\pi\)
−0.703641 + 0.710556i \(0.748444\pi\)
\(504\) 0 0
\(505\) 1.19276i 0.0530773i
\(506\) −21.6919 37.5715i −0.964323 1.67026i
\(507\) 0 0
\(508\) −4.51677 + 7.82328i −0.200399 + 0.347102i
\(509\) 32.3673 + 18.6873i 1.43466 + 0.828299i 0.997471 0.0710731i \(-0.0226424\pi\)
0.437184 + 0.899372i \(0.355976\pi\)
\(510\) 0 0
\(511\) 4.71042 + 8.15869i 0.208377 + 0.360919i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 21.8295i 0.962858i
\(515\) 43.5872 25.1651i 1.92068 1.10891i
\(516\) 0 0
\(517\) −14.3047 + 24.7764i −0.629118 + 1.08966i
\(518\) 1.23303 + 0.711892i 0.0541764 + 0.0312788i
\(519\) 0 0
\(520\) 1.99704 + 10.3842i 0.0875761 + 0.455379i
\(521\) 17.2949 0.757705 0.378853 0.925457i \(-0.376319\pi\)
0.378853 + 0.925457i \(0.376319\pi\)
\(522\) 0 0
\(523\) −10.5189 −0.459960 −0.229980 0.973195i \(-0.573866\pi\)
−0.229980 + 0.973195i \(0.573866\pi\)
\(524\) 8.70860 + 15.0837i 0.380437 + 0.658936i
\(525\) 0 0
\(526\) 5.11843 + 2.95513i 0.223174 + 0.128850i
\(527\) 12.4563 + 7.19163i 0.542604 + 0.313273i
\(528\) 0 0
\(529\) −23.7172 41.0795i −1.03118 1.78606i
\(530\) −25.4710 −1.10639
\(531\) 0 0
\(532\) −11.3908 −0.493855
\(533\) 2.75941 0.530675i 0.119523 0.0229861i
\(534\) 0 0
\(535\) −0.837042 0.483266i −0.0361885 0.0208934i
\(536\) −5.58888 + 9.68023i −0.241403 + 0.418122i
\(537\) 0 0
\(538\) −0.917216 + 0.529555i −0.0395440 + 0.0228307i
\(539\) 11.0853i 0.477477i
\(540\) 0 0
\(541\) 21.7436i 0.934832i −0.884038 0.467416i \(-0.845185\pi\)
0.884038 0.467416i \(-0.154815\pi\)
\(542\) 10.9068 + 18.8911i 0.468486 + 0.811441i
\(543\) 0 0
\(544\) 2.00159 + 1.15562i 0.0858175 + 0.0495468i
\(545\) −14.1499 + 24.5084i −0.606115 + 1.04982i
\(546\) 0 0
\(547\) −13.9964 24.2425i −0.598444 1.03654i −0.993051 0.117685i \(-0.962453\pi\)
0.394607 0.918850i \(-0.370881\pi\)
\(548\) 4.85601i 0.207438i
\(549\) 0 0
\(550\) −18.6178 −0.793865
\(551\) 42.3194 24.4331i 1.80287 1.04089i
\(552\) 0 0
\(553\) −5.80796 3.35323i −0.246980 0.142594i
\(554\) 15.3083 + 8.83826i 0.650388 + 0.375502i
\(555\) 0 0
\(556\) −5.82263 10.0851i −0.246934 0.427703i
\(557\) 8.27318i 0.350546i 0.984520 + 0.175273i \(0.0560808\pi\)
−0.984520 + 0.175273i \(0.943919\pi\)
\(558\) 0 0
\(559\) −11.8950 4.12229i −0.503105 0.174354i
\(560\) −3.23131 5.59680i −0.136548 0.236508i
\(561\) 0 0
\(562\) −6.66092 + 11.5370i −0.280974 + 0.486661i
\(563\) 5.05976 8.76376i 0.213243 0.369349i −0.739484 0.673174i \(-0.764931\pi\)
0.952728 + 0.303825i \(0.0982639\pi\)
\(564\) 0 0
\(565\) 7.70129 4.44634i 0.323996 0.187059i
\(566\) 5.29815i 0.222698i
\(567\) 0 0
\(568\) −12.9489 −0.543324
\(569\) −10.6762 18.4917i −0.447568 0.775211i 0.550659 0.834730i \(-0.314376\pi\)
−0.998227 + 0.0595196i \(0.981043\pi\)
\(570\) 0 0
\(571\) −5.62132 + 9.73641i −0.235245 + 0.407456i −0.959344 0.282240i \(-0.908923\pi\)
0.724099 + 0.689696i \(0.242256\pi\)
\(572\) 12.1998 + 14.0908i 0.510100 + 0.589168i
\(573\) 0 0
\(574\) −1.48724 + 0.858659i −0.0620762 + 0.0358397i
\(575\) −30.2263 −1.26053
\(576\) 0 0
\(577\) 13.4761i 0.561018i 0.959851 + 0.280509i \(0.0905032\pi\)
−0.959851 + 0.280509i \(0.909497\pi\)
\(578\) −10.0963 + 5.82909i −0.419950 + 0.242458i
\(579\) 0 0
\(580\) 24.0101 + 13.8622i 0.996965 + 0.575598i
\(581\) −4.06227 + 7.03606i −0.168531 + 0.291905i
\(582\) 0 0
\(583\) −38.8797 + 22.4472i −1.61023 + 0.929669i
\(584\) −4.27533 −0.176914
\(585\) 0 0
\(586\) −14.6790 −0.606384
\(587\) −24.4663 + 14.1256i −1.00983 + 0.583027i −0.911143 0.412091i \(-0.864799\pi\)
−0.0986903 + 0.995118i \(0.531465\pi\)
\(588\) 0 0
\(589\) 16.0849 27.8598i 0.662766 1.14794i
\(590\) 7.59613 + 4.38563i 0.312728 + 0.180554i
\(591\) 0 0
\(592\) −0.559571 + 0.323068i −0.0229982 + 0.0132780i
\(593\) 33.3901i 1.37117i −0.727993 0.685585i \(-0.759547\pi\)
0.727993 0.685585i \(-0.240453\pi\)
\(594\) 0 0
\(595\) −14.9367 −0.612344
\(596\) 18.8841 10.9027i 0.773522 0.446593i
\(597\) 0 0
\(598\) 19.8066 + 22.8768i 0.809953 + 0.935500i
\(599\) 10.0405 17.3907i 0.410245 0.710564i −0.584672 0.811270i \(-0.698777\pi\)
0.994916 + 0.100706i \(0.0321100\pi\)
\(600\) 0 0
\(601\) −5.78337 10.0171i −0.235909 0.408606i 0.723628 0.690191i \(-0.242473\pi\)
−0.959536 + 0.281585i \(0.909140\pi\)
\(602\) 7.69382 0.313577
\(603\) 0 0
\(604\) 14.6632i 0.596638i
\(605\) −39.9328 + 23.0552i −1.62350 + 0.937328i
\(606\) 0 0
\(607\) −12.0487 + 20.8689i −0.489040 + 0.847042i −0.999920 0.0126098i \(-0.995986\pi\)
0.510881 + 0.859652i \(0.329319\pi\)
\(608\) 2.58467 4.47678i 0.104822 0.181557i
\(609\) 0 0
\(610\) −1.26825 2.19667i −0.0513498 0.0889404i
\(611\) 6.53415 18.8545i 0.264344 0.762772i
\(612\) 0 0
\(613\) 3.75444i 0.151641i −0.997122 0.0758203i \(-0.975842\pi\)
0.997122 0.0758203i \(-0.0241575\pi\)
\(614\) −1.70862 2.95941i −0.0689542 0.119432i
\(615\) 0 0
\(616\) −9.86475 5.69541i −0.397462 0.229475i
\(617\) 12.4831 + 7.20712i 0.502551 + 0.290148i 0.729766 0.683697i \(-0.239629\pi\)
−0.227216 + 0.973844i \(0.572962\pi\)
\(618\) 0 0
\(619\) 7.94447 4.58674i 0.319315 0.184357i −0.331772 0.943360i \(-0.607647\pi\)
0.651087 + 0.759003i \(0.274313\pi\)
\(620\) 18.2516 0.733003
\(621\) 0 0
\(622\) 10.8292i 0.434210i
\(623\) −3.68706 6.38618i −0.147719 0.255857i
\(624\) 0 0
\(625\) 15.0183 26.0124i 0.600730 1.04050i
\(626\) −16.7593 9.67596i −0.669835 0.386729i
\(627\) 0 0
\(628\) 3.97434 + 6.88376i 0.158594 + 0.274692i
\(629\) 1.49338i 0.0595448i
\(630\) 0 0
\(631\) 32.8572i 1.30803i −0.756483 0.654013i \(-0.773084\pi\)
0.756483 0.654013i \(-0.226916\pi\)
\(632\) 2.63575 1.52175i 0.104844 0.0605319i
\(633\) 0 0
\(634\) 7.94519 13.7615i 0.315544 0.546538i
\(635\) 22.9445 + 13.2470i 0.910523 + 0.525691i
\(636\) 0 0
\(637\) 1.46019 + 7.59272i 0.0578549 + 0.300834i
\(638\) 48.8663 1.93463
\(639\) 0 0
\(640\) 2.93284 0.115931
\(641\) −10.6942 18.5230i −0.422397 0.731613i 0.573776 0.819012i \(-0.305478\pi\)
−0.996173 + 0.0873990i \(0.972145\pi\)
\(642\) 0 0
\(643\) 4.58280 + 2.64588i 0.180728 + 0.104343i 0.587635 0.809126i \(-0.300059\pi\)
−0.406907 + 0.913470i \(0.633393\pi\)
\(644\) −16.0156 9.24661i −0.631103 0.364368i
\(645\) 0 0
\(646\) −5.97379 10.3469i −0.235036 0.407094i
\(647\) −0.564603 −0.0221968 −0.0110984 0.999938i \(-0.503533\pi\)
−0.0110984 + 0.999938i \(0.503533\pi\)
\(648\) 0 0
\(649\) 15.4599 0.606856
\(650\) 12.7520 2.45240i 0.500175 0.0961910i
\(651\) 0 0
\(652\) 0.192720 + 0.111267i 0.00754748 + 0.00435754i
\(653\) −8.01118 + 13.8758i −0.313502 + 0.543001i −0.979118 0.203293i \(-0.934835\pi\)
0.665616 + 0.746294i \(0.268169\pi\)
\(654\) 0 0
\(655\) 44.2382 25.5410i 1.72853 0.997968i
\(656\) 0.779346i 0.0304284i
\(657\) 0 0
\(658\) 12.1953i 0.475422i
\(659\) −3.71611 6.43648i −0.144759 0.250730i 0.784524 0.620098i \(-0.212907\pi\)
−0.929283 + 0.369369i \(0.879574\pi\)
\(660\) 0 0
\(661\) 13.6161 + 7.86129i 0.529607 + 0.305769i 0.740856 0.671664i \(-0.234420\pi\)
−0.211250 + 0.977432i \(0.567753\pi\)
\(662\) −14.3059 + 24.7786i −0.556016 + 0.963047i
\(663\) 0 0
\(664\) −1.84352 3.19308i −0.0715426 0.123915i
\(665\) 33.4075i 1.29549i
\(666\) 0 0
\(667\) 79.3354 3.07188
\(668\) −3.26552 + 1.88535i −0.126347 + 0.0729463i
\(669\) 0 0
\(670\) 28.3906 + 16.3913i 1.09683 + 0.633252i
\(671\) −3.87177 2.23537i −0.149468 0.0862955i
\(672\) 0 0
\(673\) 19.8291 + 34.3450i 0.764356 + 1.32390i 0.940586 + 0.339554i \(0.110276\pi\)
−0.176231 + 0.984349i \(0.556390\pi\)
\(674\) 5.50659i 0.212106i
\(675\) 0 0
\(676\) −10.2122 8.04433i −0.392776 0.309397i
\(677\) −18.2613 31.6296i −0.701840 1.21562i −0.967820 0.251644i \(-0.919029\pi\)
0.265980 0.963979i \(-0.414305\pi\)
\(678\) 0 0
\(679\) 1.64267 2.84519i 0.0630399 0.109188i
\(680\) 3.38925 5.87036i 0.129972 0.225118i
\(681\) 0 0
\(682\) 27.8598 16.0849i 1.06681 0.615922i
\(683\) 8.46240i 0.323805i 0.986807 + 0.161902i \(0.0517630\pi\)
−0.986807 + 0.161902i \(0.948237\pi\)
\(684\) 0 0
\(685\) 14.2419 0.544156
\(686\) −10.0750 17.4505i −0.384667 0.666262i
\(687\) 0 0
\(688\) −1.74579 + 3.02379i −0.0665576 + 0.115281i
\(689\) 23.6733 20.4963i 0.901882 0.780846i
\(690\) 0 0
\(691\) 42.2875 24.4147i 1.60869 0.928779i 0.619028 0.785369i \(-0.287527\pi\)
0.989663 0.143410i \(-0.0458067\pi\)
\(692\) −10.8534 −0.412586
\(693\) 0 0
\(694\) 2.64618i 0.100447i
\(695\) −29.5780 + 17.0769i −1.12196 + 0.647762i
\(696\) 0 0
\(697\) −1.55993 0.900628i −0.0590867 0.0341137i
\(698\) −2.79241 + 4.83660i −0.105694 + 0.183068i
\(699\) 0 0
\(700\) −6.87296 + 3.96810i −0.259773 + 0.149980i
\(701\) 40.2942 1.52189 0.760946 0.648816i \(-0.224735\pi\)
0.760946 + 0.648816i \(0.224735\pi\)
\(702\) 0 0
\(703\) 3.34010 0.125974
\(704\) 4.47678 2.58467i 0.168725 0.0974134i
\(705\) 0 0
\(706\) −12.8233 + 22.2107i −0.482613 + 0.835910i
\(707\) −0.776098 0.448080i −0.0291882 0.0168518i
\(708\) 0 0
\(709\) 33.3511 19.2553i 1.25253 0.723146i 0.280916 0.959732i \(-0.409362\pi\)
0.971611 + 0.236586i \(0.0760286\pi\)
\(710\) 37.9771i 1.42526i
\(711\) 0 0
\(712\) 3.34650 0.125415
\(713\) 45.2310 26.1141i 1.69391 0.977981i
\(714\) 0 0
\(715\) 41.3262 35.7801i 1.54551 1.33810i
\(716\) 7.32001 12.6786i 0.273561 0.473822i
\(717\) 0 0
\(718\) 2.89438 + 5.01321i 0.108017 + 0.187091i
\(719\) 0.951205 0.0354740 0.0177370 0.999843i \(-0.494354\pi\)
0.0177370 + 0.999843i \(0.494354\pi\)
\(720\) 0 0
\(721\) 37.8146i 1.40829i
\(722\) −6.68752 + 3.86104i −0.248884 + 0.143693i
\(723\) 0 0
\(724\) −1.40677 + 2.43660i −0.0522823 + 0.0905555i
\(725\) 17.0230 29.4848i 0.632220 1.09504i
\(726\) 0 0
\(727\) −0.999064 1.73043i −0.0370532 0.0641781i 0.846904 0.531746i \(-0.178464\pi\)
−0.883957 + 0.467568i \(0.845130\pi\)
\(728\) 7.50694 + 2.60158i 0.278226 + 0.0964209i
\(729\) 0 0
\(730\) 12.5389i 0.464085i
\(731\) 4.03494 + 6.98871i 0.149237 + 0.258487i
\(732\) 0 0
\(733\) −13.5363 7.81519i −0.499975 0.288661i 0.228728 0.973490i \(-0.426543\pi\)
−0.728703 + 0.684830i \(0.759877\pi\)
\(734\) 26.6722 + 15.3992i 0.984487 + 0.568394i
\(735\) 0 0
\(736\) 7.26814 4.19626i 0.267907 0.154676i
\(737\) 57.7817 2.12842
\(738\) 0 0
\(739\) 20.0122i 0.736162i 0.929794 + 0.368081i \(0.119985\pi\)
−0.929794 + 0.368081i \(0.880015\pi\)
\(740\) 0.947509 + 1.64113i 0.0348311 + 0.0603293i
\(741\) 0 0
\(742\) −9.56858 + 16.5733i −0.351274 + 0.608424i
\(743\) −33.5922 19.3945i −1.23238 0.711515i −0.264855 0.964288i \(-0.585324\pi\)
−0.967526 + 0.252773i \(0.918657\pi\)
\(744\) 0 0
\(745\) −31.9760 55.3841i −1.17151 2.02912i
\(746\) 31.2882i 1.14554i
\(747\) 0 0
\(748\) 11.9476i 0.436847i
\(749\) −0.628895 + 0.363093i −0.0229793 + 0.0132671i
\(750\) 0 0
\(751\) 7.46950 12.9376i 0.272566 0.472098i −0.696952 0.717118i \(-0.745461\pi\)
0.969518 + 0.245020i \(0.0787944\pi\)
\(752\) −4.79295 2.76721i −0.174781 0.100910i
\(753\) 0 0
\(754\) −33.4703 + 6.43683i −1.21892 + 0.234416i
\(755\) −43.0049 −1.56511
\(756\) 0 0
\(757\) −26.1383 −0.950011 −0.475006 0.879983i \(-0.657554\pi\)
−0.475006 + 0.879983i \(0.657554\pi\)
\(758\) 2.64885 + 4.58794i 0.0962105 + 0.166641i
\(759\) 0 0
\(760\) −13.1297 7.58044i −0.476264 0.274971i
\(761\) −2.64121 1.52490i −0.0957437 0.0552776i 0.451364 0.892340i \(-0.350938\pi\)
−0.547107 + 0.837062i \(0.684271\pi\)
\(762\) 0 0
\(763\) 10.6313 + 18.4139i 0.384877 + 0.666627i
\(764\) −8.77640 −0.317519
\(765\) 0 0
\(766\) −22.2050 −0.802299
\(767\) −10.5891 + 2.03644i −0.382350 + 0.0735315i
\(768\) 0 0
\(769\) 5.95518 + 3.43822i 0.214749 + 0.123985i 0.603517 0.797350i \(-0.293766\pi\)
−0.388767 + 0.921336i \(0.627099\pi\)
\(770\) −16.7038 + 28.9318i −0.601962 + 1.04263i
\(771\) 0 0
\(772\) −13.7032 + 7.91153i −0.493188 + 0.284742i
\(773\) 18.4949i 0.665216i −0.943065 0.332608i \(-0.892071\pi\)
0.943065 0.332608i \(-0.107929\pi\)
\(774\) 0 0
\(775\) 22.4133i 0.805109i
\(776\) 0.745470 + 1.29119i 0.0267608 + 0.0463511i
\(777\) 0 0
\(778\) −7.59658 4.38589i −0.272351 0.157242i
\(779\) −2.01435 + 3.48896i −0.0721717 + 0.125005i
\(780\) 0 0
\(781\) 33.4687 + 57.9694i 1.19760 + 2.07431i
\(782\) 19.3971i 0.693640i
\(783\) 0 0
\(784\) 2.14443 0.0765868
\(785\) 20.1890 11.6561i 0.720577 0.416025i
\(786\) 0 0
\(787\) 0.0764271 + 0.0441252i 0.00272433 + 0.00157289i 0.501362 0.865238i \(-0.332833\pi\)
−0.498637 + 0.866811i \(0.666166\pi\)
\(788\) −0.342701 0.197858i −0.0122082 0.00704841i
\(789\) 0 0
\(790\) −4.46305 7.73023i −0.158788 0.275029i
\(791\) 6.68135i 0.237561i
\(792\) 0 0
\(793\) 2.94637 + 1.02108i 0.104629 + 0.0362597i
\(794\) 16.7724 + 29.0506i 0.595229 + 1.03097i
\(795\) 0 0
\(796\) 1.60158 2.77402i 0.0567665 0.0983224i
\(797\) 15.4544 26.7677i 0.547421 0.948161i −0.451029 0.892509i \(-0.648943\pi\)
0.998450 0.0556521i \(-0.0177238\pi\)
\(798\) 0 0
\(799\) −11.0777 + 6.39569i −0.391899 + 0.226263i
\(800\) 3.60158i 0.127335i
\(801\) 0 0
\(802\) 2.04015 0.0720402
\(803\) 11.0503 + 19.1397i 0.389957 + 0.675426i
\(804\) 0 0
\(805\) −27.1189 + 46.9713i −0.955815 + 1.65552i
\(806\) −16.9635 + 14.6869i −0.597512 + 0.517324i
\(807\) 0 0
\(808\) 0.352206 0.203346i 0.0123905 0.00715369i
\(809\) −45.6038 −1.60335 −0.801673 0.597763i \(-0.796056\pi\)
−0.801673 + 0.597763i \(0.796056\pi\)
\(810\) 0 0
\(811\) 20.3497i 0.714575i 0.933994 + 0.357287i \(0.116298\pi\)
−0.933994 + 0.357287i \(0.883702\pi\)
\(812\) 18.0395 10.4151i 0.633063 0.365499i
\(813\) 0 0
\(814\) 2.89261 + 1.67005i 0.101386 + 0.0585352i
\(815\) 0.326328 0.565216i 0.0114308 0.0197987i
\(816\) 0 0
\(817\) 15.6310 9.02458i 0.546860 0.315730i
\(818\) 32.5774 1.13904
\(819\) 0 0
\(820\) −2.28570 −0.0798202
\(821\) −10.1101 + 5.83707i −0.352845 + 0.203715i −0.665938 0.746007i \(-0.731968\pi\)
0.313093 + 0.949723i \(0.398635\pi\)
\(822\) 0 0
\(823\) 17.8000 30.8305i 0.620469 1.07468i −0.368929 0.929457i \(-0.620276\pi\)
0.989398 0.145227i \(-0.0463911\pi\)
\(824\) 14.8618 + 8.58044i 0.517734 + 0.298914i
\(825\) 0 0
\(826\) 5.70721 3.29506i 0.198579 0.114650i
\(827\) 13.5478i 0.471103i 0.971862 + 0.235551i \(0.0756896\pi\)
−0.971862 + 0.235551i \(0.924310\pi\)
\(828\) 0 0
\(829\) 52.4752 1.82254 0.911270 0.411809i \(-0.135103\pi\)
0.911270 + 0.411809i \(0.135103\pi\)
\(830\) −9.36480 + 5.40677i −0.325057 + 0.187672i
\(831\) 0 0
\(832\) −2.72585 + 2.36003i −0.0945018 + 0.0818194i
\(833\) 2.47814 4.29227i 0.0858626 0.148718i
\(834\) 0 0
\(835\) 5.52943 + 9.57726i 0.191354 + 0.331435i
\(836\) −26.7221 −0.924202
\(837\) 0 0
\(838\) 11.6609i 0.402820i
\(839\) 42.6368 24.6164i 1.47199 0.849852i 0.472483 0.881340i \(-0.343358\pi\)
0.999504 + 0.0314877i \(0.0100245\pi\)
\(840\) 0 0
\(841\) −30.1805 + 52.2742i −1.04071 + 1.80256i
\(842\) 0.817233 1.41549i 0.0281637 0.0487810i
\(843\) 0 0
\(844\) 4.13986 + 7.17045i 0.142500 + 0.246817i
\(845\) −23.5928 + 29.9508i −0.811616 + 1.03034i
\(846\) 0 0
\(847\) 34.6442i 1.19039i
\(848\) −4.34238 7.52122i −0.149118 0.258280i
\(849\) 0 0
\(850\) −7.20889 4.16206i −0.247263 0.142757i
\(851\) 4.69621 + 2.71136i 0.160984 + 0.0929442i
\(852\) 0 0
\(853\) −38.8350 + 22.4214i −1.32969 + 0.767695i −0.985251 0.171115i \(-0.945263\pi\)
−0.344436 + 0.938810i \(0.611930\pi\)
\(854\) −1.90574 −0.0652132
\(855\) 0 0
\(856\) 0.329555i 0.0112639i
\(857\) 18.8779 + 32.6976i 0.644858 + 1.11693i 0.984334 + 0.176313i \(0.0564169\pi\)
−0.339476 + 0.940615i \(0.610250\pi\)
\(858\) 0 0
\(859\) 15.3522 26.5909i 0.523812 0.907269i −0.475804 0.879551i \(-0.657843\pi\)
0.999616 0.0277174i \(-0.00882386\pi\)
\(860\) 8.86832 + 5.12013i 0.302407 + 0.174595i
\(861\) 0 0
\(862\) −1.46322 2.53438i −0.0498376 0.0863212i
\(863\) 4.16398i 0.141744i −0.997485 0.0708718i \(-0.977422\pi\)
0.997485 0.0708718i \(-0.0225781\pi\)
\(864\) 0 0
\(865\) 31.8315i 1.08230i
\(866\) −29.4249 + 16.9885i −0.999899 + 0.577292i
\(867\) 0 0
\(868\) 6.85651 11.8758i 0.232725 0.403091i
\(869\) −13.6251 7.86644i −0.462199 0.266851i
\(870\) 0 0
\(871\) −39.5768 + 7.61120i −1.34101 + 0.257896i
\(872\) −9.64927 −0.326765
\(873\) 0 0
\(874\) −43.3838 −1.46748
\(875\) −4.51874 7.82668i −0.152761 0.264590i
\(876\) 0 0
\(877\) −1.86139 1.07467i −0.0628547 0.0362892i 0.468243 0.883600i \(-0.344887\pi\)
−0.531098 + 0.847310i \(0.678220\pi\)
\(878\) 14.2836 + 8.24661i 0.482047 + 0.278310i
\(879\) 0 0
\(880\) −7.58044 13.1297i −0.255536 0.442602i
\(881\) 5.95507 0.200632 0.100316 0.994956i \(-0.468015\pi\)
0.100316 + 0.994956i \(0.468015\pi\)
\(882\) 0 0
\(883\) −27.9174 −0.939495 −0.469747 0.882801i \(-0.655655\pi\)
−0.469747 + 0.882801i \(0.655655\pi\)
\(884\) 1.57378 + 8.18334i 0.0529318 + 0.275235i
\(885\) 0 0
\(886\) −25.0774 14.4784i −0.842491 0.486412i
\(887\) 24.7256 42.8261i 0.830206 1.43796i −0.0676692 0.997708i \(-0.521556\pi\)
0.897875 0.440251i \(-0.145110\pi\)
\(888\) 0 0
\(889\) 17.2389 9.95287i 0.578173 0.333809i
\(890\) 9.81476i 0.328991i
\(891\) 0 0
\(892\) 14.3199i 0.479464i
\(893\) 14.3047 + 24.7764i 0.478687 + 0.829111i
\(894\) 0 0
\(895\) −37.1844 21.4684i −1.24294 0.717611i
\(896\) 1.10177 1.90832i 0.0368075 0.0637524i
\(897\) 0 0
\(898\) 19.0646 + 33.0209i 0.636194 + 1.10192i
\(899\) 58.8284i 1.96204i
\(900\) 0 0
\(901\) −20.0725 −0.668713
\(902\) −3.48896 + 2.01435i −0.116170 + 0.0670706i
\(903\) 0 0
\(904\) 2.62588 + 1.51605i 0.0873354 + 0.0504231i
\(905\) 7.14617 + 4.12584i 0.237547 + 0.137148i
\(906\) 0 0
\(907\) −14.8172 25.6642i −0.491998 0.852166i 0.507959 0.861381i \(-0.330400\pi\)
−0.999958 + 0.00921522i \(0.997067\pi\)
\(908\) 20.0169i 0.664284i
\(909\) 0 0
\(910\) 7.63003 22.0167i 0.252933 0.729847i
\(911\) 29.0315 + 50.2840i 0.961855 + 1.66598i 0.717837 + 0.696211i \(0.245132\pi\)
0.244018 + 0.969771i \(0.421534\pi\)
\(912\) 0 0
\(913\) −9.52981 + 16.5061i −0.315391 + 0.546272i
\(914\) 15.6771 27.1535i 0.518552 0.898158i
\(915\) 0 0
\(916\) 2.23215 1.28873i 0.0737524 0.0425809i
\(917\) 38.3794i 1.26740i
\(918\) 0 0
\(919\) −27.6437 −0.911882 −0.455941 0.890010i \(-0.650697\pi\)
−0.455941 + 0.890010i \(0.650697\pi\)
\(920\) −12.3070 21.3163i −0.405749 0.702778i
\(921\) 0 0
\(922\) 11.8447 20.5156i 0.390084 0.675645i
\(923\) −30.5598 35.2968i −1.00589 1.16181i
\(924\) 0 0
\(925\) 2.01534 1.16356i 0.0662639 0.0382575i
\(926\) 6.76587 0.222340
\(927\) 0 0
\(928\) 9.45310i 0.310313i
\(929\) −30.2473 + 17.4633i −0.992383 + 0.572953i −0.905986 0.423308i \(-0.860869\pi\)
−0.0863975 + 0.996261i \(0.527536\pi\)
\(930\) 0 0
\(931\) −9.60014 5.54264i −0.314632 0.181653i
\(932\) −7.02058 + 12.1600i −0.229967 + 0.398314i
\(933\) 0 0
\(934\) 24.9473 14.4033i 0.816299 0.471290i
\(935\) −35.0404 −1.14594
\(936\) 0 0
\(937\) −8.39681 −0.274312 −0.137156 0.990549i \(-0.543796\pi\)
−0.137156 + 0.990549i \(0.543796\pi\)
\(938\) 21.3307 12.3153i 0.696473 0.402109i
\(939\) 0 0
\(940\) −8.11580 + 14.0570i −0.264708 + 0.458488i
\(941\) −21.9949 12.6987i −0.717013 0.413967i 0.0966396 0.995319i \(-0.469191\pi\)
−0.813652 + 0.581352i \(0.802524\pi\)
\(942\) 0 0
\(943\) −5.66440 + 3.27034i −0.184458 + 0.106497i
\(944\) 2.99070i 0.0973390i
\(945\) 0 0
\(946\) 18.0492 0.586829
\(947\) 21.2779 12.2848i 0.691440 0.399203i −0.112711 0.993628i \(-0.535954\pi\)
0.804151 + 0.594425i \(0.202620\pi\)
\(948\) 0 0
\(949\) −10.0899 11.6539i −0.327533 0.378302i
\(950\) −9.30889 + 16.1235i −0.302020 + 0.523115i
\(951\) 0 0
\(952\) −2.54645 4.41058i −0.0825309 0.142948i
\(953\) −47.5723 −1.54102 −0.770509 0.637429i \(-0.779998\pi\)
−0.770509 + 0.637429i \(0.779998\pi\)
\(954\) 0 0
\(955\) 25.7398i 0.832921i
\(956\) 4.07262 2.35133i 0.131718 0.0760474i
\(957\) 0 0
\(958\) −20.1840 + 34.9597i −0.652115 + 1.12950i
\(959\) 5.35020 9.26681i 0.172767 0.299241i
\(960\) 0 0
\(961\) 3.86401 + 6.69266i 0.124646 + 0.215892i
\(962\) −2.20124 0.762853i −0.0709708 0.0245954i
\(963\) 0 0
\(964\) 22.6013i 0.727939i
\(965\) 23.2033 + 40.1893i 0.746941 + 1.29374i
\(966\) 0 0
\(967\) −37.3323 21.5538i −1.20053 0.693124i −0.239854 0.970809i \(-0.577100\pi\)
−0.960672 + 0.277685i \(0.910433\pi\)
\(968\) −13.6157 7.86104i −0.437626 0.252663i
\(969\) 0 0
\(970\) 3.78687 2.18635i 0.121589 0.0701994i
\(971\) −14.7164 −0.472272 −0.236136 0.971720i \(-0.575881\pi\)
−0.236136 + 0.971720i \(0.575881\pi\)
\(972\) 0 0
\(973\) 25.6607i 0.822646i
\(974\) −20.4933 35.4954i −0.656648 1.13735i
\(975\) 0 0
\(976\) 0.432428 0.748988i 0.0138417 0.0239745i
\(977\) −5.12243 2.95743i −0.163881 0.0946167i 0.415816 0.909449i \(-0.363496\pi\)
−0.579697 + 0.814832i \(0.696829\pi\)
\(978\) 0 0
\(979\) −8.64959 14.9815i −0.276442 0.478812i
\(980\) 6.28928i 0.200904i
\(981\) 0 0
\(982\) 8.51938i 0.271864i
\(983\) −12.6626 + 7.31074i −0.403873 + 0.233176i −0.688154 0.725565i \(-0.741579\pi\)
0.284281 + 0.958741i \(0.408245\pi\)
\(984\) 0 0
\(985\) −0.580288 + 1.00509i −0.0184895 + 0.0320248i
\(986\) 18.9212 + 10.9242i 0.602575 + 0.347897i
\(987\) 0 0
\(988\) 18.3029 3.51992i 0.582294 0.111984i
\(989\) 29.3031 0.931786
\(990\) 0 0
\(991\) 35.1127 1.11539 0.557696 0.830045i \(-0.311685\pi\)
0.557696 + 0.830045i \(0.311685\pi\)
\(992\) 3.11159 + 5.38944i 0.0987932 + 0.171115i
\(993\) 0 0
\(994\) 24.7106 + 14.2667i 0.783774 + 0.452512i
\(995\) −8.13576 4.69718i −0.257921 0.148911i
\(996\) 0 0
\(997\) 17.6651 + 30.5968i 0.559459 + 0.969011i 0.997542 + 0.0700765i \(0.0223243\pi\)
−0.438083 + 0.898935i \(0.644342\pi\)
\(998\) −21.9355 −0.694355
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.t.a.415.9 28
3.2 odd 2 234.2.t.a.103.2 yes 28
9.2 odd 6 234.2.t.a.25.9 yes 28
9.4 even 3 2106.2.b.d.649.13 14
9.5 odd 6 2106.2.b.c.649.2 14
9.7 even 3 inner 702.2.t.a.181.6 28
13.12 even 2 inner 702.2.t.a.415.6 28
39.38 odd 2 234.2.t.a.103.9 yes 28
117.25 even 6 inner 702.2.t.a.181.9 28
117.38 odd 6 234.2.t.a.25.2 28
117.77 odd 6 2106.2.b.c.649.13 14
117.103 even 6 2106.2.b.d.649.2 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.t.a.25.2 28 117.38 odd 6
234.2.t.a.25.9 yes 28 9.2 odd 6
234.2.t.a.103.2 yes 28 3.2 odd 2
234.2.t.a.103.9 yes 28 39.38 odd 2
702.2.t.a.181.6 28 9.7 even 3 inner
702.2.t.a.181.9 28 117.25 even 6 inner
702.2.t.a.415.6 28 13.12 even 2 inner
702.2.t.a.415.9 28 1.1 even 1 trivial
2106.2.b.c.649.2 14 9.5 odd 6
2106.2.b.c.649.13 14 117.77 odd 6
2106.2.b.d.649.2 14 117.103 even 6
2106.2.b.d.649.13 14 9.4 even 3