Properties

Label 702.2.t.a.415.5
Level $702$
Weight $2$
Character 702.415
Analytic conductor $5.605$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [702,2,Mod(181,702)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(702, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("702.181"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 415.5
Character \(\chi\) \(=\) 702.415
Dual form 702.2.t.a.181.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(0.548308 + 0.316566i) q^{5} +(2.15366 - 1.24342i) q^{7} +1.00000i q^{8} -0.633132 q^{10} +(-4.20891 + 2.43002i) q^{11} +(3.35794 - 1.31310i) q^{13} +(-1.24342 + 2.15366i) q^{14} +(-0.500000 - 0.866025i) q^{16} +6.27837 q^{17} +4.86004i q^{19} +(0.548308 - 0.316566i) q^{20} +(2.43002 - 4.20891i) q^{22} +(1.77384 - 3.07238i) q^{23} +(-2.29957 - 3.98298i) q^{25} +(-2.25152 + 2.81615i) q^{26} -2.48683i q^{28} +(-0.415447 - 0.719576i) q^{29} +(3.73461 + 2.15618i) q^{31} +(0.866025 + 0.500000i) q^{32} +(-5.43723 + 3.13918i) q^{34} +1.57449 q^{35} -7.81310i q^{37} +(-2.43002 - 4.20891i) q^{38} +(-0.316566 + 0.548308i) q^{40} +(0.0678657 + 0.0391823i) q^{41} +(4.84370 + 8.38954i) q^{43} +4.86004i q^{44} +3.54768i q^{46} +(4.30069 - 2.48301i) q^{47} +(-0.407830 + 0.706382i) q^{49} +(3.98298 + 2.29957i) q^{50} +(0.541797 - 3.56461i) q^{52} +6.36026 q^{53} -3.07704 q^{55} +(1.24342 + 2.15366i) q^{56} +(0.719576 + 0.415447i) q^{58} +(7.86994 + 4.54371i) q^{59} +(5.28535 + 9.15449i) q^{61} -4.31236 q^{62} -1.00000 q^{64} +(2.25687 + 0.343029i) q^{65} +(6.82824 + 3.94228i) q^{67} +(3.13918 - 5.43723i) q^{68} +(-1.36355 + 0.787247i) q^{70} -12.3085i q^{71} -1.05367i q^{73} +(3.90655 + 6.76635i) q^{74} +(4.20891 + 2.43002i) q^{76} +(-6.04305 + 10.4669i) q^{77} +(-1.68838 - 2.92436i) q^{79} -0.633132i q^{80} -0.0783645 q^{82} +(-13.1755 + 7.60686i) q^{83} +(3.44248 + 1.98752i) q^{85} +(-8.38954 - 4.84370i) q^{86} +(-2.43002 - 4.20891i) q^{88} -0.595093i q^{89} +(5.59914 - 7.00329i) q^{91} +(-1.77384 - 3.07238i) q^{92} +(-2.48301 + 4.30069i) q^{94} +(-1.53852 + 2.66480i) q^{95} +(-14.7770 + 8.53151i) q^{97} -0.815659i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 14 q^{4} + 2 q^{13} - 8 q^{14} - 14 q^{16} - 16 q^{17} + 8 q^{23} + 14 q^{25} - 8 q^{26} + 16 q^{29} + 68 q^{35} - 4 q^{43} + 10 q^{49} - 2 q^{52} + 120 q^{53} + 8 q^{56} + 28 q^{61} - 68 q^{62}+ \cdots - 8 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0.548308 + 0.316566i 0.245211 + 0.141573i 0.617569 0.786516i \(-0.288117\pi\)
−0.372358 + 0.928089i \(0.621451\pi\)
\(6\) 0 0
\(7\) 2.15366 1.24342i 0.814007 0.469967i −0.0343382 0.999410i \(-0.510932\pi\)
0.848346 + 0.529443i \(0.177599\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −0.633132 −0.200214
\(11\) −4.20891 + 2.43002i −1.26904 + 0.732678i −0.974805 0.223057i \(-0.928396\pi\)
−0.294230 + 0.955735i \(0.595063\pi\)
\(12\) 0 0
\(13\) 3.35794 1.31310i 0.931326 0.364187i
\(14\) −1.24342 + 2.15366i −0.332317 + 0.575590i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 6.27837 1.52273 0.761364 0.648325i \(-0.224530\pi\)
0.761364 + 0.648325i \(0.224530\pi\)
\(18\) 0 0
\(19\) 4.86004i 1.11497i 0.830187 + 0.557484i \(0.188233\pi\)
−0.830187 + 0.557484i \(0.811767\pi\)
\(20\) 0.548308 0.316566i 0.122605 0.0707863i
\(21\) 0 0
\(22\) 2.43002 4.20891i 0.518082 0.897344i
\(23\) 1.77384 3.07238i 0.369871 0.640636i −0.619674 0.784859i \(-0.712735\pi\)
0.989545 + 0.144224i \(0.0460685\pi\)
\(24\) 0 0
\(25\) −2.29957 3.98298i −0.459914 0.796595i
\(26\) −2.25152 + 2.81615i −0.441559 + 0.552292i
\(27\) 0 0
\(28\) 2.48683i 0.469967i
\(29\) −0.415447 0.719576i −0.0771466 0.133622i 0.824871 0.565321i \(-0.191248\pi\)
−0.902018 + 0.431699i \(0.857914\pi\)
\(30\) 0 0
\(31\) 3.73461 + 2.15618i 0.670756 + 0.387261i 0.796363 0.604819i \(-0.206755\pi\)
−0.125607 + 0.992080i \(0.540088\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) −5.43723 + 3.13918i −0.932477 + 0.538366i
\(35\) 1.57449 0.266138
\(36\) 0 0
\(37\) 7.81310i 1.28447i −0.766509 0.642233i \(-0.778008\pi\)
0.766509 0.642233i \(-0.221992\pi\)
\(38\) −2.43002 4.20891i −0.394201 0.682776i
\(39\) 0 0
\(40\) −0.316566 + 0.548308i −0.0500535 + 0.0866952i
\(41\) 0.0678657 + 0.0391823i 0.0105988 + 0.00611924i 0.505290 0.862950i \(-0.331386\pi\)
−0.494691 + 0.869069i \(0.664719\pi\)
\(42\) 0 0
\(43\) 4.84370 + 8.38954i 0.738658 + 1.27939i 0.953100 + 0.302656i \(0.0978733\pi\)
−0.214442 + 0.976737i \(0.568793\pi\)
\(44\) 4.86004i 0.732678i
\(45\) 0 0
\(46\) 3.54768i 0.523077i
\(47\) 4.30069 2.48301i 0.627320 0.362184i −0.152393 0.988320i \(-0.548698\pi\)
0.779714 + 0.626136i \(0.215365\pi\)
\(48\) 0 0
\(49\) −0.407830 + 0.706382i −0.0582614 + 0.100912i
\(50\) 3.98298 + 2.29957i 0.563278 + 0.325209i
\(51\) 0 0
\(52\) 0.541797 3.56461i 0.0751337 0.494323i
\(53\) 6.36026 0.873649 0.436824 0.899547i \(-0.356103\pi\)
0.436824 + 0.899547i \(0.356103\pi\)
\(54\) 0 0
\(55\) −3.07704 −0.414909
\(56\) 1.24342 + 2.15366i 0.166159 + 0.287795i
\(57\) 0 0
\(58\) 0.719576 + 0.415447i 0.0944849 + 0.0545509i
\(59\) 7.86994 + 4.54371i 1.02458 + 0.591541i 0.915427 0.402484i \(-0.131853\pi\)
0.109152 + 0.994025i \(0.465187\pi\)
\(60\) 0 0
\(61\) 5.28535 + 9.15449i 0.676719 + 1.17211i 0.975963 + 0.217935i \(0.0699322\pi\)
−0.299244 + 0.954177i \(0.596734\pi\)
\(62\) −4.31236 −0.547670
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 2.25687 + 0.343029i 0.279930 + 0.0425475i
\(66\) 0 0
\(67\) 6.82824 + 3.94228i 0.834202 + 0.481627i 0.855289 0.518151i \(-0.173380\pi\)
−0.0210874 + 0.999778i \(0.506713\pi\)
\(68\) 3.13918 5.43723i 0.380682 0.659361i
\(69\) 0 0
\(70\) −1.36355 + 0.787247i −0.162976 + 0.0940940i
\(71\) 12.3085i 1.46075i −0.683048 0.730374i \(-0.739346\pi\)
0.683048 0.730374i \(-0.260654\pi\)
\(72\) 0 0
\(73\) 1.05367i 0.123323i −0.998097 0.0616615i \(-0.980360\pi\)
0.998097 0.0616615i \(-0.0196399\pi\)
\(74\) 3.90655 + 6.76635i 0.454127 + 0.786572i
\(75\) 0 0
\(76\) 4.20891 + 2.43002i 0.482796 + 0.278742i
\(77\) −6.04305 + 10.4669i −0.688669 + 1.19281i
\(78\) 0 0
\(79\) −1.68838 2.92436i −0.189958 0.329017i 0.755278 0.655404i \(-0.227502\pi\)
−0.945236 + 0.326388i \(0.894168\pi\)
\(80\) 0.633132i 0.0707863i
\(81\) 0 0
\(82\) −0.0783645 −0.00865391
\(83\) −13.1755 + 7.60686i −1.44620 + 0.834961i −0.998252 0.0591005i \(-0.981177\pi\)
−0.447943 + 0.894062i \(0.647843\pi\)
\(84\) 0 0
\(85\) 3.44248 + 1.98752i 0.373390 + 0.215577i
\(86\) −8.38954 4.84370i −0.904667 0.522310i
\(87\) 0 0
\(88\) −2.43002 4.20891i −0.259041 0.448672i
\(89\) 0.595093i 0.0630797i −0.999502 0.0315398i \(-0.989959\pi\)
0.999502 0.0315398i \(-0.0100411\pi\)
\(90\) 0 0
\(91\) 5.59914 7.00329i 0.586950 0.734144i
\(92\) −1.77384 3.07238i −0.184936 0.320318i
\(93\) 0 0
\(94\) −2.48301 + 4.30069i −0.256103 + 0.443583i
\(95\) −1.53852 + 2.66480i −0.157849 + 0.273403i
\(96\) 0 0
\(97\) −14.7770 + 8.53151i −1.50038 + 0.866244i −0.500378 + 0.865807i \(0.666806\pi\)
−1.00000 0.000436560i \(0.999861\pi\)
\(98\) 0.815659i 0.0823940i
\(99\) 0 0
\(100\) −4.59914 −0.459914
\(101\) −2.53762 4.39529i −0.252503 0.437348i 0.711712 0.702472i \(-0.247920\pi\)
−0.964214 + 0.265124i \(0.914587\pi\)
\(102\) 0 0
\(103\) 0.538522 0.932747i 0.0530621 0.0919063i −0.838274 0.545249i \(-0.816435\pi\)
0.891336 + 0.453342i \(0.149769\pi\)
\(104\) 1.31310 + 3.35794i 0.128760 + 0.329273i
\(105\) 0 0
\(106\) −5.50815 + 3.18013i −0.534998 + 0.308881i
\(107\) 9.16763 0.886268 0.443134 0.896455i \(-0.353867\pi\)
0.443134 + 0.896455i \(0.353867\pi\)
\(108\) 0 0
\(109\) 9.90028i 0.948275i −0.880451 0.474138i \(-0.842760\pi\)
0.880451 0.474138i \(-0.157240\pi\)
\(110\) 2.66480 1.53852i 0.254079 0.146692i
\(111\) 0 0
\(112\) −2.15366 1.24342i −0.203502 0.117492i
\(113\) 3.31088 5.73460i 0.311461 0.539466i −0.667218 0.744863i \(-0.732515\pi\)
0.978679 + 0.205396i \(0.0658484\pi\)
\(114\) 0 0
\(115\) 1.94522 1.12307i 0.181393 0.104727i
\(116\) −0.830894 −0.0771466
\(117\) 0 0
\(118\) −9.08742 −0.836565
\(119\) 13.5215 7.80663i 1.23951 0.715632i
\(120\) 0 0
\(121\) 6.30997 10.9292i 0.573634 0.993563i
\(122\) −9.15449 5.28535i −0.828808 0.478513i
\(123\) 0 0
\(124\) 3.73461 2.15618i 0.335378 0.193630i
\(125\) 6.07752i 0.543590i
\(126\) 0 0
\(127\) −17.8088 −1.58028 −0.790138 0.612929i \(-0.789991\pi\)
−0.790138 + 0.612929i \(0.789991\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) −2.12602 + 0.831363i −0.186464 + 0.0729154i
\(131\) −6.02780 + 10.4404i −0.526651 + 0.912186i 0.472867 + 0.881134i \(0.343219\pi\)
−0.999518 + 0.0310522i \(0.990114\pi\)
\(132\) 0 0
\(133\) 6.04305 + 10.4669i 0.523999 + 0.907593i
\(134\) −7.88457 −0.681123
\(135\) 0 0
\(136\) 6.27837i 0.538366i
\(137\) 0.263943 0.152388i 0.0225502 0.0130194i −0.488683 0.872462i \(-0.662522\pi\)
0.511233 + 0.859442i \(0.329189\pi\)
\(138\) 0 0
\(139\) −4.09109 + 7.08598i −0.347002 + 0.601025i −0.985715 0.168420i \(-0.946134\pi\)
0.638714 + 0.769445i \(0.279467\pi\)
\(140\) 0.787247 1.36355i 0.0665345 0.115241i
\(141\) 0 0
\(142\) 6.15424 + 10.6595i 0.516452 + 0.894522i
\(143\) −10.9424 + 13.6866i −0.915053 + 1.14453i
\(144\) 0 0
\(145\) 0.526066i 0.0436874i
\(146\) 0.526836 + 0.912507i 0.0436013 + 0.0755196i
\(147\) 0 0
\(148\) −6.76635 3.90655i −0.556190 0.321117i
\(149\) −15.9905 9.23210i −1.30999 0.756323i −0.327895 0.944714i \(-0.606339\pi\)
−0.982094 + 0.188391i \(0.939673\pi\)
\(150\) 0 0
\(151\) 4.61608 2.66510i 0.375651 0.216882i −0.300273 0.953853i \(-0.597078\pi\)
0.675925 + 0.736971i \(0.263745\pi\)
\(152\) −4.86004 −0.394201
\(153\) 0 0
\(154\) 12.0861i 0.973926i
\(155\) 1.36515 + 2.36450i 0.109651 + 0.189921i
\(156\) 0 0
\(157\) 1.46920 2.54473i 0.117255 0.203092i −0.801424 0.598097i \(-0.795924\pi\)
0.918679 + 0.395005i \(0.129257\pi\)
\(158\) 2.92436 + 1.68838i 0.232650 + 0.134320i
\(159\) 0 0
\(160\) 0.316566 + 0.548308i 0.0250267 + 0.0433476i
\(161\) 8.82249i 0.695310i
\(162\) 0 0
\(163\) 7.41051i 0.580436i −0.956961 0.290218i \(-0.906272\pi\)
0.956961 0.290218i \(-0.0937278\pi\)
\(164\) 0.0678657 0.0391823i 0.00529942 0.00305962i
\(165\) 0 0
\(166\) 7.60686 13.1755i 0.590407 1.02261i
\(167\) −0.0771631 0.0445501i −0.00597106 0.00344739i 0.497011 0.867744i \(-0.334431\pi\)
−0.502983 + 0.864297i \(0.667764\pi\)
\(168\) 0 0
\(169\) 9.55156 8.81860i 0.734735 0.678354i
\(170\) −3.97504 −0.304871
\(171\) 0 0
\(172\) 9.68740 0.738658
\(173\) −3.79919 6.58039i −0.288847 0.500298i 0.684688 0.728836i \(-0.259939\pi\)
−0.973535 + 0.228539i \(0.926605\pi\)
\(174\) 0 0
\(175\) −9.90500 5.71865i −0.748747 0.432290i
\(176\) 4.20891 + 2.43002i 0.317259 + 0.183169i
\(177\) 0 0
\(178\) 0.297546 + 0.515365i 0.0223020 + 0.0386283i
\(179\) −23.7909 −1.77822 −0.889109 0.457695i \(-0.848675\pi\)
−0.889109 + 0.457695i \(0.848675\pi\)
\(180\) 0 0
\(181\) −1.63229 −0.121327 −0.0606637 0.998158i \(-0.519322\pi\)
−0.0606637 + 0.998158i \(0.519322\pi\)
\(182\) −1.34736 + 8.86460i −0.0998728 + 0.657088i
\(183\) 0 0
\(184\) 3.07238 + 1.77384i 0.226499 + 0.130769i
\(185\) 2.47336 4.28399i 0.181845 0.314965i
\(186\) 0 0
\(187\) −26.4251 + 15.2565i −1.93240 + 1.11567i
\(188\) 4.96601i 0.362184i
\(189\) 0 0
\(190\) 3.07704i 0.223232i
\(191\) −1.58316 2.74212i −0.114554 0.198413i 0.803048 0.595915i \(-0.203210\pi\)
−0.917601 + 0.397502i \(0.869877\pi\)
\(192\) 0 0
\(193\) −14.2560 8.23071i −1.02617 0.592459i −0.110285 0.993900i \(-0.535176\pi\)
−0.915885 + 0.401441i \(0.868510\pi\)
\(194\) 8.53151 14.7770i 0.612527 1.06093i
\(195\) 0 0
\(196\) 0.407830 + 0.706382i 0.0291307 + 0.0504558i
\(197\) 11.4351i 0.814719i −0.913268 0.407360i \(-0.866450\pi\)
0.913268 0.407360i \(-0.133550\pi\)
\(198\) 0 0
\(199\) −13.1983 −0.935602 −0.467801 0.883834i \(-0.654954\pi\)
−0.467801 + 0.883834i \(0.654954\pi\)
\(200\) 3.98298 2.29957i 0.281639 0.162604i
\(201\) 0 0
\(202\) 4.39529 + 2.53762i 0.309251 + 0.178546i
\(203\) −1.78946 1.03315i −0.125596 0.0725128i
\(204\) 0 0
\(205\) 0.0248075 + 0.0429679i 0.00173263 + 0.00300101i
\(206\) 1.07704i 0.0750412i
\(207\) 0 0
\(208\) −2.81615 2.25152i −0.195265 0.156115i
\(209\) −11.8100 20.4555i −0.816913 1.41493i
\(210\) 0 0
\(211\) −4.63857 + 8.03423i −0.319332 + 0.553099i −0.980349 0.197272i \(-0.936792\pi\)
0.661017 + 0.750371i \(0.270125\pi\)
\(212\) 3.18013 5.50815i 0.218412 0.378301i
\(213\) 0 0
\(214\) −7.93940 + 4.58381i −0.542726 + 0.313343i
\(215\) 6.13341i 0.418295i
\(216\) 0 0
\(217\) 10.7241 0.728000
\(218\) 4.95014 + 8.57390i 0.335266 + 0.580698i
\(219\) 0 0
\(220\) −1.53852 + 2.66480i −0.103727 + 0.179661i
\(221\) 21.0824 8.24410i 1.41816 0.554558i
\(222\) 0 0
\(223\) −12.1351 + 7.00623i −0.812630 + 0.469172i −0.847868 0.530207i \(-0.822114\pi\)
0.0352386 + 0.999379i \(0.488781\pi\)
\(224\) 2.48683 0.166159
\(225\) 0 0
\(226\) 6.62175i 0.440472i
\(227\) 2.40085 1.38613i 0.159350 0.0920010i −0.418204 0.908353i \(-0.637340\pi\)
0.577555 + 0.816352i \(0.304007\pi\)
\(228\) 0 0
\(229\) −14.4165 8.32339i −0.952671 0.550025i −0.0587614 0.998272i \(-0.518715\pi\)
−0.893910 + 0.448247i \(0.852048\pi\)
\(230\) −1.12307 + 1.94522i −0.0740534 + 0.128264i
\(231\) 0 0
\(232\) 0.719576 0.415447i 0.0472425 0.0272754i
\(233\) 5.45324 0.357254 0.178627 0.983917i \(-0.442835\pi\)
0.178627 + 0.983917i \(0.442835\pi\)
\(234\) 0 0
\(235\) 3.14414 0.205101
\(236\) 7.86994 4.54371i 0.512289 0.295770i
\(237\) 0 0
\(238\) −7.80663 + 13.5215i −0.506029 + 0.876467i
\(239\) −11.8000 6.81272i −0.763277 0.440678i 0.0671938 0.997740i \(-0.478595\pi\)
−0.830471 + 0.557062i \(0.811929\pi\)
\(240\) 0 0
\(241\) 16.3780 9.45585i 1.05500 0.609105i 0.130956 0.991388i \(-0.458195\pi\)
0.924045 + 0.382283i \(0.124862\pi\)
\(242\) 12.6199i 0.811241i
\(243\) 0 0
\(244\) 10.5707 0.676719
\(245\) −0.447233 + 0.258210i −0.0285727 + 0.0164964i
\(246\) 0 0
\(247\) 6.38169 + 16.3197i 0.406058 + 1.03840i
\(248\) −2.15618 + 3.73461i −0.136917 + 0.237148i
\(249\) 0 0
\(250\) 3.03876 + 5.26329i 0.192188 + 0.332880i
\(251\) 2.07524 0.130988 0.0654940 0.997853i \(-0.479138\pi\)
0.0654940 + 0.997853i \(0.479138\pi\)
\(252\) 0 0
\(253\) 17.2419i 1.08399i
\(254\) 15.4229 8.90441i 0.967718 0.558712i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −12.5009 + 21.6522i −0.779785 + 1.35063i 0.152280 + 0.988337i \(0.451338\pi\)
−0.932065 + 0.362290i \(0.881995\pi\)
\(258\) 0 0
\(259\) −9.71494 16.8268i −0.603657 1.04557i
\(260\) 1.42551 1.78299i 0.0884061 0.110576i
\(261\) 0 0
\(262\) 12.0556i 0.744797i
\(263\) 12.6267 + 21.8701i 0.778596 + 1.34857i 0.932751 + 0.360521i \(0.117401\pi\)
−0.154155 + 0.988047i \(0.549266\pi\)
\(264\) 0 0
\(265\) 3.48738 + 2.01344i 0.214228 + 0.123685i
\(266\) −10.4669 6.04305i −0.641765 0.370523i
\(267\) 0 0
\(268\) 6.82824 3.94228i 0.417101 0.240813i
\(269\) 23.7793 1.44985 0.724925 0.688828i \(-0.241874\pi\)
0.724925 + 0.688828i \(0.241874\pi\)
\(270\) 0 0
\(271\) 14.2050i 0.862894i 0.902138 + 0.431447i \(0.141997\pi\)
−0.902138 + 0.431447i \(0.858003\pi\)
\(272\) −3.13918 5.43723i −0.190341 0.329680i
\(273\) 0 0
\(274\) −0.152388 + 0.263943i −0.00920609 + 0.0159454i
\(275\) 19.3574 + 11.1760i 1.16730 + 0.673938i
\(276\) 0 0
\(277\) −4.06786 7.04574i −0.244414 0.423337i 0.717553 0.696504i \(-0.245262\pi\)
−0.961967 + 0.273167i \(0.911929\pi\)
\(278\) 8.18218i 0.490735i
\(279\) 0 0
\(280\) 1.57449i 0.0940940i
\(281\) −28.6610 + 16.5474i −1.70977 + 0.987138i −0.774949 + 0.632023i \(0.782225\pi\)
−0.934823 + 0.355114i \(0.884442\pi\)
\(282\) 0 0
\(283\) 5.92146 10.2563i 0.351994 0.609672i −0.634604 0.772837i \(-0.718837\pi\)
0.986599 + 0.163165i \(0.0521703\pi\)
\(284\) −10.6595 6.15424i −0.632522 0.365187i
\(285\) 0 0
\(286\) 2.63315 17.3241i 0.155701 1.02440i
\(287\) 0.194879 0.0115034
\(288\) 0 0
\(289\) 22.4179 1.31870
\(290\) 0.263033 + 0.455586i 0.0154458 + 0.0267530i
\(291\) 0 0
\(292\) −0.912507 0.526836i −0.0534004 0.0308308i
\(293\) 12.8880 + 7.44091i 0.752927 + 0.434702i 0.826750 0.562569i \(-0.190187\pi\)
−0.0738237 + 0.997271i \(0.523520\pi\)
\(294\) 0 0
\(295\) 2.87677 + 4.98271i 0.167492 + 0.290104i
\(296\) 7.81310 0.454127
\(297\) 0 0
\(298\) 18.4642 1.06960
\(299\) 1.92212 12.6461i 0.111159 0.731343i
\(300\) 0 0
\(301\) 20.8634 + 12.0455i 1.20255 + 0.694290i
\(302\) −2.66510 + 4.61608i −0.153359 + 0.265626i
\(303\) 0 0
\(304\) 4.20891 2.43002i 0.241398 0.139371i
\(305\) 6.69264i 0.383220i
\(306\) 0 0
\(307\) 23.7291i 1.35429i 0.735849 + 0.677145i \(0.236783\pi\)
−0.735849 + 0.677145i \(0.763217\pi\)
\(308\) 6.04305 + 10.4669i 0.344335 + 0.596405i
\(309\) 0 0
\(310\) −2.36450 1.36515i −0.134295 0.0775350i
\(311\) −4.38513 + 7.59527i −0.248658 + 0.430688i −0.963154 0.268952i \(-0.913323\pi\)
0.714496 + 0.699640i \(0.246656\pi\)
\(312\) 0 0
\(313\) −5.14061 8.90380i −0.290565 0.503273i 0.683379 0.730064i \(-0.260510\pi\)
−0.973943 + 0.226791i \(0.927176\pi\)
\(314\) 2.93840i 0.165824i
\(315\) 0 0
\(316\) −3.37676 −0.189958
\(317\) −5.03088 + 2.90458i −0.282562 + 0.163137i −0.634583 0.772855i \(-0.718828\pi\)
0.352020 + 0.935992i \(0.385495\pi\)
\(318\) 0 0
\(319\) 3.49716 + 2.01909i 0.195804 + 0.113047i
\(320\) −0.548308 0.316566i −0.0306514 0.0176966i
\(321\) 0 0
\(322\) 4.41124 + 7.64050i 0.245829 + 0.425788i
\(323\) 30.5131i 1.69779i
\(324\) 0 0
\(325\) −12.9519 10.3550i −0.718440 0.574394i
\(326\) 3.70526 + 6.41769i 0.205215 + 0.355443i
\(327\) 0 0
\(328\) −0.0391823 + 0.0678657i −0.00216348 + 0.00374725i
\(329\) 6.17482 10.6951i 0.340429 0.589640i
\(330\) 0 0
\(331\) 9.26705 5.35033i 0.509363 0.294081i −0.223209 0.974771i \(-0.571653\pi\)
0.732572 + 0.680690i \(0.238320\pi\)
\(332\) 15.2137i 0.834961i
\(333\) 0 0
\(334\) 0.0891003 0.00487535
\(335\) 2.49599 + 4.32317i 0.136370 + 0.236200i
\(336\) 0 0
\(337\) −0.977254 + 1.69265i −0.0532344 + 0.0922047i −0.891415 0.453189i \(-0.850286\pi\)
0.838180 + 0.545393i \(0.183620\pi\)
\(338\) −3.86259 + 12.4129i −0.210097 + 0.675173i
\(339\) 0 0
\(340\) 3.44248 1.98752i 0.186695 0.107788i
\(341\) −20.9582 −1.13495
\(342\) 0 0
\(343\) 19.4362i 1.04946i
\(344\) −8.38954 + 4.84370i −0.452334 + 0.261155i
\(345\) 0 0
\(346\) 6.58039 + 3.79919i 0.353764 + 0.204246i
\(347\) 2.17035 3.75915i 0.116510 0.201802i −0.801872 0.597496i \(-0.796162\pi\)
0.918383 + 0.395694i \(0.129496\pi\)
\(348\) 0 0
\(349\) 24.2212 13.9841i 1.29653 0.748552i 0.316727 0.948517i \(-0.397416\pi\)
0.979803 + 0.199964i \(0.0640827\pi\)
\(350\) 11.4373 0.611350
\(351\) 0 0
\(352\) −4.86004 −0.259041
\(353\) −14.5560 + 8.40389i −0.774736 + 0.447294i −0.834561 0.550915i \(-0.814279\pi\)
0.0598256 + 0.998209i \(0.480946\pi\)
\(354\) 0 0
\(355\) 3.89645 6.74884i 0.206802 0.358191i
\(356\) −0.515365 0.297546i −0.0273143 0.0157699i
\(357\) 0 0
\(358\) 20.6036 11.8955i 1.08893 0.628695i
\(359\) 20.0302i 1.05715i −0.848886 0.528576i \(-0.822726\pi\)
0.848886 0.528576i \(-0.177274\pi\)
\(360\) 0 0
\(361\) −4.61995 −0.243155
\(362\) 1.41361 0.816146i 0.0742975 0.0428957i
\(363\) 0 0
\(364\) −3.26545 8.35064i −0.171156 0.437693i
\(365\) 0.333557 0.577737i 0.0174592 0.0302402i
\(366\) 0 0
\(367\) −16.8691 29.2181i −0.880560 1.52517i −0.850720 0.525620i \(-0.823834\pi\)
−0.0298400 0.999555i \(-0.509500\pi\)
\(368\) −3.54768 −0.184936
\(369\) 0 0
\(370\) 4.94673i 0.257168i
\(371\) 13.6978 7.90845i 0.711156 0.410586i
\(372\) 0 0
\(373\) −6.98145 + 12.0922i −0.361486 + 0.626112i −0.988206 0.153133i \(-0.951064\pi\)
0.626720 + 0.779245i \(0.284397\pi\)
\(374\) 15.2565 26.4251i 0.788897 1.36641i
\(375\) 0 0
\(376\) 2.48301 + 4.30069i 0.128051 + 0.221791i
\(377\) −2.33992 1.87077i −0.120512 0.0963496i
\(378\) 0 0
\(379\) 29.7828i 1.52984i −0.644124 0.764921i \(-0.722778\pi\)
0.644124 0.764921i \(-0.277222\pi\)
\(380\) 1.53852 + 2.66480i 0.0789245 + 0.136701i
\(381\) 0 0
\(382\) 2.74212 + 1.58316i 0.140299 + 0.0810018i
\(383\) −2.06820 1.19408i −0.105680 0.0610146i 0.446228 0.894919i \(-0.352767\pi\)
−0.551909 + 0.833905i \(0.686100\pi\)
\(384\) 0 0
\(385\) −6.62691 + 3.82605i −0.337739 + 0.194993i
\(386\) 16.4614 0.837864
\(387\) 0 0
\(388\) 17.0630i 0.866244i
\(389\) 12.3362 + 21.3670i 0.625473 + 1.08335i 0.988449 + 0.151552i \(0.0484271\pi\)
−0.362977 + 0.931798i \(0.618240\pi\)
\(390\) 0 0
\(391\) 11.1368 19.2895i 0.563213 0.975514i
\(392\) −0.706382 0.407830i −0.0356777 0.0205985i
\(393\) 0 0
\(394\) 5.71756 + 9.90311i 0.288047 + 0.498911i
\(395\) 2.13794i 0.107571i
\(396\) 0 0
\(397\) 9.36279i 0.469905i 0.972007 + 0.234952i \(0.0754934\pi\)
−0.972007 + 0.234952i \(0.924507\pi\)
\(398\) 11.4301 6.59914i 0.572937 0.330785i
\(399\) 0 0
\(400\) −2.29957 + 3.98298i −0.114979 + 0.199149i
\(401\) 5.99814 + 3.46303i 0.299533 + 0.172935i 0.642233 0.766509i \(-0.278008\pi\)
−0.342700 + 0.939445i \(0.611341\pi\)
\(402\) 0 0
\(403\) 15.3719 + 2.33642i 0.765728 + 0.116385i
\(404\) −5.07524 −0.252503
\(405\) 0 0
\(406\) 2.06630 0.102549
\(407\) 18.9860 + 32.8847i 0.941100 + 1.63003i
\(408\) 0 0
\(409\) −16.1011 9.29599i −0.796149 0.459657i 0.0459735 0.998943i \(-0.485361\pi\)
−0.842123 + 0.539286i \(0.818694\pi\)
\(410\) −0.0429679 0.0248075i −0.00212203 0.00122516i
\(411\) 0 0
\(412\) −0.538522 0.932747i −0.0265311 0.0459532i
\(413\) 22.5989 1.11202
\(414\) 0 0
\(415\) −9.63229 −0.472831
\(416\) 3.56461 + 0.541797i 0.174769 + 0.0265638i
\(417\) 0 0
\(418\) 20.4555 + 11.8100i 1.00051 + 0.577645i
\(419\) −0.455614 + 0.789146i −0.0222582 + 0.0385523i −0.876940 0.480600i \(-0.840419\pi\)
0.854682 + 0.519152i \(0.173752\pi\)
\(420\) 0 0
\(421\) −34.0472 + 19.6572i −1.65936 + 0.958033i −0.686351 + 0.727270i \(0.740789\pi\)
−0.973010 + 0.230763i \(0.925878\pi\)
\(422\) 9.27713i 0.451604i
\(423\) 0 0
\(424\) 6.36026i 0.308881i
\(425\) −14.4376 25.0066i −0.700324 1.21300i
\(426\) 0 0
\(427\) 22.7657 + 13.1438i 1.10171 + 0.636072i
\(428\) 4.58381 7.93940i 0.221567 0.383765i
\(429\) 0 0
\(430\) −3.06670 5.31168i −0.147890 0.256152i
\(431\) 38.0100i 1.83088i 0.402457 + 0.915439i \(0.368156\pi\)
−0.402457 + 0.915439i \(0.631844\pi\)
\(432\) 0 0
\(433\) 37.5218 1.80318 0.901592 0.432587i \(-0.142399\pi\)
0.901592 + 0.432587i \(0.142399\pi\)
\(434\) −9.28735 + 5.36206i −0.445807 + 0.257387i
\(435\) 0 0
\(436\) −8.57390 4.95014i −0.410615 0.237069i
\(437\) 14.9319 + 8.62093i 0.714289 + 0.412395i
\(438\) 0 0
\(439\) −5.41124 9.37255i −0.258265 0.447327i 0.707513 0.706701i \(-0.249817\pi\)
−0.965777 + 0.259373i \(0.916484\pi\)
\(440\) 3.07704i 0.146692i
\(441\) 0 0
\(442\) −14.1358 + 17.6808i −0.672373 + 0.840990i
\(443\) −10.5311 18.2403i −0.500346 0.866625i −1.00000 0.000399639i \(-0.999873\pi\)
0.499654 0.866225i \(-0.333461\pi\)
\(444\) 0 0
\(445\) 0.188386 0.326294i 0.00893036 0.0154678i
\(446\) 7.00623 12.1351i 0.331755 0.574616i
\(447\) 0 0
\(448\) −2.15366 + 1.24342i −0.101751 + 0.0587459i
\(449\) 12.0811i 0.570140i 0.958507 + 0.285070i \(0.0920169\pi\)
−0.958507 + 0.285070i \(0.907983\pi\)
\(450\) 0 0
\(451\) −0.380854 −0.0179337
\(452\) −3.31088 5.73460i −0.155730 0.269733i
\(453\) 0 0
\(454\) −1.38613 + 2.40085i −0.0650545 + 0.112678i
\(455\) 5.28706 2.06746i 0.247861 0.0969241i
\(456\) 0 0
\(457\) 24.6389 14.2252i 1.15256 0.665429i 0.203048 0.979169i \(-0.434915\pi\)
0.949509 + 0.313740i \(0.101582\pi\)
\(458\) 16.6468 0.777853
\(459\) 0 0
\(460\) 2.24615i 0.104727i
\(461\) −14.9740 + 8.64522i −0.697407 + 0.402648i −0.806381 0.591396i \(-0.798577\pi\)
0.108974 + 0.994045i \(0.465244\pi\)
\(462\) 0 0
\(463\) −20.5804 11.8821i −0.956452 0.552208i −0.0613728 0.998115i \(-0.519548\pi\)
−0.895079 + 0.445907i \(0.852881\pi\)
\(464\) −0.415447 + 0.719576i −0.0192867 + 0.0334055i
\(465\) 0 0
\(466\) −4.72264 + 2.72662i −0.218772 + 0.126308i
\(467\) −30.5214 −1.41236 −0.706182 0.708030i \(-0.749584\pi\)
−0.706182 + 0.708030i \(0.749584\pi\)
\(468\) 0 0
\(469\) 19.6076 0.905395
\(470\) −2.72291 + 1.57207i −0.125598 + 0.0725142i
\(471\) 0 0
\(472\) −4.54371 + 7.86994i −0.209141 + 0.362243i
\(473\) −40.7735 23.5406i −1.87477 1.08240i
\(474\) 0 0
\(475\) 19.3574 11.1760i 0.888179 0.512790i
\(476\) 15.6133i 0.715632i
\(477\) 0 0
\(478\) 13.6254 0.623213
\(479\) 19.7570 11.4067i 0.902719 0.521185i 0.0246377 0.999696i \(-0.492157\pi\)
0.878081 + 0.478511i \(0.158823\pi\)
\(480\) 0 0
\(481\) −10.2594 26.2360i −0.467786 1.19626i
\(482\) −9.45585 + 16.3780i −0.430702 + 0.745998i
\(483\) 0 0
\(484\) −6.30997 10.9292i −0.286817 0.496782i
\(485\) −10.8031 −0.490545
\(486\) 0 0
\(487\) 21.9090i 0.992792i 0.868096 + 0.496396i \(0.165344\pi\)
−0.868096 + 0.496396i \(0.834656\pi\)
\(488\) −9.15449 + 5.28535i −0.414404 + 0.239256i
\(489\) 0 0
\(490\) 0.258210 0.447233i 0.0116647 0.0202039i
\(491\) −12.8330 + 22.2274i −0.579145 + 1.00311i 0.416433 + 0.909167i \(0.363280\pi\)
−0.995578 + 0.0939422i \(0.970053\pi\)
\(492\) 0 0
\(493\) −2.60833 4.51776i −0.117473 0.203470i
\(494\) −13.6866 10.9424i −0.615788 0.492324i
\(495\) 0 0
\(496\) 4.31236i 0.193630i
\(497\) −15.3046 26.5083i −0.686504 1.18906i
\(498\) 0 0
\(499\) −30.0035 17.3226i −1.34314 0.775464i −0.355876 0.934533i \(-0.615817\pi\)
−0.987267 + 0.159069i \(0.949151\pi\)
\(500\) −5.26329 3.03876i −0.235382 0.135898i
\(501\) 0 0
\(502\) −1.79721 + 1.03762i −0.0802135 + 0.0463113i
\(503\) 16.8864 0.752928 0.376464 0.926431i \(-0.377140\pi\)
0.376464 + 0.926431i \(0.377140\pi\)
\(504\) 0 0
\(505\) 3.21330i 0.142990i
\(506\) −8.62093 14.9319i −0.383247 0.663803i
\(507\) 0 0
\(508\) −8.90441 + 15.4229i −0.395069 + 0.684280i
\(509\) 10.0617 + 5.80914i 0.445978 + 0.257485i 0.706130 0.708082i \(-0.250439\pi\)
−0.260152 + 0.965568i \(0.583773\pi\)
\(510\) 0 0
\(511\) −1.31015 2.26925i −0.0579578 0.100386i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 25.0018i 1.10278i
\(515\) 0.590552 0.340955i 0.0260228 0.0150243i
\(516\) 0 0
\(517\) −12.0675 + 20.9015i −0.530728 + 0.919248i
\(518\) 16.8268 + 9.71494i 0.739326 + 0.426850i
\(519\) 0 0
\(520\) −0.343029 + 2.25687i −0.0150428 + 0.0989703i
\(521\) 32.5005 1.42387 0.711937 0.702243i \(-0.247818\pi\)
0.711937 + 0.702243i \(0.247818\pi\)
\(522\) 0 0
\(523\) −23.8182 −1.04150 −0.520749 0.853710i \(-0.674347\pi\)
−0.520749 + 0.853710i \(0.674347\pi\)
\(524\) 6.02780 + 10.4404i 0.263325 + 0.456093i
\(525\) 0 0
\(526\) −21.8701 12.6267i −0.953581 0.550550i
\(527\) 23.4473 + 13.5373i 1.02138 + 0.589693i
\(528\) 0 0
\(529\) 5.20698 + 9.01876i 0.226391 + 0.392120i
\(530\) −4.02688 −0.174917
\(531\) 0 0
\(532\) 12.0861 0.523999
\(533\) 0.279339 + 0.0424576i 0.0120995 + 0.00183904i
\(534\) 0 0
\(535\) 5.02669 + 2.90216i 0.217323 + 0.125471i
\(536\) −3.94228 + 6.82824i −0.170281 + 0.294935i
\(537\) 0 0
\(538\) −20.5935 + 11.8897i −0.887848 + 0.512600i
\(539\) 3.96413i 0.170747i
\(540\) 0 0
\(541\) 32.5049i 1.39750i 0.715368 + 0.698748i \(0.246259\pi\)
−0.715368 + 0.698748i \(0.753741\pi\)
\(542\) −7.10251 12.3019i −0.305079 0.528412i
\(543\) 0 0
\(544\) 5.43723 + 3.13918i 0.233119 + 0.134591i
\(545\) 3.13409 5.42841i 0.134250 0.232527i
\(546\) 0 0
\(547\) 4.78240 + 8.28337i 0.204481 + 0.354171i 0.949967 0.312350i \(-0.101116\pi\)
−0.745486 + 0.666521i \(0.767783\pi\)
\(548\) 0.304776i 0.0130194i
\(549\) 0 0
\(550\) −22.3520 −0.953093
\(551\) 3.49716 2.01909i 0.148984 0.0860161i
\(552\) 0 0
\(553\) −7.27240 4.19872i −0.309254 0.178548i
\(554\) 7.04574 + 4.06786i 0.299345 + 0.172827i
\(555\) 0 0
\(556\) 4.09109 + 7.08598i 0.173501 + 0.300512i
\(557\) 34.6218i 1.46697i −0.679703 0.733487i \(-0.737891\pi\)
0.679703 0.733487i \(-0.262109\pi\)
\(558\) 0 0
\(559\) 27.2811 + 21.8113i 1.15387 + 0.922521i
\(560\) −0.787247 1.36355i −0.0332673 0.0576206i
\(561\) 0 0
\(562\) 16.5474 28.6610i 0.698012 1.20899i
\(563\) 3.42757 5.93673i 0.144455 0.250203i −0.784715 0.619857i \(-0.787190\pi\)
0.929169 + 0.369654i \(0.120524\pi\)
\(564\) 0 0
\(565\) 3.63076 2.09622i 0.152747 0.0881887i
\(566\) 11.8429i 0.497795i
\(567\) 0 0
\(568\) 12.3085 0.516452
\(569\) −10.6617 18.4665i −0.446960 0.774158i 0.551226 0.834356i \(-0.314160\pi\)
−0.998186 + 0.0601979i \(0.980827\pi\)
\(570\) 0 0
\(571\) −4.72379 + 8.18185i −0.197685 + 0.342400i −0.947777 0.318933i \(-0.896675\pi\)
0.750093 + 0.661333i \(0.230009\pi\)
\(572\) 6.38169 + 16.3197i 0.266832 + 0.682362i
\(573\) 0 0
\(574\) −0.168771 + 0.0974397i −0.00704435 + 0.00406706i
\(575\) −16.3163 −0.680436
\(576\) 0 0
\(577\) 25.5692i 1.06446i −0.846599 0.532231i \(-0.821354\pi\)
0.846599 0.532231i \(-0.178646\pi\)
\(578\) −19.4145 + 11.2090i −0.807536 + 0.466231i
\(579\) 0 0
\(580\) −0.455586 0.263033i −0.0189172 0.0109218i
\(581\) −18.9170 + 32.7652i −0.784809 + 1.35933i
\(582\) 0 0
\(583\) −26.7698 + 15.4555i −1.10869 + 0.640103i
\(584\) 1.05367 0.0436013
\(585\) 0 0
\(586\) −14.8818 −0.614762
\(587\) −6.72060 + 3.88014i −0.277389 + 0.160151i −0.632241 0.774772i \(-0.717865\pi\)
0.354852 + 0.934923i \(0.384531\pi\)
\(588\) 0 0
\(589\) −10.4791 + 18.1503i −0.431784 + 0.747872i
\(590\) −4.98271 2.87677i −0.205135 0.118435i
\(591\) 0 0
\(592\) −6.76635 + 3.90655i −0.278095 + 0.160558i
\(593\) 4.65405i 0.191119i 0.995424 + 0.0955594i \(0.0304640\pi\)
−0.995424 + 0.0955594i \(0.969536\pi\)
\(594\) 0 0
\(595\) 9.88525 0.405256
\(596\) −15.9905 + 9.23210i −0.654995 + 0.378161i
\(597\) 0 0
\(598\) 4.65845 + 11.9129i 0.190498 + 0.487155i
\(599\) 13.2758 22.9943i 0.542433 0.939521i −0.456331 0.889810i \(-0.650837\pi\)
0.998764 0.0497107i \(-0.0158299\pi\)
\(600\) 0 0
\(601\) 16.7970 + 29.0933i 0.685165 + 1.18674i 0.973385 + 0.229176i \(0.0736033\pi\)
−0.288220 + 0.957564i \(0.593063\pi\)
\(602\) −24.0910 −0.981874
\(603\) 0 0
\(604\) 5.33019i 0.216882i
\(605\) 6.91962 3.99505i 0.281323 0.162422i
\(606\) 0 0
\(607\) 7.17582 12.4289i 0.291258 0.504473i −0.682850 0.730559i \(-0.739260\pi\)
0.974107 + 0.226086i \(0.0725929\pi\)
\(608\) −2.43002 + 4.20891i −0.0985502 + 0.170694i
\(609\) 0 0
\(610\) −3.34632 5.79600i −0.135489 0.234673i
\(611\) 11.1811 13.9850i 0.452337 0.565773i
\(612\) 0 0
\(613\) 32.5357i 1.31410i −0.753845 0.657052i \(-0.771803\pi\)
0.753845 0.657052i \(-0.228197\pi\)
\(614\) −11.8645 20.5500i −0.478814 0.829330i
\(615\) 0 0
\(616\) −10.4669 6.04305i −0.421722 0.243481i
\(617\) −17.4197 10.0573i −0.701292 0.404891i 0.106537 0.994309i \(-0.466024\pi\)
−0.807828 + 0.589418i \(0.799357\pi\)
\(618\) 0 0
\(619\) 12.2002 7.04379i 0.490367 0.283114i −0.234359 0.972150i \(-0.575299\pi\)
0.724727 + 0.689036i \(0.241966\pi\)
\(620\) 2.73029 0.109651
\(621\) 0 0
\(622\) 8.77026i 0.351655i
\(623\) −0.739948 1.28163i −0.0296454 0.0513473i
\(624\) 0 0
\(625\) −9.57392 + 16.5825i −0.382957 + 0.663301i
\(626\) 8.90380 + 5.14061i 0.355867 + 0.205460i
\(627\) 0 0
\(628\) −1.46920 2.54473i −0.0586275 0.101546i
\(629\) 49.0535i 1.95589i
\(630\) 0 0
\(631\) 15.6969i 0.624885i −0.949937 0.312443i \(-0.898853\pi\)
0.949937 0.312443i \(-0.101147\pi\)
\(632\) 2.92436 1.68838i 0.116325 0.0671602i
\(633\) 0 0
\(634\) 2.90458 5.03088i 0.115356 0.199802i
\(635\) −9.76472 5.63766i −0.387501 0.223724i
\(636\) 0 0
\(637\) −0.441921 + 2.90751i −0.0175096 + 0.115200i
\(638\) −4.03818 −0.159873
\(639\) 0 0
\(640\) 0.633132 0.0250267
\(641\) −6.43804 11.1510i −0.254287 0.440439i 0.710414 0.703784i \(-0.248508\pi\)
−0.964702 + 0.263345i \(0.915174\pi\)
\(642\) 0 0
\(643\) −29.3762 16.9604i −1.15849 0.668852i −0.207545 0.978225i \(-0.566547\pi\)
−0.950941 + 0.309373i \(0.899881\pi\)
\(644\) −7.64050 4.41124i −0.301078 0.173827i
\(645\) 0 0
\(646\) −15.2565 26.4251i −0.600261 1.03968i
\(647\) 4.53172 0.178160 0.0890802 0.996024i \(-0.471607\pi\)
0.0890802 + 0.996024i \(0.471607\pi\)
\(648\) 0 0
\(649\) −44.1652 −1.73364
\(650\) 16.3942 + 2.49180i 0.643032 + 0.0977365i
\(651\) 0 0
\(652\) −6.41769 3.70526i −0.251336 0.145109i
\(653\) 2.39149 4.14217i 0.0935861 0.162096i −0.815432 0.578854i \(-0.803500\pi\)
0.909018 + 0.416758i \(0.136834\pi\)
\(654\) 0 0
\(655\) −6.61018 + 3.81639i −0.258281 + 0.149119i
\(656\) 0.0783645i 0.00305962i
\(657\) 0 0
\(658\) 12.3496i 0.481439i
\(659\) −9.88260 17.1172i −0.384972 0.666790i 0.606794 0.794859i \(-0.292455\pi\)
−0.991765 + 0.128069i \(0.959122\pi\)
\(660\) 0 0
\(661\) 23.8446 + 13.7667i 0.927449 + 0.535463i 0.886004 0.463678i \(-0.153471\pi\)
0.0414449 + 0.999141i \(0.486804\pi\)
\(662\) −5.35033 + 9.26705i −0.207947 + 0.360174i
\(663\) 0 0
\(664\) −7.60686 13.1755i −0.295203 0.511307i
\(665\) 7.65210i 0.296736i
\(666\) 0 0
\(667\) −2.94775 −0.114137
\(668\) −0.0771631 + 0.0445501i −0.00298553 + 0.00172370i
\(669\) 0 0
\(670\) −4.32317 2.49599i −0.167019 0.0964283i
\(671\) −44.4911 25.6870i −1.71756 0.991635i
\(672\) 0 0
\(673\) −21.7825 37.7284i −0.839653 1.45432i −0.890185 0.455600i \(-0.849425\pi\)
0.0505315 0.998722i \(-0.483908\pi\)
\(674\) 1.95451i 0.0752848i
\(675\) 0 0
\(676\) −2.86136 12.6812i −0.110052 0.487738i
\(677\) 24.1766 + 41.8751i 0.929181 + 1.60939i 0.784694 + 0.619883i \(0.212820\pi\)
0.144487 + 0.989507i \(0.453847\pi\)
\(678\) 0 0
\(679\) −21.2164 + 36.7480i −0.814212 + 1.41026i
\(680\) −1.98752 + 3.44248i −0.0762178 + 0.132013i
\(681\) 0 0
\(682\) 18.1503 10.4791i 0.695012 0.401266i
\(683\) 25.6842i 0.982779i −0.870940 0.491390i \(-0.836489\pi\)
0.870940 0.491390i \(-0.163511\pi\)
\(684\) 0 0
\(685\) 0.192963 0.00737275
\(686\) −9.71812 16.8323i −0.371040 0.642659i
\(687\) 0 0
\(688\) 4.84370 8.38954i 0.184664 0.319848i
\(689\) 21.3574 8.35163i 0.813651 0.318172i
\(690\) 0 0
\(691\) −3.65761 + 2.11172i −0.139142 + 0.0803338i −0.567955 0.823060i \(-0.692265\pi\)
0.428813 + 0.903393i \(0.358932\pi\)
\(692\) −7.59838 −0.288847
\(693\) 0 0
\(694\) 4.34070i 0.164771i
\(695\) −4.48636 + 2.59020i −0.170177 + 0.0982519i
\(696\) 0 0
\(697\) 0.426086 + 0.246001i 0.0161391 + 0.00931794i
\(698\) −13.9841 + 24.2212i −0.529306 + 0.916785i
\(699\) 0 0
\(700\) −9.90500 + 5.71865i −0.374374 + 0.216145i
\(701\) 7.76144 0.293145 0.146573 0.989200i \(-0.453176\pi\)
0.146573 + 0.989200i \(0.453176\pi\)
\(702\) 0 0
\(703\) 37.9720 1.43214
\(704\) 4.20891 2.43002i 0.158629 0.0915847i
\(705\) 0 0
\(706\) 8.40389 14.5560i 0.316285 0.547821i
\(707\) −10.9303 6.31064i −0.411078 0.237336i
\(708\) 0 0
\(709\) 37.1354 21.4401i 1.39465 0.805200i 0.400822 0.916156i \(-0.368725\pi\)
0.993825 + 0.110956i \(0.0353912\pi\)
\(710\) 7.79289i 0.292462i
\(711\) 0 0
\(712\) 0.595093 0.0223020
\(713\) 13.2492 7.64943i 0.496186 0.286473i
\(714\) 0 0
\(715\) −10.3325 + 4.04045i −0.386415 + 0.151104i
\(716\) −11.8955 + 20.6036i −0.444555 + 0.769991i
\(717\) 0 0
\(718\) 10.0151 + 17.3467i 0.373760 + 0.647371i
\(719\) 0.181195 0.00675742 0.00337871 0.999994i \(-0.498925\pi\)
0.00337871 + 0.999994i \(0.498925\pi\)
\(720\) 0 0
\(721\) 2.67843i 0.0997499i
\(722\) 4.00099 2.30997i 0.148902 0.0859683i
\(723\) 0 0
\(724\) −0.816146 + 1.41361i −0.0303318 + 0.0525363i
\(725\) −1.91070 + 3.30943i −0.0709617 + 0.122909i
\(726\) 0 0
\(727\) 16.1693 + 28.0061i 0.599688 + 1.03869i 0.992867 + 0.119228i \(0.0380420\pi\)
−0.393179 + 0.919462i \(0.628625\pi\)
\(728\) 7.00329 + 5.59914i 0.259559 + 0.207518i
\(729\) 0 0
\(730\) 0.667114i 0.0246910i
\(731\) 30.4105 + 52.6726i 1.12477 + 1.94817i
\(732\) 0 0
\(733\) 40.0538 + 23.1251i 1.47942 + 0.854143i 0.999729 0.0232941i \(-0.00741540\pi\)
0.479691 + 0.877437i \(0.340749\pi\)
\(734\) 29.2181 + 16.8691i 1.07846 + 0.622650i
\(735\) 0 0
\(736\) 3.07238 1.77384i 0.113249 0.0653846i
\(737\) −38.3193 −1.41151
\(738\) 0 0
\(739\) 8.94056i 0.328884i −0.986387 0.164442i \(-0.947418\pi\)
0.986387 0.164442i \(-0.0525823\pi\)
\(740\) −2.47336 4.28399i −0.0909226 0.157483i
\(741\) 0 0
\(742\) −7.90845 + 13.6978i −0.290328 + 0.502864i
\(743\) −13.6805 7.89847i −0.501891 0.289767i 0.227603 0.973754i \(-0.426911\pi\)
−0.729494 + 0.683987i \(0.760244\pi\)
\(744\) 0 0
\(745\) −5.84513 10.1241i −0.214149 0.370917i
\(746\) 13.9629i 0.511218i
\(747\) 0 0
\(748\) 30.5131i 1.11567i
\(749\) 19.7440 11.3992i 0.721429 0.416517i
\(750\) 0 0
\(751\) −23.7961 + 41.2161i −0.868333 + 1.50400i −0.00463416 + 0.999989i \(0.501475\pi\)
−0.863699 + 0.504008i \(0.831858\pi\)
\(752\) −4.30069 2.48301i −0.156830 0.0905459i
\(753\) 0 0
\(754\) 2.96182 + 0.450176i 0.107863 + 0.0163944i
\(755\) 3.37471 0.122818
\(756\) 0 0
\(757\) −36.6710 −1.33283 −0.666414 0.745582i \(-0.732172\pi\)
−0.666414 + 0.745582i \(0.732172\pi\)
\(758\) 14.8914 + 25.7927i 0.540881 + 0.936833i
\(759\) 0 0
\(760\) −2.66480 1.53852i −0.0966624 0.0558081i
\(761\) 19.9038 + 11.4915i 0.721514 + 0.416566i 0.815310 0.579025i \(-0.196567\pi\)
−0.0937959 + 0.995591i \(0.529900\pi\)
\(762\) 0 0
\(763\) −12.3102 21.3219i −0.445658 0.771903i
\(764\) −3.16633 −0.114554
\(765\) 0 0
\(766\) 2.38816 0.0862876
\(767\) 32.3931 + 4.92353i 1.16965 + 0.177778i
\(768\) 0 0
\(769\) −1.49286 0.861901i −0.0538338 0.0310810i 0.472842 0.881147i \(-0.343228\pi\)
−0.526675 + 0.850067i \(0.676562\pi\)
\(770\) 3.82605 6.62691i 0.137881 0.238817i
\(771\) 0 0
\(772\) −14.2560 + 8.23071i −0.513085 + 0.296230i
\(773\) 7.86189i 0.282772i 0.989955 + 0.141386i \(0.0451559\pi\)
−0.989955 + 0.141386i \(0.954844\pi\)
\(774\) 0 0
\(775\) 19.8331i 0.712428i
\(776\) −8.53151 14.7770i −0.306263 0.530464i
\(777\) 0 0
\(778\) −21.3670 12.3362i −0.766044 0.442276i
\(779\) −0.190427 + 0.329830i −0.00682276 + 0.0118174i
\(780\) 0 0
\(781\) 29.9098 + 51.8053i 1.07026 + 1.85374i
\(782\) 22.2736i 0.796504i
\(783\) 0 0
\(784\) 0.815659 0.0291307
\(785\) 1.61115 0.930198i 0.0575044 0.0332002i
\(786\) 0 0
\(787\) 22.7512 + 13.1354i 0.810991 + 0.468226i 0.847300 0.531115i \(-0.178227\pi\)
−0.0363089 + 0.999341i \(0.511560\pi\)
\(788\) −9.90311 5.71756i −0.352784 0.203680i
\(789\) 0 0
\(790\) 1.06897 + 1.85151i 0.0380322 + 0.0658737i
\(791\) 16.4672i 0.585506i
\(792\) 0 0
\(793\) 29.7686 + 23.8001i 1.05711 + 0.845166i
\(794\) −4.68139 8.10841i −0.166136 0.287757i
\(795\) 0 0
\(796\) −6.59914 + 11.4301i −0.233900 + 0.405127i
\(797\) 5.38194 9.32179i 0.190638 0.330195i −0.754824 0.655928i \(-0.772278\pi\)
0.945462 + 0.325733i \(0.105611\pi\)
\(798\) 0 0
\(799\) 27.0013 15.5892i 0.955238 0.551507i
\(800\) 4.59914i 0.162604i
\(801\) 0 0
\(802\) −6.92606 −0.244568
\(803\) 2.56044 + 4.43482i 0.0903560 + 0.156501i
\(804\) 0 0
\(805\) 2.79290 4.83744i 0.0984368 0.170498i
\(806\) −14.4806 + 5.66254i −0.510059 + 0.199454i
\(807\) 0 0
\(808\) 4.39529 2.53762i 0.154626 0.0892732i
\(809\) −2.05900 −0.0723905 −0.0361952 0.999345i \(-0.511524\pi\)
−0.0361952 + 0.999345i \(0.511524\pi\)
\(810\) 0 0
\(811\) 12.5483i 0.440630i 0.975429 + 0.220315i \(0.0707086\pi\)
−0.975429 + 0.220315i \(0.929291\pi\)
\(812\) −1.78946 + 1.03315i −0.0627979 + 0.0362564i
\(813\) 0 0
\(814\) −32.8847 18.9860i −1.15261 0.665458i
\(815\) 2.34592 4.06325i 0.0821739 0.142329i
\(816\) 0 0
\(817\) −40.7735 + 23.5406i −1.42648 + 0.823580i
\(818\) 18.5920 0.650053
\(819\) 0 0
\(820\) 0.0496151 0.00173263
\(821\) 23.7509 13.7126i 0.828911 0.478572i −0.0245686 0.999698i \(-0.507821\pi\)
0.853480 + 0.521126i \(0.174488\pi\)
\(822\) 0 0
\(823\) 1.97058 3.41315i 0.0686902 0.118975i −0.829635 0.558306i \(-0.811451\pi\)
0.898325 + 0.439332i \(0.144785\pi\)
\(824\) 0.932747 + 0.538522i 0.0324938 + 0.0187603i
\(825\) 0 0
\(826\) −19.5712 + 11.2995i −0.680970 + 0.393158i
\(827\) 31.5551i 1.09728i 0.836060 + 0.548639i \(0.184854\pi\)
−0.836060 + 0.548639i \(0.815146\pi\)
\(828\) 0 0
\(829\) −48.2865 −1.67706 −0.838529 0.544857i \(-0.816584\pi\)
−0.838529 + 0.544857i \(0.816584\pi\)
\(830\) 8.34181 4.81615i 0.289548 0.167171i
\(831\) 0 0
\(832\) −3.35794 + 1.31310i −0.116416 + 0.0455234i
\(833\) −2.56050 + 4.43492i −0.0887162 + 0.153661i
\(834\) 0 0
\(835\) −0.0282061 0.0488544i −0.000976113 0.00169068i
\(836\) −23.6199 −0.816913
\(837\) 0 0
\(838\) 0.911227i 0.0314778i
\(839\) −18.8067 + 10.8581i −0.649279 + 0.374862i −0.788180 0.615445i \(-0.788976\pi\)
0.138901 + 0.990306i \(0.455643\pi\)
\(840\) 0 0
\(841\) 14.1548 24.5168i 0.488097 0.845408i
\(842\) 19.6572 34.0472i 0.677431 1.17335i
\(843\) 0 0
\(844\) 4.63857 + 8.03423i 0.159666 + 0.276550i
\(845\) 8.02887 1.81162i 0.276201 0.0623215i
\(846\) 0 0
\(847\) 31.3837i 1.07836i
\(848\) −3.18013 5.50815i −0.109206 0.189150i
\(849\) 0 0
\(850\) 25.0066 + 14.4376i 0.857719 + 0.495204i
\(851\) −24.0048 13.8592i −0.822875 0.475087i
\(852\) 0 0
\(853\) 12.8491 7.41846i 0.439946 0.254003i −0.263629 0.964624i \(-0.584919\pi\)
0.703575 + 0.710621i \(0.251586\pi\)
\(854\) −26.2876 −0.899541
\(855\) 0 0
\(856\) 9.16763i 0.313343i
\(857\) 4.26503 + 7.38725i 0.145691 + 0.252344i 0.929630 0.368493i \(-0.120126\pi\)
−0.783940 + 0.620837i \(0.786793\pi\)
\(858\) 0 0
\(859\) 10.1420 17.5665i 0.346042 0.599362i −0.639500 0.768791i \(-0.720859\pi\)
0.985543 + 0.169428i \(0.0541921\pi\)
\(860\) 5.31168 + 3.06670i 0.181127 + 0.104574i
\(861\) 0 0
\(862\) −19.0050 32.9176i −0.647313 1.12118i
\(863\) 17.3161i 0.589447i 0.955583 + 0.294723i \(0.0952275\pi\)
−0.955583 + 0.294723i \(0.904772\pi\)
\(864\) 0 0
\(865\) 4.81078i 0.163571i
\(866\) −32.4949 + 18.7609i −1.10422 + 0.637522i
\(867\) 0 0
\(868\) 5.36206 9.28735i 0.182000 0.315233i
\(869\) 14.2125 + 8.20560i 0.482126 + 0.278356i
\(870\) 0 0
\(871\) 28.1054 + 4.27183i 0.952316 + 0.144745i
\(872\) 9.90028 0.335266
\(873\) 0 0
\(874\) −17.2419 −0.583214
\(875\) −7.55690 13.0889i −0.255470 0.442487i
\(876\) 0 0
\(877\) −7.51181 4.33695i −0.253656 0.146448i 0.367781 0.929912i \(-0.380118\pi\)
−0.621437 + 0.783464i \(0.713451\pi\)
\(878\) 9.37255 + 5.41124i 0.316308 + 0.182621i
\(879\) 0 0
\(880\) 1.53852 + 2.66480i 0.0518636 + 0.0898303i
\(881\) −2.08434 −0.0702232 −0.0351116 0.999383i \(-0.511179\pi\)
−0.0351116 + 0.999383i \(0.511179\pi\)
\(882\) 0 0
\(883\) 22.5903 0.760224 0.380112 0.924941i \(-0.375885\pi\)
0.380112 + 0.924941i \(0.375885\pi\)
\(884\) 3.40160 22.3799i 0.114408 0.752719i
\(885\) 0 0
\(886\) 18.2403 + 10.5311i 0.612796 + 0.353798i
\(887\) 26.4409 45.7970i 0.887799 1.53771i 0.0453268 0.998972i \(-0.485567\pi\)
0.842472 0.538740i \(-0.181100\pi\)
\(888\) 0 0
\(889\) −38.3541 + 22.1438i −1.28636 + 0.742678i
\(890\) 0.376772i 0.0126294i
\(891\) 0 0
\(892\) 14.0125i 0.469172i
\(893\) 12.0675 + 20.9015i 0.403823 + 0.699443i
\(894\) 0 0
\(895\) −13.0448 7.53140i −0.436039 0.251747i
\(896\) 1.24342 2.15366i 0.0415396 0.0719488i
\(897\) 0 0
\(898\) −6.04053 10.4625i −0.201575 0.349138i
\(899\) 3.58311i 0.119503i
\(900\) 0 0
\(901\) 39.9320 1.33033
\(902\) 0.329830 0.190427i 0.0109821 0.00634053i
\(903\) 0 0
\(904\) 5.73460 + 3.31088i 0.190730 + 0.110118i
\(905\) −0.894999 0.516728i −0.0297508 0.0171766i
\(906\) 0 0
\(907\) 27.8451 + 48.2290i 0.924580 + 1.60142i 0.792236 + 0.610215i \(0.208917\pi\)
0.132344 + 0.991204i \(0.457750\pi\)
\(908\) 2.77227i 0.0920010i
\(909\) 0 0
\(910\) −3.54500 + 4.43400i −0.117516 + 0.146986i
\(911\) −19.2465 33.3359i −0.637665 1.10447i −0.985944 0.167078i \(-0.946567\pi\)
0.348278 0.937391i \(-0.386766\pi\)
\(912\) 0 0
\(913\) 36.9696 64.0332i 1.22352 2.11919i
\(914\) −14.2252 + 24.6389i −0.470529 + 0.814981i
\(915\) 0 0
\(916\) −14.4165 + 8.32339i −0.476336 + 0.275012i
\(917\) 29.9802i 0.990035i
\(918\) 0 0
\(919\) −26.0262 −0.858525 −0.429263 0.903180i \(-0.641227\pi\)
−0.429263 + 0.903180i \(0.641227\pi\)
\(920\) 1.12307 + 1.94522i 0.0370267 + 0.0641321i
\(921\) 0 0
\(922\) 8.64522 14.9740i 0.284715 0.493141i
\(923\) −16.1622 41.3312i −0.531986 1.36043i
\(924\) 0 0
\(925\) −31.1194 + 17.9668i −1.02320 + 0.590745i
\(926\) 23.7642 0.780940
\(927\) 0 0
\(928\) 0.830894i 0.0272754i
\(929\) 1.69730 0.979934i 0.0556865 0.0321506i −0.471898 0.881653i \(-0.656431\pi\)
0.527585 + 0.849502i \(0.323098\pi\)
\(930\) 0 0
\(931\) −3.43304 1.98207i −0.112513 0.0649596i
\(932\) 2.72662 4.72264i 0.0893134 0.154695i
\(933\) 0 0
\(934\) 26.4323 15.2607i 0.864893 0.499346i
\(935\) −19.3188 −0.631793
\(936\) 0 0
\(937\) −42.2865 −1.38144 −0.690720 0.723122i \(-0.742706\pi\)
−0.690720 + 0.723122i \(0.742706\pi\)
\(938\) −16.9807 + 9.80380i −0.554439 + 0.320105i
\(939\) 0 0
\(940\) 1.57207 2.72291i 0.0512753 0.0888114i
\(941\) 50.0947 + 28.9222i 1.63304 + 0.942836i 0.983148 + 0.182810i \(0.0585192\pi\)
0.649892 + 0.760027i \(0.274814\pi\)
\(942\) 0 0
\(943\) 0.240766 0.139006i 0.00784041 0.00452666i
\(944\) 9.08742i 0.295770i
\(945\) 0 0
\(946\) 47.0811 1.53074
\(947\) −14.8043 + 8.54727i −0.481075 + 0.277749i −0.720864 0.693076i \(-0.756255\pi\)
0.239789 + 0.970825i \(0.422922\pi\)
\(948\) 0 0
\(949\) −1.38357 3.53817i −0.0449127 0.114854i
\(950\) −11.1760 + 19.3574i −0.362597 + 0.628037i
\(951\) 0 0
\(952\) 7.80663 + 13.5215i 0.253014 + 0.438234i
\(953\) −19.8333 −0.642465 −0.321233 0.947000i \(-0.604097\pi\)
−0.321233 + 0.947000i \(0.604097\pi\)
\(954\) 0 0
\(955\) 2.00470i 0.0648707i
\(956\) −11.8000 + 6.81272i −0.381639 + 0.220339i
\(957\) 0 0
\(958\) −11.4067 + 19.7570i −0.368533 + 0.638319i
\(959\) 0.378963 0.656383i 0.0122374 0.0211957i
\(960\) 0 0
\(961\) −6.20179 10.7418i −0.200058 0.346510i
\(962\) 22.0028 + 17.5913i 0.709400 + 0.567167i
\(963\) 0 0
\(964\) 18.9117i 0.609105i
\(965\) −5.21113 9.02593i −0.167752 0.290555i
\(966\) 0 0
\(967\) 19.0476 + 10.9971i 0.612530 + 0.353644i 0.773955 0.633241i \(-0.218276\pi\)
−0.161425 + 0.986885i \(0.551609\pi\)
\(968\) 10.9292 + 6.30997i 0.351278 + 0.202810i
\(969\) 0 0
\(970\) 9.35580 5.40157i 0.300397 0.173434i
\(971\) 16.0662 0.515589 0.257794 0.966200i \(-0.417004\pi\)
0.257794 + 0.966200i \(0.417004\pi\)
\(972\) 0 0
\(973\) 20.3477i 0.652318i
\(974\) −10.9545 18.9738i −0.351005 0.607958i
\(975\) 0 0
\(976\) 5.28535 9.15449i 0.169180 0.293028i
\(977\) 1.21231 + 0.699926i 0.0387851 + 0.0223926i 0.519267 0.854612i \(-0.326205\pi\)
−0.480482 + 0.877005i \(0.659538\pi\)
\(978\) 0 0
\(979\) 1.44609 + 2.50469i 0.0462171 + 0.0800504i
\(980\) 0.516420i 0.0164964i
\(981\) 0 0
\(982\) 25.6660i 0.819035i
\(983\) 11.4778 6.62671i 0.366085 0.211359i −0.305662 0.952140i \(-0.598878\pi\)
0.671747 + 0.740781i \(0.265544\pi\)
\(984\) 0 0
\(985\) 3.61997 6.26998i 0.115342 0.199778i
\(986\) 4.51776 + 2.60833i 0.143875 + 0.0830662i
\(987\) 0 0
\(988\) 17.3241 + 2.63315i 0.551154 + 0.0837717i
\(989\) 34.3678 1.09283
\(990\) 0 0
\(991\) 5.66549 0.179970 0.0899851 0.995943i \(-0.471318\pi\)
0.0899851 + 0.995943i \(0.471318\pi\)
\(992\) 2.15618 + 3.73461i 0.0684587 + 0.118574i
\(993\) 0 0
\(994\) 26.5083 + 15.3046i 0.840792 + 0.485431i
\(995\) −7.23673 4.17813i −0.229420 0.132456i
\(996\) 0 0
\(997\) −2.82880 4.89963i −0.0895891 0.155173i 0.817748 0.575576i \(-0.195222\pi\)
−0.907338 + 0.420403i \(0.861889\pi\)
\(998\) 34.6451 1.09667
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.t.a.415.5 28
3.2 odd 2 234.2.t.a.103.8 yes 28
9.2 odd 6 234.2.t.a.25.1 28
9.4 even 3 2106.2.b.d.649.3 14
9.5 odd 6 2106.2.b.c.649.12 14
9.7 even 3 inner 702.2.t.a.181.10 28
13.12 even 2 inner 702.2.t.a.415.10 28
39.38 odd 2 234.2.t.a.103.1 yes 28
117.25 even 6 inner 702.2.t.a.181.5 28
117.38 odd 6 234.2.t.a.25.8 yes 28
117.77 odd 6 2106.2.b.c.649.3 14
117.103 even 6 2106.2.b.d.649.12 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.t.a.25.1 28 9.2 odd 6
234.2.t.a.25.8 yes 28 117.38 odd 6
234.2.t.a.103.1 yes 28 39.38 odd 2
234.2.t.a.103.8 yes 28 3.2 odd 2
702.2.t.a.181.5 28 117.25 even 6 inner
702.2.t.a.181.10 28 9.7 even 3 inner
702.2.t.a.415.5 28 1.1 even 1 trivial
702.2.t.a.415.10 28 13.12 even 2 inner
2106.2.b.c.649.3 14 117.77 odd 6
2106.2.b.c.649.12 14 9.5 odd 6
2106.2.b.d.649.3 14 9.4 even 3
2106.2.b.d.649.12 14 117.103 even 6