Properties

Label 702.2.t.a.415.14
Level $702$
Weight $2$
Character 702.415
Analytic conductor $5.605$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [702,2,Mod(181,702)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(702, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("702.181"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 415.14
Character \(\chi\) \(=\) 702.415
Dual form 702.2.t.a.181.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(3.32246 + 1.91822i) q^{5} +(2.91802 - 1.68472i) q^{7} -1.00000i q^{8} +3.83645 q^{10} +(-1.72495 + 0.995899i) q^{11} +(-0.985326 - 3.46830i) q^{13} +(1.68472 - 2.91802i) q^{14} +(-0.500000 - 0.866025i) q^{16} -2.60129 q^{17} +1.99180i q^{19} +(3.32246 - 1.91822i) q^{20} +(-0.995899 + 1.72495i) q^{22} +(-2.13620 + 3.70000i) q^{23} +(4.85917 + 8.41632i) q^{25} +(-2.58747 - 2.51098i) q^{26} -3.36944i q^{28} +(4.37469 + 7.57719i) q^{29} +(-4.57313 - 2.64030i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(-2.25278 + 1.30064i) q^{34} +12.9267 q^{35} -5.08689i q^{37} +(0.995899 + 1.72495i) q^{38} +(1.91822 - 3.32246i) q^{40} +(-7.13885 - 4.12162i) q^{41} +(-5.13184 - 8.88861i) q^{43} +1.99180i q^{44} +4.27239i q^{46} +(4.22784 - 2.44094i) q^{47} +(2.17657 - 3.76993i) q^{49} +(8.41632 + 4.85917i) q^{50} +(-3.49630 - 0.880834i) q^{52} +9.16444 q^{53} -7.64143 q^{55} +(-1.68472 - 2.91802i) q^{56} +(7.57719 + 4.37469i) q^{58} +(-6.33329 - 3.65653i) q^{59} +(5.63669 + 9.76304i) q^{61} -5.28060 q^{62} -1.00000 q^{64} +(3.37927 - 13.4134i) q^{65} +(-4.90591 - 2.83243i) q^{67} +(-1.30064 + 2.25278i) q^{68} +(11.1948 - 6.46335i) q^{70} +1.94505i q^{71} +8.41425i q^{73} +(-2.54345 - 4.40538i) q^{74} +(1.72495 + 0.995899i) q^{76} +(-3.35563 + 5.81211i) q^{77} +(2.97607 + 5.15470i) q^{79} -3.83645i q^{80} -8.24323 q^{82} +(-2.03658 + 1.17582i) q^{83} +(-8.64268 - 4.98985i) q^{85} +(-8.88861 - 5.13184i) q^{86} +(0.995899 + 1.72495i) q^{88} +6.28290i q^{89} +(-8.71833 - 8.46059i) q^{91} +(2.13620 + 3.70000i) q^{92} +(2.44094 - 4.22784i) q^{94} +(-3.82072 + 6.61767i) q^{95} +(8.92313 - 5.15177i) q^{97} -4.35315i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 14 q^{4} + 2 q^{13} - 8 q^{14} - 14 q^{16} - 16 q^{17} + 8 q^{23} + 14 q^{25} - 8 q^{26} + 16 q^{29} + 68 q^{35} - 4 q^{43} + 10 q^{49} - 2 q^{52} + 120 q^{53} + 8 q^{56} + 28 q^{61} - 68 q^{62}+ \cdots - 8 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 3.32246 + 1.91822i 1.48585 + 0.857856i 0.999870 0.0161143i \(-0.00512957\pi\)
0.485980 + 0.873970i \(0.338463\pi\)
\(6\) 0 0
\(7\) 2.91802 1.68472i 1.10291 0.636765i 0.165926 0.986138i \(-0.446939\pi\)
0.936984 + 0.349373i \(0.113606\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 3.83645 1.21319
\(11\) −1.72495 + 0.995899i −0.520091 + 0.300275i −0.736972 0.675923i \(-0.763745\pi\)
0.216881 + 0.976198i \(0.430412\pi\)
\(12\) 0 0
\(13\) −0.985326 3.46830i −0.273280 0.961934i
\(14\) 1.68472 2.91802i 0.450261 0.779875i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −2.60129 −0.630905 −0.315452 0.948941i \(-0.602156\pi\)
−0.315452 + 0.948941i \(0.602156\pi\)
\(18\) 0 0
\(19\) 1.99180i 0.456950i 0.973550 + 0.228475i \(0.0733739\pi\)
−0.973550 + 0.228475i \(0.926626\pi\)
\(20\) 3.32246 1.91822i 0.742925 0.428928i
\(21\) 0 0
\(22\) −0.995899 + 1.72495i −0.212326 + 0.367760i
\(23\) −2.13620 + 3.70000i −0.445428 + 0.771504i −0.998082 0.0619070i \(-0.980282\pi\)
0.552654 + 0.833411i \(0.313615\pi\)
\(24\) 0 0
\(25\) 4.85917 + 8.41632i 0.971833 + 1.68326i
\(26\) −2.58747 2.51098i −0.507445 0.492443i
\(27\) 0 0
\(28\) 3.36944i 0.636765i
\(29\) 4.37469 + 7.57719i 0.812360 + 1.40705i 0.911208 + 0.411947i \(0.135151\pi\)
−0.0988475 + 0.995103i \(0.531516\pi\)
\(30\) 0 0
\(31\) −4.57313 2.64030i −0.821359 0.474212i 0.0295262 0.999564i \(-0.490600\pi\)
−0.850885 + 0.525352i \(0.823933\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 0 0
\(34\) −2.25278 + 1.30064i −0.386349 + 0.223059i
\(35\) 12.9267 2.18501
\(36\) 0 0
\(37\) 5.08689i 0.836280i −0.908383 0.418140i \(-0.862682\pi\)
0.908383 0.418140i \(-0.137318\pi\)
\(38\) 0.995899 + 1.72495i 0.161556 + 0.279824i
\(39\) 0 0
\(40\) 1.91822 3.32246i 0.303298 0.525327i
\(41\) −7.13885 4.12162i −1.11490 0.643688i −0.174806 0.984603i \(-0.555930\pi\)
−0.940094 + 0.340915i \(0.889263\pi\)
\(42\) 0 0
\(43\) −5.13184 8.88861i −0.782598 1.35550i −0.930423 0.366486i \(-0.880561\pi\)
0.147825 0.989014i \(-0.452773\pi\)
\(44\) 1.99180i 0.300275i
\(45\) 0 0
\(46\) 4.27239i 0.629930i
\(47\) 4.22784 2.44094i 0.616693 0.356048i −0.158887 0.987297i \(-0.550791\pi\)
0.775580 + 0.631249i \(0.217457\pi\)
\(48\) 0 0
\(49\) 2.17657 3.76993i 0.310939 0.538562i
\(50\) 8.41632 + 4.85917i 1.19025 + 0.687190i
\(51\) 0 0
\(52\) −3.49630 0.880834i −0.484850 0.122150i
\(53\) 9.16444 1.25883 0.629416 0.777068i \(-0.283294\pi\)
0.629416 + 0.777068i \(0.283294\pi\)
\(54\) 0 0
\(55\) −7.64143 −1.03037
\(56\) −1.68472 2.91802i −0.225130 0.389937i
\(57\) 0 0
\(58\) 7.57719 + 4.37469i 0.994934 + 0.574426i
\(59\) −6.33329 3.65653i −0.824524 0.476039i 0.0274501 0.999623i \(-0.491261\pi\)
−0.851974 + 0.523584i \(0.824595\pi\)
\(60\) 0 0
\(61\) 5.63669 + 9.76304i 0.721705 + 1.25003i 0.960316 + 0.278914i \(0.0899744\pi\)
−0.238612 + 0.971115i \(0.576692\pi\)
\(62\) −5.28060 −0.670636
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 3.37927 13.4134i 0.419147 1.66373i
\(66\) 0 0
\(67\) −4.90591 2.83243i −0.599353 0.346037i 0.169434 0.985542i \(-0.445806\pi\)
−0.768787 + 0.639505i \(0.779139\pi\)
\(68\) −1.30064 + 2.25278i −0.157726 + 0.273190i
\(69\) 0 0
\(70\) 11.1948 6.46335i 1.33804 0.772518i
\(71\) 1.94505i 0.230835i 0.993317 + 0.115418i \(0.0368206\pi\)
−0.993317 + 0.115418i \(0.963179\pi\)
\(72\) 0 0
\(73\) 8.41425i 0.984814i 0.870365 + 0.492407i \(0.163883\pi\)
−0.870365 + 0.492407i \(0.836117\pi\)
\(74\) −2.54345 4.40538i −0.295669 0.512115i
\(75\) 0 0
\(76\) 1.72495 + 0.995899i 0.197865 + 0.114237i
\(77\) −3.35563 + 5.81211i −0.382409 + 0.662352i
\(78\) 0 0
\(79\) 2.97607 + 5.15470i 0.334834 + 0.579949i 0.983453 0.181164i \(-0.0579866\pi\)
−0.648619 + 0.761113i \(0.724653\pi\)
\(80\) 3.83645i 0.428928i
\(81\) 0 0
\(82\) −8.24323 −0.910313
\(83\) −2.03658 + 1.17582i −0.223544 + 0.129063i −0.607590 0.794251i \(-0.707864\pi\)
0.384046 + 0.923314i \(0.374530\pi\)
\(84\) 0 0
\(85\) −8.64268 4.98985i −0.937430 0.541225i
\(86\) −8.88861 5.13184i −0.958483 0.553381i
\(87\) 0 0
\(88\) 0.995899 + 1.72495i 0.106163 + 0.183880i
\(89\) 6.28290i 0.665986i 0.942929 + 0.332993i \(0.108059\pi\)
−0.942929 + 0.332993i \(0.891941\pi\)
\(90\) 0 0
\(91\) −8.71833 8.46059i −0.913929 0.886911i
\(92\) 2.13620 + 3.70000i 0.222714 + 0.385752i
\(93\) 0 0
\(94\) 2.44094 4.22784i 0.251764 0.436068i
\(95\) −3.82072 + 6.61767i −0.391997 + 0.678959i
\(96\) 0 0
\(97\) 8.92313 5.15177i 0.906006 0.523083i 0.0268622 0.999639i \(-0.491448\pi\)
0.879144 + 0.476556i \(0.158115\pi\)
\(98\) 4.35315i 0.439734i
\(99\) 0 0
\(100\) 9.71833 0.971833
\(101\) −1.27960 2.21634i −0.127325 0.220534i 0.795314 0.606197i \(-0.207306\pi\)
−0.922639 + 0.385664i \(0.873973\pi\)
\(102\) 0 0
\(103\) 2.82072 4.88562i 0.277933 0.481395i −0.692938 0.720998i \(-0.743684\pi\)
0.970871 + 0.239603i \(0.0770172\pi\)
\(104\) −3.46830 + 0.985326i −0.340095 + 0.0966192i
\(105\) 0 0
\(106\) 7.93663 4.58222i 0.770874 0.445064i
\(107\) −18.3051 −1.76962 −0.884812 0.465948i \(-0.845713\pi\)
−0.884812 + 0.465948i \(0.845713\pi\)
\(108\) 0 0
\(109\) 6.74904i 0.646441i 0.946324 + 0.323221i \(0.104766\pi\)
−0.946324 + 0.323221i \(0.895234\pi\)
\(110\) −6.61767 + 3.82072i −0.630970 + 0.364291i
\(111\) 0 0
\(112\) −2.91802 1.68472i −0.275727 0.159191i
\(113\) −2.97526 + 5.15330i −0.279889 + 0.484781i −0.971357 0.237626i \(-0.923631\pi\)
0.691468 + 0.722407i \(0.256964\pi\)
\(114\) 0 0
\(115\) −14.1949 + 8.19541i −1.32368 + 0.764226i
\(116\) 8.74939 0.812360
\(117\) 0 0
\(118\) −7.31305 −0.673221
\(119\) −7.59062 + 4.38244i −0.695831 + 0.401738i
\(120\) 0 0
\(121\) −3.51637 + 6.09053i −0.319670 + 0.553685i
\(122\) 9.76304 + 5.63669i 0.883904 + 0.510322i
\(123\) 0 0
\(124\) −4.57313 + 2.64030i −0.410679 + 0.237106i
\(125\) 18.1016i 1.61906i
\(126\) 0 0
\(127\) −5.93126 −0.526314 −0.263157 0.964753i \(-0.584764\pi\)
−0.263157 + 0.964753i \(0.584764\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −3.78015 13.3060i −0.331541 1.16701i
\(131\) 6.88246 11.9208i 0.601324 1.04152i −0.391297 0.920264i \(-0.627974\pi\)
0.992621 0.121259i \(-0.0386931\pi\)
\(132\) 0 0
\(133\) 3.35563 + 5.81211i 0.290970 + 0.503974i
\(134\) −5.66486 −0.489370
\(135\) 0 0
\(136\) 2.60129i 0.223059i
\(137\) −3.30808 + 1.90992i −0.282628 + 0.163175i −0.634613 0.772830i \(-0.718840\pi\)
0.351985 + 0.936006i \(0.385507\pi\)
\(138\) 0 0
\(139\) −6.80487 + 11.7864i −0.577182 + 0.999708i 0.418619 + 0.908162i \(0.362514\pi\)
−0.995801 + 0.0915462i \(0.970819\pi\)
\(140\) 6.46335 11.1948i 0.546252 0.946137i
\(141\) 0 0
\(142\) 0.972526 + 1.68446i 0.0816125 + 0.141357i
\(143\) 5.15372 + 5.00136i 0.430976 + 0.418235i
\(144\) 0 0
\(145\) 33.5666i 2.78755i
\(146\) 4.20713 + 7.28696i 0.348184 + 0.603073i
\(147\) 0 0
\(148\) −4.40538 2.54345i −0.362120 0.209070i
\(149\) −6.74717 3.89548i −0.552749 0.319130i 0.197481 0.980307i \(-0.436724\pi\)
−0.750230 + 0.661177i \(0.770057\pi\)
\(150\) 0 0
\(151\) 18.5033 10.6829i 1.50578 0.869363i 0.505804 0.862649i \(-0.331196\pi\)
0.999977 0.00671434i \(-0.00213726\pi\)
\(152\) 1.99180 0.161556
\(153\) 0 0
\(154\) 6.71125i 0.540808i
\(155\) −10.1294 17.5446i −0.813610 1.40921i
\(156\) 0 0
\(157\) 2.12572 3.68185i 0.169651 0.293844i −0.768646 0.639674i \(-0.779069\pi\)
0.938297 + 0.345830i \(0.112403\pi\)
\(158\) 5.15470 + 2.97607i 0.410086 + 0.236763i
\(159\) 0 0
\(160\) −1.91822 3.32246i −0.151649 0.262664i
\(161\) 14.3956i 1.13453i
\(162\) 0 0
\(163\) 11.0533i 0.865764i −0.901451 0.432882i \(-0.857497\pi\)
0.901451 0.432882i \(-0.142503\pi\)
\(164\) −7.13885 + 4.12162i −0.557450 + 0.321844i
\(165\) 0 0
\(166\) −1.17582 + 2.03658i −0.0912614 + 0.158069i
\(167\) −8.14388 4.70187i −0.630193 0.363842i 0.150634 0.988590i \(-0.451869\pi\)
−0.780827 + 0.624748i \(0.785202\pi\)
\(168\) 0 0
\(169\) −11.0583 + 6.83482i −0.850636 + 0.525756i
\(170\) −9.97970 −0.765408
\(171\) 0 0
\(172\) −10.2637 −0.782598
\(173\) 1.08885 + 1.88594i 0.0827835 + 0.143385i 0.904445 0.426591i \(-0.140286\pi\)
−0.821661 + 0.569976i \(0.806952\pi\)
\(174\) 0 0
\(175\) 28.3583 + 16.3727i 2.14369 + 1.23766i
\(176\) 1.72495 + 0.995899i 0.130023 + 0.0750687i
\(177\) 0 0
\(178\) 3.14145 + 5.44115i 0.235462 + 0.407831i
\(179\) −7.91152 −0.591334 −0.295667 0.955291i \(-0.595542\pi\)
−0.295667 + 0.955291i \(0.595542\pi\)
\(180\) 0 0
\(181\) −1.02195 −0.0759611 −0.0379806 0.999278i \(-0.512092\pi\)
−0.0379806 + 0.999278i \(0.512092\pi\)
\(182\) −11.7806 2.96792i −0.873236 0.219997i
\(183\) 0 0
\(184\) 3.70000 + 2.13620i 0.272768 + 0.157483i
\(185\) 9.75779 16.9010i 0.717407 1.24259i
\(186\) 0 0
\(187\) 4.48708 2.59062i 0.328128 0.189445i
\(188\) 4.88188i 0.356048i
\(189\) 0 0
\(190\) 7.64143i 0.554368i
\(191\) 2.03054 + 3.51700i 0.146925 + 0.254481i 0.930089 0.367333i \(-0.119729\pi\)
−0.783165 + 0.621814i \(0.786396\pi\)
\(192\) 0 0
\(193\) −14.4121 8.32085i −1.03741 0.598948i −0.118310 0.992977i \(-0.537748\pi\)
−0.919098 + 0.394029i \(0.871081\pi\)
\(194\) 5.15177 8.92313i 0.369875 0.640643i
\(195\) 0 0
\(196\) −2.17657 3.76993i −0.155469 0.269281i
\(197\) 20.8461i 1.48522i −0.669723 0.742611i \(-0.733587\pi\)
0.669723 0.742611i \(-0.266413\pi\)
\(198\) 0 0
\(199\) 15.4367 1.09428 0.547138 0.837042i \(-0.315717\pi\)
0.547138 + 0.837042i \(0.315717\pi\)
\(200\) 8.41632 4.85917i 0.595124 0.343595i
\(201\) 0 0
\(202\) −2.21634 1.27960i −0.155941 0.0900325i
\(203\) 25.5309 + 14.7403i 1.79192 + 1.03457i
\(204\) 0 0
\(205\) −15.8124 27.3878i −1.10438 1.91285i
\(206\) 5.64143i 0.393057i
\(207\) 0 0
\(208\) −2.51098 + 2.58747i −0.174105 + 0.179409i
\(209\) −1.98363 3.43575i −0.137211 0.237656i
\(210\) 0 0
\(211\) 1.86662 3.23307i 0.128503 0.222574i −0.794594 0.607142i \(-0.792316\pi\)
0.923097 + 0.384568i \(0.125649\pi\)
\(212\) 4.58222 7.93663i 0.314708 0.545090i
\(213\) 0 0
\(214\) −15.8527 + 9.15257i −1.08367 + 0.625657i
\(215\) 39.3761i 2.68543i
\(216\) 0 0
\(217\) −17.7927 −1.20785
\(218\) 3.37452 + 5.84484i 0.228551 + 0.395863i
\(219\) 0 0
\(220\) −3.82072 + 6.61767i −0.257593 + 0.446163i
\(221\) 2.56312 + 9.02205i 0.172414 + 0.606889i
\(222\) 0 0
\(223\) 2.38417 1.37650i 0.159656 0.0921775i −0.418043 0.908427i \(-0.637284\pi\)
0.577699 + 0.816250i \(0.303951\pi\)
\(224\) −3.36944 −0.225130
\(225\) 0 0
\(226\) 5.95051i 0.395822i
\(227\) −3.30960 + 1.91080i −0.219666 + 0.126824i −0.605795 0.795620i \(-0.707145\pi\)
0.386130 + 0.922444i \(0.373812\pi\)
\(228\) 0 0
\(229\) 9.50393 + 5.48710i 0.628037 + 0.362597i 0.779992 0.625790i \(-0.215223\pi\)
−0.151954 + 0.988388i \(0.548557\pi\)
\(230\) −8.19541 + 14.1949i −0.540389 + 0.935982i
\(231\) 0 0
\(232\) 7.57719 4.37469i 0.497467 0.287213i
\(233\) −2.26098 −0.148122 −0.0740610 0.997254i \(-0.523596\pi\)
−0.0740610 + 0.997254i \(0.523596\pi\)
\(234\) 0 0
\(235\) 18.7291 1.22175
\(236\) −6.33329 + 3.65653i −0.412262 + 0.238020i
\(237\) 0 0
\(238\) −4.38244 + 7.59062i −0.284072 + 0.492027i
\(239\) 5.46146 + 3.15318i 0.353273 + 0.203962i 0.666126 0.745839i \(-0.267951\pi\)
−0.312853 + 0.949802i \(0.601285\pi\)
\(240\) 0 0
\(241\) −17.1743 + 9.91557i −1.10629 + 0.638718i −0.937867 0.346996i \(-0.887202\pi\)
−0.168426 + 0.985714i \(0.553868\pi\)
\(242\) 7.03274i 0.452082i
\(243\) 0 0
\(244\) 11.2734 0.721705
\(245\) 14.4632 8.35031i 0.924017 0.533482i
\(246\) 0 0
\(247\) 6.90816 1.96257i 0.439556 0.124875i
\(248\) −2.64030 + 4.57313i −0.167659 + 0.290394i
\(249\) 0 0
\(250\) 9.05082 + 15.6765i 0.572424 + 0.991467i
\(251\) −0.440795 −0.0278227 −0.0139114 0.999903i \(-0.504428\pi\)
−0.0139114 + 0.999903i \(0.504428\pi\)
\(252\) 0 0
\(253\) 8.50975i 0.535003i
\(254\) −5.13662 + 2.96563i −0.322300 + 0.186080i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 6.78781 11.7568i 0.423412 0.733371i −0.572859 0.819654i \(-0.694166\pi\)
0.996271 + 0.0862832i \(0.0274990\pi\)
\(258\) 0 0
\(259\) −8.56999 14.8437i −0.532513 0.922340i
\(260\) −9.92669 9.63323i −0.615627 0.597427i
\(261\) 0 0
\(262\) 13.7649i 0.850400i
\(263\) 11.1892 + 19.3803i 0.689956 + 1.19504i 0.971852 + 0.235594i \(0.0757035\pi\)
−0.281896 + 0.959445i \(0.590963\pi\)
\(264\) 0 0
\(265\) 30.4485 + 17.5794i 1.87044 + 1.07990i
\(266\) 5.81211 + 3.35563i 0.356364 + 0.205747i
\(267\) 0 0
\(268\) −4.90591 + 2.83243i −0.299676 + 0.173018i
\(269\) 30.4520 1.85669 0.928345 0.371719i \(-0.121232\pi\)
0.928345 + 0.371719i \(0.121232\pi\)
\(270\) 0 0
\(271\) 2.03437i 0.123579i −0.998089 0.0617897i \(-0.980319\pi\)
0.998089 0.0617897i \(-0.0196808\pi\)
\(272\) 1.30064 + 2.25278i 0.0788631 + 0.136595i
\(273\) 0 0
\(274\) −1.90992 + 3.30808i −0.115382 + 0.199848i
\(275\) −16.7636 9.67848i −1.01088 0.583634i
\(276\) 0 0
\(277\) 14.4567 + 25.0398i 0.868621 + 1.50450i 0.863406 + 0.504510i \(0.168327\pi\)
0.00521502 + 0.999986i \(0.498340\pi\)
\(278\) 13.6097i 0.816258i
\(279\) 0 0
\(280\) 12.9267i 0.772518i
\(281\) −17.7630 + 10.2555i −1.05965 + 0.611791i −0.925336 0.379148i \(-0.876217\pi\)
−0.134316 + 0.990939i \(0.542884\pi\)
\(282\) 0 0
\(283\) 0.819991 1.42027i 0.0487434 0.0844260i −0.840624 0.541619i \(-0.817812\pi\)
0.889368 + 0.457193i \(0.151145\pi\)
\(284\) 1.68446 + 0.972526i 0.0999545 + 0.0577088i
\(285\) 0 0
\(286\) 6.96393 + 1.75444i 0.411786 + 0.103742i
\(287\) −27.7751 −1.63951
\(288\) 0 0
\(289\) −10.2333 −0.601959
\(290\) 16.7833 + 29.0695i 0.985549 + 1.70702i
\(291\) 0 0
\(292\) 7.28696 + 4.20713i 0.426437 + 0.246203i
\(293\) −10.7578 6.21102i −0.628477 0.362852i 0.151685 0.988429i \(-0.451530\pi\)
−0.780162 + 0.625577i \(0.784863\pi\)
\(294\) 0 0
\(295\) −14.0281 24.2973i −0.816746 1.41465i
\(296\) −5.08689 −0.295669
\(297\) 0 0
\(298\) −7.79096 −0.451318
\(299\) 14.9376 + 3.76327i 0.863863 + 0.217636i
\(300\) 0 0
\(301\) −29.9497 17.2914i −1.72627 0.996662i
\(302\) 10.6829 18.5033i 0.614733 1.06475i
\(303\) 0 0
\(304\) 1.72495 0.995899i 0.0989326 0.0571187i
\(305\) 43.2498i 2.47647i
\(306\) 0 0
\(307\) 25.8780i 1.47693i −0.674289 0.738467i \(-0.735550\pi\)
0.674289 0.738467i \(-0.264450\pi\)
\(308\) 3.35563 + 5.81211i 0.191205 + 0.331176i
\(309\) 0 0
\(310\) −17.5446 10.1294i −0.996465 0.575309i
\(311\) −12.6911 + 21.9816i −0.719645 + 1.24646i 0.241495 + 0.970402i \(0.422362\pi\)
−0.961140 + 0.276060i \(0.910971\pi\)
\(312\) 0 0
\(313\) 5.09998 + 8.83342i 0.288268 + 0.499294i 0.973396 0.229128i \(-0.0735874\pi\)
−0.685129 + 0.728422i \(0.740254\pi\)
\(314\) 4.25143i 0.239922i
\(315\) 0 0
\(316\) 5.95213 0.334834
\(317\) −10.5613 + 6.09759i −0.593184 + 0.342475i −0.766356 0.642417i \(-0.777932\pi\)
0.173171 + 0.984892i \(0.444599\pi\)
\(318\) 0 0
\(319\) −15.0922 8.71351i −0.845003 0.487863i
\(320\) −3.32246 1.91822i −0.185731 0.107232i
\(321\) 0 0
\(322\) 7.19780 + 12.4669i 0.401117 + 0.694756i
\(323\) 5.18124i 0.288292i
\(324\) 0 0
\(325\) 24.4025 25.1459i 1.35361 1.39484i
\(326\) −5.52667 9.57247i −0.306094 0.530170i
\(327\) 0 0
\(328\) −4.12162 + 7.13885i −0.227578 + 0.394177i
\(329\) 8.22461 14.2454i 0.453438 0.785377i
\(330\) 0 0
\(331\) 19.4652 11.2383i 1.06991 0.617711i 0.141750 0.989902i \(-0.454727\pi\)
0.928156 + 0.372192i \(0.121394\pi\)
\(332\) 2.35164i 0.129063i
\(333\) 0 0
\(334\) −9.40375 −0.514550
\(335\) −10.8665 18.8213i −0.593699 1.02832i
\(336\) 0 0
\(337\) 15.3975 26.6692i 0.838755 1.45277i −0.0521819 0.998638i \(-0.516618\pi\)
0.890936 0.454128i \(-0.150049\pi\)
\(338\) −6.15933 + 11.4483i −0.335023 + 0.622703i
\(339\) 0 0
\(340\) −8.64268 + 4.98985i −0.468715 + 0.270613i
\(341\) 10.5179 0.569575
\(342\) 0 0
\(343\) 8.91842i 0.481550i
\(344\) −8.88861 + 5.13184i −0.479242 + 0.276690i
\(345\) 0 0
\(346\) 1.88594 + 1.08885i 0.101389 + 0.0585368i
\(347\) −14.5235 + 25.1555i −0.779664 + 1.35042i 0.152472 + 0.988308i \(0.451277\pi\)
−0.932136 + 0.362109i \(0.882057\pi\)
\(348\) 0 0
\(349\) 10.7969 6.23358i 0.577943 0.333676i −0.182372 0.983230i \(-0.558378\pi\)
0.760316 + 0.649554i \(0.225044\pi\)
\(350\) 32.7454 1.75031
\(351\) 0 0
\(352\) 1.99180 0.106163
\(353\) 29.8167 17.2147i 1.58698 0.916244i 0.593180 0.805070i \(-0.297872\pi\)
0.993801 0.111174i \(-0.0354612\pi\)
\(354\) 0 0
\(355\) −3.73104 + 6.46236i −0.198023 + 0.342986i
\(356\) 5.44115 + 3.14145i 0.288380 + 0.166496i
\(357\) 0 0
\(358\) −6.85157 + 3.95576i −0.362117 + 0.209068i
\(359\) 34.2496i 1.80762i −0.427931 0.903812i \(-0.640757\pi\)
0.427931 0.903812i \(-0.359243\pi\)
\(360\) 0 0
\(361\) 15.0327 0.791197
\(362\) −0.885037 + 0.510976i −0.0465165 + 0.0268563i
\(363\) 0 0
\(364\) −11.6863 + 3.32000i −0.612526 + 0.174015i
\(365\) −16.1404 + 27.9560i −0.844828 + 1.46329i
\(366\) 0 0
\(367\) 2.51806 + 4.36140i 0.131441 + 0.227663i 0.924232 0.381830i \(-0.124706\pi\)
−0.792791 + 0.609494i \(0.791373\pi\)
\(368\) 4.27239 0.222714
\(369\) 0 0
\(370\) 19.5156i 1.01457i
\(371\) 26.7420 15.4395i 1.38838 0.801580i
\(372\) 0 0
\(373\) −5.60706 + 9.71171i −0.290322 + 0.502853i −0.973886 0.227038i \(-0.927096\pi\)
0.683563 + 0.729891i \(0.260429\pi\)
\(374\) 2.59062 4.48708i 0.133958 0.232022i
\(375\) 0 0
\(376\) −2.44094 4.22784i −0.125882 0.218034i
\(377\) 21.9695 22.6388i 1.13149 1.16596i
\(378\) 0 0
\(379\) 5.12623i 0.263317i −0.991295 0.131658i \(-0.957970\pi\)
0.991295 0.131658i \(-0.0420302\pi\)
\(380\) 3.82072 + 6.61767i 0.195999 + 0.339479i
\(381\) 0 0
\(382\) 3.51700 + 2.03054i 0.179945 + 0.103891i
\(383\) 16.4042 + 9.47098i 0.838216 + 0.483944i 0.856658 0.515885i \(-0.172537\pi\)
−0.0184411 + 0.999830i \(0.505870\pi\)
\(384\) 0 0
\(385\) −22.2979 + 12.8737i −1.13640 + 0.656104i
\(386\) −16.6417 −0.847041
\(387\) 0 0
\(388\) 10.3035i 0.523083i
\(389\) −10.4199 18.0477i −0.528308 0.915057i −0.999455 0.0330020i \(-0.989493\pi\)
0.471147 0.882055i \(-0.343840\pi\)
\(390\) 0 0
\(391\) 5.55686 9.62477i 0.281023 0.486745i
\(392\) −3.76993 2.17657i −0.190410 0.109934i
\(393\) 0 0
\(394\) −10.4230 18.0532i −0.525105 0.909509i
\(395\) 22.8350i 1.14896i
\(396\) 0 0
\(397\) 2.17152i 0.108985i −0.998514 0.0544927i \(-0.982646\pi\)
0.998514 0.0544927i \(-0.0173541\pi\)
\(398\) 13.3685 7.71833i 0.670104 0.386885i
\(399\) 0 0
\(400\) 4.85917 8.41632i 0.242958 0.420816i
\(401\) 9.35590 + 5.40163i 0.467211 + 0.269745i 0.715072 0.699051i \(-0.246394\pi\)
−0.247860 + 0.968796i \(0.579727\pi\)
\(402\) 0 0
\(403\) −4.65133 + 18.4626i −0.231699 + 0.919686i
\(404\) −2.55921 −0.127325
\(405\) 0 0
\(406\) 29.4806 1.46310
\(407\) 5.06603 + 8.77462i 0.251114 + 0.434942i
\(408\) 0 0
\(409\) −1.34494 0.776503i −0.0665031 0.0383956i 0.466380 0.884585i \(-0.345558\pi\)
−0.532883 + 0.846189i \(0.678891\pi\)
\(410\) −27.3878 15.8124i −1.35259 0.780917i
\(411\) 0 0
\(412\) −2.82072 4.88562i −0.138967 0.240697i
\(413\) −24.6409 −1.21250
\(414\) 0 0
\(415\) −9.02195 −0.442870
\(416\) −0.880834 + 3.49630i −0.0431865 + 0.171420i
\(417\) 0 0
\(418\) −3.43575 1.98363i −0.168048 0.0970225i
\(419\) 2.81453 4.87490i 0.137499 0.238155i −0.789051 0.614328i \(-0.789427\pi\)
0.926549 + 0.376174i \(0.122760\pi\)
\(420\) 0 0
\(421\) 10.3872 5.99704i 0.506240 0.292278i −0.225047 0.974348i \(-0.572253\pi\)
0.731287 + 0.682070i \(0.238920\pi\)
\(422\) 3.73323i 0.181731i
\(423\) 0 0
\(424\) 9.16444i 0.445064i
\(425\) −12.6401 21.8933i −0.613134 1.06198i
\(426\) 0 0
\(427\) 32.8960 + 18.9925i 1.59195 + 0.919112i
\(428\) −9.15257 + 15.8527i −0.442406 + 0.766270i
\(429\) 0 0
\(430\) −19.6880 34.1007i −0.949441 1.64448i
\(431\) 0.0127142i 0.000612420i −1.00000 0.000306210i \(-0.999903\pi\)
1.00000 0.000306210i \(-9.74697e-5\pi\)
\(432\) 0 0
\(433\) 30.8717 1.48360 0.741800 0.670621i \(-0.233972\pi\)
0.741800 + 0.670621i \(0.233972\pi\)
\(434\) −15.4089 + 8.89633i −0.739651 + 0.427038i
\(435\) 0 0
\(436\) 5.84484 + 3.37452i 0.279917 + 0.161610i
\(437\) −7.36966 4.25487i −0.352539 0.203538i
\(438\) 0 0
\(439\) −8.19780 14.1990i −0.391259 0.677681i 0.601357 0.798981i \(-0.294627\pi\)
−0.992616 + 0.121300i \(0.961294\pi\)
\(440\) 7.64143i 0.364291i
\(441\) 0 0
\(442\) 6.73075 + 6.53177i 0.320149 + 0.310685i
\(443\) −2.02258 3.50320i −0.0960955 0.166442i 0.813970 0.580907i \(-0.197302\pi\)
−0.910065 + 0.414465i \(0.863969\pi\)
\(444\) 0 0
\(445\) −12.0520 + 20.8747i −0.571320 + 0.989555i
\(446\) 1.37650 2.38417i 0.0651793 0.112894i
\(447\) 0 0
\(448\) −2.91802 + 1.68472i −0.137864 + 0.0795956i
\(449\) 15.8943i 0.750099i 0.927005 + 0.375049i \(0.122374\pi\)
−0.927005 + 0.375049i \(0.877626\pi\)
\(450\) 0 0
\(451\) 16.4189 0.773134
\(452\) 2.97526 + 5.15330i 0.139944 + 0.242391i
\(453\) 0 0
\(454\) −1.91080 + 3.30960i −0.0896781 + 0.155327i
\(455\) −12.7370 44.8337i −0.597120 2.10184i
\(456\) 0 0
\(457\) 25.2372 14.5707i 1.18055 0.681589i 0.224406 0.974496i \(-0.427956\pi\)
0.956141 + 0.292907i \(0.0946225\pi\)
\(458\) 10.9742 0.512790
\(459\) 0 0
\(460\) 16.3908i 0.764226i
\(461\) 24.3725 14.0714i 1.13514 0.655373i 0.189917 0.981800i \(-0.439178\pi\)
0.945222 + 0.326428i \(0.105845\pi\)
\(462\) 0 0
\(463\) 27.5978 + 15.9336i 1.28258 + 0.740498i 0.977319 0.211771i \(-0.0679231\pi\)
0.305261 + 0.952269i \(0.401256\pi\)
\(464\) 4.37469 7.57719i 0.203090 0.351762i
\(465\) 0 0
\(466\) −1.95807 + 1.13049i −0.0907058 + 0.0523690i
\(467\) −1.94189 −0.0898600 −0.0449300 0.998990i \(-0.514306\pi\)
−0.0449300 + 0.998990i \(0.514306\pi\)
\(468\) 0 0
\(469\) −19.0874 −0.881376
\(470\) 16.2199 9.36455i 0.748167 0.431954i
\(471\) 0 0
\(472\) −3.65653 + 6.33329i −0.168305 + 0.291513i
\(473\) 17.7043 + 10.2216i 0.814045 + 0.469989i
\(474\) 0 0
\(475\) −16.7636 + 9.67848i −0.769167 + 0.444079i
\(476\) 8.76489i 0.401738i
\(477\) 0 0
\(478\) 6.30635 0.288446
\(479\) −9.46110 + 5.46237i −0.432289 + 0.249582i −0.700321 0.713828i \(-0.746960\pi\)
0.268033 + 0.963410i \(0.413627\pi\)
\(480\) 0 0
\(481\) −17.6429 + 5.01225i −0.804446 + 0.228539i
\(482\) −9.91557 + 17.1743i −0.451642 + 0.782267i
\(483\) 0 0
\(484\) 3.51637 + 6.09053i 0.159835 + 0.276842i
\(485\) 39.5290 1.79492
\(486\) 0 0
\(487\) 38.3978i 1.73997i 0.493078 + 0.869985i \(0.335872\pi\)
−0.493078 + 0.869985i \(0.664128\pi\)
\(488\) 9.76304 5.63669i 0.441952 0.255161i
\(489\) 0 0
\(490\) 8.35031 14.4632i 0.377228 0.653379i
\(491\) 5.27663 9.13938i 0.238131 0.412455i −0.722047 0.691844i \(-0.756799\pi\)
0.960178 + 0.279389i \(0.0901320\pi\)
\(492\) 0 0
\(493\) −11.3798 19.7105i −0.512522 0.887714i
\(494\) 5.00136 5.15372i 0.225022 0.231877i
\(495\) 0 0
\(496\) 5.28060i 0.237106i
\(497\) 3.27687 + 5.67571i 0.146988 + 0.254590i
\(498\) 0 0
\(499\) 0.859848 + 0.496434i 0.0384921 + 0.0222234i 0.519123 0.854700i \(-0.326259\pi\)
−0.480630 + 0.876923i \(0.659592\pi\)
\(500\) 15.6765 + 9.05082i 0.701073 + 0.404765i
\(501\) 0 0
\(502\) −0.381740 + 0.220397i −0.0170379 + 0.00983682i
\(503\) −9.23683 −0.411850 −0.205925 0.978568i \(-0.566020\pi\)
−0.205925 + 0.978568i \(0.566020\pi\)
\(504\) 0 0
\(505\) 9.81826i 0.436907i
\(506\) −4.25487 7.36966i −0.189152 0.327621i
\(507\) 0 0
\(508\) −2.96563 + 5.13662i −0.131578 + 0.227901i
\(509\) −8.35176 4.82189i −0.370185 0.213727i 0.303354 0.952878i \(-0.401893\pi\)
−0.673539 + 0.739151i \(0.735227\pi\)
\(510\) 0 0
\(511\) 14.1757 + 24.5530i 0.627095 + 1.08616i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 13.5756i 0.598795i
\(515\) 18.7434 10.8215i 0.825934 0.476853i
\(516\) 0 0
\(517\) −4.86186 + 8.42100i −0.213825 + 0.370355i
\(518\) −14.8437 8.56999i −0.652193 0.376544i
\(519\) 0 0
\(520\) −13.4134 3.37927i −0.588216 0.148191i
\(521\) 18.9584 0.830581 0.415291 0.909689i \(-0.363680\pi\)
0.415291 + 0.909689i \(0.363680\pi\)
\(522\) 0 0
\(523\) 24.4694 1.06997 0.534986 0.844861i \(-0.320317\pi\)
0.534986 + 0.844861i \(0.320317\pi\)
\(524\) −6.88246 11.9208i −0.300662 0.520762i
\(525\) 0 0
\(526\) 19.3803 + 11.1892i 0.845020 + 0.487873i
\(527\) 11.8960 + 6.86817i 0.518199 + 0.299182i
\(528\) 0 0
\(529\) 2.37332 + 4.11071i 0.103188 + 0.178727i
\(530\) 35.1589 1.52720
\(531\) 0 0
\(532\) 6.71125 0.290970
\(533\) −7.26092 + 28.8208i −0.314505 + 1.24837i
\(534\) 0 0
\(535\) −60.8181 35.1133i −2.62940 1.51808i
\(536\) −2.83243 + 4.90591i −0.122342 + 0.211903i
\(537\) 0 0
\(538\) 26.3722 15.2260i 1.13699 0.656439i
\(539\) 8.67059i 0.373469i
\(540\) 0 0
\(541\) 6.77020i 0.291074i −0.989353 0.145537i \(-0.953509\pi\)
0.989353 0.145537i \(-0.0464909\pi\)
\(542\) −1.01719 1.76182i −0.0436919 0.0756766i
\(543\) 0 0
\(544\) 2.25278 + 1.30064i 0.0965872 + 0.0557646i
\(545\) −12.9462 + 22.4234i −0.554553 + 0.960514i
\(546\) 0 0
\(547\) −4.23689 7.33850i −0.181156 0.313772i 0.761118 0.648613i \(-0.224651\pi\)
−0.942275 + 0.334841i \(0.891317\pi\)
\(548\) 3.81984i 0.163175i
\(549\) 0 0
\(550\) −19.3570 −0.825383
\(551\) −15.0922 + 8.71351i −0.642951 + 0.371208i
\(552\) 0 0
\(553\) 17.3685 + 10.0277i 0.738582 + 0.426420i
\(554\) 25.0398 + 14.4567i 1.06384 + 0.614208i
\(555\) 0 0
\(556\) 6.80487 + 11.7864i 0.288591 + 0.499854i
\(557\) 4.77737i 0.202424i −0.994865 0.101212i \(-0.967728\pi\)
0.994865 0.101212i \(-0.0322720\pi\)
\(558\) 0 0
\(559\) −25.7719 + 26.5570i −1.09003 + 1.12324i
\(560\) −6.46335 11.1948i −0.273126 0.473068i
\(561\) 0 0
\(562\) −10.2555 + 17.7630i −0.432601 + 0.749287i
\(563\) 4.96417 8.59819i 0.209215 0.362370i −0.742253 0.670120i \(-0.766243\pi\)
0.951467 + 0.307750i \(0.0995759\pi\)
\(564\) 0 0
\(565\) −19.7704 + 11.4144i −0.831745 + 0.480208i
\(566\) 1.63998i 0.0689336i
\(567\) 0 0
\(568\) 1.94505 0.0816125
\(569\) 14.9307 + 25.8608i 0.625929 + 1.08414i 0.988361 + 0.152130i \(0.0486132\pi\)
−0.362432 + 0.932010i \(0.618053\pi\)
\(570\) 0 0
\(571\) −15.0696 + 26.1014i −0.630645 + 1.09231i 0.356775 + 0.934190i \(0.383876\pi\)
−0.987420 + 0.158119i \(0.949457\pi\)
\(572\) 6.90816 1.96257i 0.288845 0.0820592i
\(573\) 0 0
\(574\) −24.0539 + 13.8875i −1.00399 + 0.579655i
\(575\) −41.5205 −1.73153
\(576\) 0 0
\(577\) 7.87256i 0.327739i 0.986482 + 0.163869i \(0.0523976\pi\)
−0.986482 + 0.163869i \(0.947602\pi\)
\(578\) −8.86230 + 5.11665i −0.368623 + 0.212825i
\(579\) 0 0
\(580\) 29.0695 + 16.7833i 1.20705 + 0.696888i
\(581\) −3.96186 + 6.86215i −0.164366 + 0.284690i
\(582\) 0 0
\(583\) −15.8082 + 9.12685i −0.654708 + 0.377996i
\(584\) 8.41425 0.348184
\(585\) 0 0
\(586\) −12.4220 −0.513150
\(587\) −18.6643 + 10.7758i −0.770359 + 0.444767i −0.833003 0.553269i \(-0.813380\pi\)
0.0626437 + 0.998036i \(0.480047\pi\)
\(588\) 0 0
\(589\) 5.25894 9.10875i 0.216691 0.375320i
\(590\) −24.2973 14.0281i −1.00031 0.577527i
\(591\) 0 0
\(592\) −4.40538 + 2.54345i −0.181060 + 0.104535i
\(593\) 8.13186i 0.333935i 0.985962 + 0.166968i \(0.0533975\pi\)
−0.985962 + 0.166968i \(0.946602\pi\)
\(594\) 0 0
\(595\) −33.6260 −1.37853
\(596\) −6.74717 + 3.89548i −0.276375 + 0.159565i
\(597\) 0 0
\(598\) 14.8180 4.20970i 0.605952 0.172148i
\(599\) 23.3019 40.3601i 0.952090 1.64907i 0.211199 0.977443i \(-0.432263\pi\)
0.740891 0.671625i \(-0.234403\pi\)
\(600\) 0 0
\(601\) −10.3826 17.9832i −0.423515 0.733550i 0.572765 0.819719i \(-0.305871\pi\)
−0.996280 + 0.0861696i \(0.972537\pi\)
\(602\) −34.5829 −1.40949
\(603\) 0 0
\(604\) 21.3658i 0.869363i
\(605\) −23.3660 + 13.4904i −0.949963 + 0.548461i
\(606\) 0 0
\(607\) 16.3176 28.2630i 0.662313 1.14716i −0.317694 0.948193i \(-0.602908\pi\)
0.980006 0.198966i \(-0.0637582\pi\)
\(608\) 0.995899 1.72495i 0.0403890 0.0699559i
\(609\) 0 0
\(610\) 21.6249 + 37.4554i 0.875566 + 1.51652i
\(611\) −12.6317 12.2583i −0.511025 0.495917i
\(612\) 0 0
\(613\) 12.8107i 0.517421i −0.965955 0.258711i \(-0.916702\pi\)
0.965955 0.258711i \(-0.0832976\pi\)
\(614\) −12.9390 22.4110i −0.522175 0.904434i
\(615\) 0 0
\(616\) 5.81211 + 3.35563i 0.234177 + 0.135202i
\(617\) 18.6017 + 10.7397i 0.748874 + 0.432363i 0.825287 0.564714i \(-0.191013\pi\)
−0.0764127 + 0.997076i \(0.524347\pi\)
\(618\) 0 0
\(619\) −39.6343 + 22.8829i −1.59304 + 0.919741i −0.600256 + 0.799808i \(0.704935\pi\)
−0.992782 + 0.119933i \(0.961732\pi\)
\(620\) −20.2587 −0.813610
\(621\) 0 0
\(622\) 25.3822i 1.01773i
\(623\) 10.5849 + 18.3336i 0.424076 + 0.734522i
\(624\) 0 0
\(625\) −10.4272 + 18.0604i −0.417086 + 0.722414i
\(626\) 8.83342 + 5.09998i 0.353054 + 0.203836i
\(627\) 0 0
\(628\) −2.12572 3.68185i −0.0848253 0.146922i
\(629\) 13.2325i 0.527613i
\(630\) 0 0
\(631\) 10.7134i 0.426495i −0.976998 0.213248i \(-0.931596\pi\)
0.976998 0.213248i \(-0.0684041\pi\)
\(632\) 5.15470 2.97607i 0.205043 0.118382i
\(633\) 0 0
\(634\) −6.09759 + 10.5613i −0.242166 + 0.419444i
\(635\) −19.7064 11.3775i −0.782023 0.451501i
\(636\) 0 0
\(637\) −15.2199 3.83440i −0.603035 0.151924i
\(638\) −17.4270 −0.689942
\(639\) 0 0
\(640\) −3.83645 −0.151649
\(641\) −19.0700 33.0303i −0.753221 1.30462i −0.946254 0.323425i \(-0.895166\pi\)
0.193033 0.981192i \(-0.438168\pi\)
\(642\) 0 0
\(643\) −7.07558 4.08509i −0.279034 0.161100i 0.353952 0.935264i \(-0.384838\pi\)
−0.632986 + 0.774163i \(0.718171\pi\)
\(644\) 12.4669 + 7.19780i 0.491267 + 0.283633i
\(645\) 0 0
\(646\) −2.59062 4.48708i −0.101927 0.176542i
\(647\) 0.977276 0.0384207 0.0192103 0.999815i \(-0.493885\pi\)
0.0192103 + 0.999815i \(0.493885\pi\)
\(648\) 0 0
\(649\) 14.5661 0.571770
\(650\) 8.56024 33.9782i 0.335760 1.33274i
\(651\) 0 0
\(652\) −9.57247 5.52667i −0.374887 0.216441i
\(653\) 6.98319 12.0952i 0.273273 0.473323i −0.696425 0.717630i \(-0.745227\pi\)
0.969698 + 0.244307i \(0.0785603\pi\)
\(654\) 0 0
\(655\) 45.7334 26.4042i 1.78695 1.03170i
\(656\) 8.24323i 0.321844i
\(657\) 0 0
\(658\) 16.4492i 0.641258i
\(659\) −9.48438 16.4274i −0.369459 0.639922i 0.620022 0.784584i \(-0.287124\pi\)
−0.989481 + 0.144663i \(0.953790\pi\)
\(660\) 0 0
\(661\) 15.9467 + 9.20684i 0.620255 + 0.358104i 0.776968 0.629540i \(-0.216756\pi\)
−0.156713 + 0.987644i \(0.550090\pi\)
\(662\) 11.2383 19.4652i 0.436787 0.756538i
\(663\) 0 0
\(664\) 1.17582 + 2.03658i 0.0456307 + 0.0790347i
\(665\) 25.7474i 0.998440i
\(666\) 0 0
\(667\) −37.3808 −1.44739
\(668\) −8.14388 + 4.70187i −0.315096 + 0.181921i
\(669\) 0 0
\(670\) −18.8213 10.8665i −0.727130 0.419809i
\(671\) −19.4460 11.2272i −0.750705 0.433420i
\(672\) 0 0
\(673\) 13.9695 + 24.1959i 0.538486 + 0.932685i 0.998986 + 0.0450254i \(0.0143369\pi\)
−0.460500 + 0.887660i \(0.652330\pi\)
\(674\) 30.7950i 1.18618i
\(675\) 0 0
\(676\) 0.389998 + 12.9941i 0.0149999 + 0.499775i
\(677\) −1.78613 3.09367i −0.0686465 0.118899i 0.829659 0.558270i \(-0.188535\pi\)
−0.898306 + 0.439371i \(0.855201\pi\)
\(678\) 0 0
\(679\) 17.3586 30.0660i 0.666162 1.15383i
\(680\) −4.98985 + 8.64268i −0.191352 + 0.331431i
\(681\) 0 0
\(682\) 9.10875 5.25894i 0.348792 0.201375i
\(683\) 11.0777i 0.423875i −0.977283 0.211938i \(-0.932023\pi\)
0.977283 0.211938i \(-0.0679774\pi\)
\(684\) 0 0
\(685\) −14.6546 −0.559924
\(686\) 4.45921 + 7.72358i 0.170254 + 0.294888i
\(687\) 0 0
\(688\) −5.13184 + 8.88861i −0.195650 + 0.338875i
\(689\) −9.02996 31.7850i −0.344014 1.21091i
\(690\) 0 0
\(691\) 16.9314 9.77532i 0.644099 0.371871i −0.142093 0.989853i \(-0.545383\pi\)
0.786192 + 0.617983i \(0.212050\pi\)
\(692\) 2.17769 0.0827835
\(693\) 0 0
\(694\) 29.0471i 1.10261i
\(695\) −45.2179 + 26.1065i −1.71521 + 0.990277i
\(696\) 0 0
\(697\) 18.5702 + 10.7215i 0.703396 + 0.406106i
\(698\) 6.23358 10.7969i 0.235944 0.408668i
\(699\) 0 0
\(700\) 28.3583 16.3727i 1.07184 0.618829i
\(701\) −46.2105 −1.74535 −0.872673 0.488306i \(-0.837615\pi\)
−0.872673 + 0.488306i \(0.837615\pi\)
\(702\) 0 0
\(703\) 10.1321 0.382138
\(704\) 1.72495 0.995899i 0.0650114 0.0375344i
\(705\) 0 0
\(706\) 17.2147 29.8167i 0.647882 1.12217i
\(707\) −7.46782 4.31155i −0.280856 0.162152i
\(708\) 0 0
\(709\) −28.1320 + 16.2420i −1.05652 + 0.609983i −0.924468 0.381260i \(-0.875490\pi\)
−0.132053 + 0.991243i \(0.542157\pi\)
\(710\) 7.46209i 0.280047i
\(711\) 0 0
\(712\) 6.28290 0.235462
\(713\) 19.5382 11.2804i 0.731712 0.422454i
\(714\) 0 0
\(715\) 7.52930 + 26.5028i 0.281580 + 0.991149i
\(716\) −3.95576 + 6.85157i −0.147834 + 0.256055i
\(717\) 0 0
\(718\) −17.1248 29.6610i −0.639091 1.10694i
\(719\) −30.0876 −1.12208 −0.561038 0.827790i \(-0.689598\pi\)
−0.561038 + 0.827790i \(0.689598\pi\)
\(720\) 0 0
\(721\) 19.0085i 0.707913i
\(722\) 13.0187 7.51637i 0.484507 0.279730i
\(723\) 0 0
\(724\) −0.510976 + 0.885037i −0.0189903 + 0.0328921i
\(725\) −42.5147 + 73.6377i −1.57896 + 2.73483i
\(726\) 0 0
\(727\) −2.30907 3.99942i −0.0856386 0.148330i 0.820025 0.572328i \(-0.193960\pi\)
−0.905663 + 0.423998i \(0.860626\pi\)
\(728\) −8.46059 + 8.71833i −0.313570 + 0.323123i
\(729\) 0 0
\(730\) 32.2808i 1.19477i
\(731\) 13.3494 + 23.1218i 0.493745 + 0.855191i
\(732\) 0 0
\(733\) 38.6651 + 22.3233i 1.42813 + 0.824531i 0.996973 0.0777462i \(-0.0247724\pi\)
0.431156 + 0.902277i \(0.358106\pi\)
\(734\) 4.36140 + 2.51806i 0.160982 + 0.0929432i
\(735\) 0 0
\(736\) 3.70000 2.13620i 0.136384 0.0787413i
\(737\) 11.2833 0.415624
\(738\) 0 0
\(739\) 3.94466i 0.145107i −0.997365 0.0725534i \(-0.976885\pi\)
0.997365 0.0725534i \(-0.0231148\pi\)
\(740\) −9.75779 16.9010i −0.358704 0.621293i
\(741\) 0 0
\(742\) 15.4395 26.7420i 0.566803 0.981731i
\(743\) 46.8150 + 27.0287i 1.71748 + 0.991585i 0.923466 + 0.383680i \(0.125343\pi\)
0.794010 + 0.607905i \(0.207990\pi\)
\(744\) 0 0
\(745\) −14.9448 25.8852i −0.547535 0.948359i
\(746\) 11.2141i 0.410578i
\(747\) 0 0
\(748\) 5.18124i 0.189445i
\(749\) −53.4148 + 30.8391i −1.95173 + 1.12683i
\(750\) 0 0
\(751\) −1.96630 + 3.40573i −0.0717513 + 0.124277i −0.899669 0.436573i \(-0.856192\pi\)
0.827918 + 0.560850i \(0.189525\pi\)
\(752\) −4.22784 2.44094i −0.154173 0.0890120i
\(753\) 0 0
\(754\) 7.70676 30.5905i 0.280664 1.11404i
\(755\) 81.9689 2.98315
\(756\) 0 0
\(757\) −0.241542 −0.00877899 −0.00438949 0.999990i \(-0.501397\pi\)
−0.00438949 + 0.999990i \(0.501397\pi\)
\(758\) −2.56312 4.43945i −0.0930965 0.161248i
\(759\) 0 0
\(760\) 6.61767 + 3.82072i 0.240048 + 0.138592i
\(761\) −13.6634 7.88855i −0.495297 0.285960i 0.231472 0.972841i \(-0.425646\pi\)
−0.726769 + 0.686882i \(0.758979\pi\)
\(762\) 0 0
\(763\) 11.3703 + 19.6939i 0.411631 + 0.712966i
\(764\) 4.06108 0.146925
\(765\) 0 0
\(766\) 18.9420 0.684401
\(767\) −6.44159 + 25.5686i −0.232592 + 0.923230i
\(768\) 0 0
\(769\) −7.04227 4.06586i −0.253951 0.146619i 0.367621 0.929976i \(-0.380172\pi\)
−0.621572 + 0.783357i \(0.713506\pi\)
\(770\) −12.8737 + 22.2979i −0.463935 + 0.803559i
\(771\) 0 0
\(772\) −14.4121 + 8.32085i −0.518704 + 0.299474i
\(773\) 19.4126i 0.698221i −0.937082 0.349110i \(-0.886484\pi\)
0.937082 0.349110i \(-0.113516\pi\)
\(774\) 0 0
\(775\) 51.3186i 1.84342i
\(776\) −5.15177 8.92313i −0.184938 0.320322i
\(777\) 0 0
\(778\) −18.0477 10.4199i −0.647043 0.373570i
\(779\) 8.20943 14.2191i 0.294133 0.509454i
\(780\) 0 0
\(781\) −1.93708 3.35511i −0.0693140 0.120055i
\(782\) 11.1137i 0.397426i
\(783\) 0 0
\(784\) −4.35315 −0.155469
\(785\) 14.1252 8.15520i 0.504151 0.291072i
\(786\) 0 0
\(787\) −35.6740 20.5964i −1.27164 0.734183i −0.296345 0.955081i \(-0.595768\pi\)
−0.975297 + 0.220899i \(0.929101\pi\)
\(788\) −18.0532 10.4230i −0.643120 0.371306i
\(789\) 0 0
\(790\) 11.4175 + 19.7757i 0.406217 + 0.703589i
\(791\) 20.0499i 0.712893i
\(792\) 0 0
\(793\) 28.3072 29.1695i 1.00522 1.03584i
\(794\) −1.08576 1.88059i −0.0385321 0.0667396i
\(795\) 0 0
\(796\) 7.71833 13.3685i 0.273569 0.473835i
\(797\) −1.79638 + 3.11142i −0.0636309 + 0.110212i −0.896086 0.443881i \(-0.853601\pi\)
0.832455 + 0.554093i \(0.186935\pi\)
\(798\) 0 0
\(799\) −10.9978 + 6.34959i −0.389075 + 0.224632i
\(800\) 9.71833i 0.343595i
\(801\) 0 0
\(802\) 10.8033 0.381476
\(803\) −8.37975 14.5141i −0.295715 0.512193i
\(804\) 0 0
\(805\) −27.6140 + 47.8288i −0.973264 + 1.68574i
\(806\) 5.20311 + 18.3147i 0.183272 + 0.645108i
\(807\) 0 0
\(808\) −2.21634 + 1.27960i −0.0779705 + 0.0450163i
\(809\) −10.0592 −0.353664 −0.176832 0.984241i \(-0.556585\pi\)
−0.176832 + 0.984241i \(0.556585\pi\)
\(810\) 0 0
\(811\) 29.4252i 1.03326i 0.856209 + 0.516630i \(0.172814\pi\)
−0.856209 + 0.516630i \(0.827186\pi\)
\(812\) 25.5309 14.7403i 0.895960 0.517283i
\(813\) 0 0
\(814\) 8.77462 + 5.06603i 0.307550 + 0.177564i
\(815\) 21.2028 36.7243i 0.742700 1.28639i
\(816\) 0 0
\(817\) 17.7043 10.2216i 0.619396 0.357608i
\(818\) −1.55301 −0.0542996
\(819\) 0 0
\(820\) −31.6247 −1.10438
\(821\) 9.46944 5.46718i 0.330486 0.190806i −0.325571 0.945518i \(-0.605557\pi\)
0.656057 + 0.754712i \(0.272223\pi\)
\(822\) 0 0
\(823\) −7.88841 + 13.6631i −0.274973 + 0.476266i −0.970128 0.242593i \(-0.922002\pi\)
0.695156 + 0.718859i \(0.255335\pi\)
\(824\) −4.88562 2.82072i −0.170199 0.0982643i
\(825\) 0 0
\(826\) −21.3397 + 12.3205i −0.742502 + 0.428683i
\(827\) 20.9583i 0.728793i 0.931244 + 0.364396i \(0.118725\pi\)
−0.931244 + 0.364396i \(0.881275\pi\)
\(828\) 0 0
\(829\) −30.6108 −1.06316 −0.531579 0.847009i \(-0.678401\pi\)
−0.531579 + 0.847009i \(0.678401\pi\)
\(830\) −7.81324 + 4.51098i −0.271202 + 0.156578i
\(831\) 0 0
\(832\) 0.985326 + 3.46830i 0.0341600 + 0.120242i
\(833\) −5.66189 + 9.80668i −0.196173 + 0.339781i
\(834\) 0 0
\(835\) −18.0385 31.2436i −0.624248 1.08123i
\(836\) −3.96726 −0.137211
\(837\) 0 0
\(838\) 5.62905i 0.194452i
\(839\) −19.6661 + 11.3542i −0.678949 + 0.391991i −0.799459 0.600721i \(-0.794880\pi\)
0.120510 + 0.992712i \(0.461547\pi\)
\(840\) 0 0
\(841\) −23.7759 + 41.1811i −0.819859 + 1.42004i
\(842\) 5.99704 10.3872i 0.206672 0.357966i
\(843\) 0 0
\(844\) −1.86662 3.23307i −0.0642516 0.111287i
\(845\) −49.8514 + 1.49621i −1.71494 + 0.0514710i
\(846\) 0 0
\(847\) 23.6964i 0.814218i
\(848\) −4.58222 7.93663i −0.157354 0.272545i
\(849\) 0 0
\(850\) −21.8933 12.6401i −0.750933 0.433551i
\(851\) 18.8215 + 10.8666i 0.645193 + 0.372502i
\(852\) 0 0
\(853\) −12.6546 + 7.30611i −0.433284 + 0.250157i −0.700745 0.713412i \(-0.747149\pi\)
0.267461 + 0.963569i \(0.413815\pi\)
\(854\) 37.9850 1.29982
\(855\) 0 0
\(856\) 18.3051i 0.625657i
\(857\) 7.11150 + 12.3175i 0.242924 + 0.420757i 0.961546 0.274644i \(-0.0885601\pi\)
−0.718622 + 0.695401i \(0.755227\pi\)
\(858\) 0 0
\(859\) −20.8166 + 36.0553i −0.710252 + 1.23019i 0.254511 + 0.967070i \(0.418086\pi\)
−0.964762 + 0.263122i \(0.915248\pi\)
\(860\) −34.1007 19.6880i −1.16282 0.671356i
\(861\) 0 0
\(862\) −0.00635709 0.0110108i −0.000216523 0.000375029i
\(863\) 13.5656i 0.461780i 0.972980 + 0.230890i \(0.0741638\pi\)
−0.972980 + 0.230890i \(0.925836\pi\)
\(864\) 0 0
\(865\) 8.35461i 0.284065i
\(866\) 26.7357 15.4359i 0.908516 0.524532i
\(867\) 0 0
\(868\) −8.89633 + 15.4089i −0.301961 + 0.523012i
\(869\) −10.2671 5.92772i −0.348288 0.201084i
\(870\) 0 0
\(871\) −4.98981 + 19.8061i −0.169073 + 0.671103i
\(872\) 6.74904 0.228551
\(873\) 0 0
\(874\) −8.50975 −0.287847
\(875\) 30.4962 + 52.8210i 1.03096 + 1.78568i
\(876\) 0 0
\(877\) −36.0166 20.7942i −1.21619 0.702170i −0.252092 0.967703i \(-0.581119\pi\)
−0.964102 + 0.265533i \(0.914452\pi\)
\(878\) −14.1990 8.19780i −0.479193 0.276662i
\(879\) 0 0
\(880\) 3.82072 + 6.61767i 0.128796 + 0.223082i
\(881\) 15.0582 0.507323 0.253662 0.967293i \(-0.418365\pi\)
0.253662 + 0.967293i \(0.418365\pi\)
\(882\) 0 0
\(883\) 21.3359 0.718010 0.359005 0.933336i \(-0.383116\pi\)
0.359005 + 0.933336i \(0.383116\pi\)
\(884\) 9.09489 + 2.29130i 0.305894 + 0.0770649i
\(885\) 0 0
\(886\) −3.50320 2.02258i −0.117692 0.0679498i
\(887\) −15.4676 + 26.7906i −0.519350 + 0.899540i 0.480398 + 0.877051i \(0.340492\pi\)
−0.999747 + 0.0224890i \(0.992841\pi\)
\(888\) 0 0
\(889\) −17.3075 + 9.99251i −0.580476 + 0.335138i
\(890\) 24.1040i 0.807968i
\(891\) 0 0
\(892\) 2.75301i 0.0921775i
\(893\) 4.86186 + 8.42100i 0.162696 + 0.281798i
\(894\) 0 0
\(895\) −26.2857 15.1761i −0.878634 0.507280i
\(896\) −1.68472 + 2.91802i −0.0562826 + 0.0974843i
\(897\) 0 0
\(898\) 7.94715 + 13.7649i 0.265200 + 0.459340i
\(899\) 46.2020i 1.54092i
\(900\) 0 0
\(901\) −23.8393 −0.794203
\(902\) 14.2191 8.20943i 0.473446 0.273344i
\(903\) 0 0
\(904\) 5.15330 + 2.97526i 0.171396 + 0.0989556i
\(905\) −3.39540 1.96033i −0.112867 0.0651637i
\(906\) 0 0
\(907\) 13.2057 + 22.8730i 0.438490 + 0.759486i 0.997573 0.0696249i \(-0.0221802\pi\)
−0.559084 + 0.829111i \(0.688847\pi\)
\(908\) 3.82159i 0.126824i
\(909\) 0 0
\(910\) −33.4474 32.4586i −1.10877 1.07599i
\(911\) 8.43375 + 14.6077i 0.279423 + 0.483974i 0.971241 0.238097i \(-0.0765237\pi\)
−0.691819 + 0.722071i \(0.743190\pi\)
\(912\) 0 0
\(913\) 2.34200 4.05646i 0.0775088 0.134249i
\(914\) 14.5707 25.2372i 0.481956 0.834773i
\(915\) 0 0
\(916\) 9.50393 5.48710i 0.314019 0.181299i
\(917\) 46.3801i 1.53161i
\(918\) 0 0
\(919\) 28.6707 0.945758 0.472879 0.881127i \(-0.343215\pi\)
0.472879 + 0.881127i \(0.343215\pi\)
\(920\) 8.19541 + 14.1949i 0.270195 + 0.467991i
\(921\) 0 0
\(922\) 14.0714 24.3725i 0.463418 0.802664i
\(923\) 6.74603 1.91651i 0.222048 0.0630827i
\(924\) 0 0
\(925\) 42.8129 24.7180i 1.40768 0.812724i
\(926\) 31.8672 1.04722
\(927\) 0 0
\(928\) 8.74939i 0.287213i
\(929\) 36.3750 21.0011i 1.19343 0.689024i 0.234344 0.972154i \(-0.424706\pi\)
0.959082 + 0.283129i \(0.0913726\pi\)
\(930\) 0 0
\(931\) 7.50895 + 4.33529i 0.246096 + 0.142084i
\(932\) −1.13049 + 1.95807i −0.0370305 + 0.0641387i
\(933\) 0 0
\(934\) −1.68173 + 0.970945i −0.0550278 + 0.0317703i
\(935\) 19.8776 0.650066
\(936\) 0 0
\(937\) 44.9192 1.46745 0.733724 0.679448i \(-0.237781\pi\)
0.733724 + 0.679448i \(0.237781\pi\)
\(938\) −16.5302 + 9.54372i −0.539730 + 0.311613i
\(939\) 0 0
\(940\) 9.36455 16.2199i 0.305438 0.529034i
\(941\) 8.28428 + 4.78293i 0.270060 + 0.155919i 0.628915 0.777474i \(-0.283499\pi\)
−0.358855 + 0.933393i \(0.616833\pi\)
\(942\) 0 0
\(943\) 30.5000 17.6092i 0.993216 0.573433i
\(944\) 7.31305i 0.238020i
\(945\) 0 0
\(946\) 20.4432 0.664665
\(947\) −25.3100 + 14.6127i −0.822465 + 0.474850i −0.851266 0.524735i \(-0.824165\pi\)
0.0288007 + 0.999585i \(0.490831\pi\)
\(948\) 0 0
\(949\) 29.1832 8.29078i 0.947326 0.269130i
\(950\) −9.67848 + 16.7636i −0.314011 + 0.543884i
\(951\) 0 0
\(952\) 4.38244 + 7.59062i 0.142036 + 0.246013i
\(953\) −6.46873 −0.209543 −0.104771 0.994496i \(-0.533411\pi\)
−0.104771 + 0.994496i \(0.533411\pi\)
\(954\) 0 0
\(955\) 15.5801i 0.504161i
\(956\) 5.46146 3.15318i 0.176636 0.101981i
\(957\) 0 0
\(958\) −5.46237 + 9.46110i −0.176481 + 0.305674i
\(959\) −6.43536 + 11.1464i −0.207809 + 0.359935i
\(960\) 0 0
\(961\) −1.55765 2.69793i −0.0502468 0.0870300i
\(962\) −12.7731 + 13.1622i −0.411820 + 0.424366i
\(963\) 0 0
\(964\) 19.8311i 0.638718i
\(965\) −31.9225 55.2914i −1.02762 1.77989i
\(966\) 0 0
\(967\) −42.0071 24.2528i −1.35086 0.779918i −0.362488 0.931988i \(-0.618073\pi\)
−0.988370 + 0.152070i \(0.951406\pi\)
\(968\) 6.09053 + 3.51637i 0.195757 + 0.113020i
\(969\) 0 0
\(970\) 34.2331 19.7645i 1.09916 0.634600i
\(971\) 4.35773 0.139846 0.0699231 0.997552i \(-0.477725\pi\)
0.0699231 + 0.997552i \(0.477725\pi\)
\(972\) 0 0
\(973\) 45.8573i 1.47012i
\(974\) 19.1989 + 33.2535i 0.615172 + 1.06551i
\(975\) 0 0
\(976\) 5.63669 9.76304i 0.180426 0.312507i
\(977\) 18.7895 + 10.8481i 0.601131 + 0.347063i 0.769486 0.638663i \(-0.220512\pi\)
−0.168356 + 0.985726i \(0.553846\pi\)
\(978\) 0 0
\(979\) −6.25713 10.8377i −0.199979 0.346373i
\(980\) 16.7006i 0.533482i
\(981\) 0 0
\(982\) 10.5533i 0.336768i
\(983\) 24.3478 14.0572i 0.776573 0.448355i −0.0586415 0.998279i \(-0.518677\pi\)
0.835214 + 0.549925i \(0.185344\pi\)
\(984\) 0 0
\(985\) 39.9875 69.2603i 1.27411 2.20682i
\(986\) −19.7105 11.3798i −0.627709 0.362408i
\(987\) 0 0
\(988\) 1.75444 6.96393i 0.0558163 0.221552i
\(989\) 43.8505 1.39436
\(990\) 0 0
\(991\) −42.2239 −1.34129 −0.670643 0.741780i \(-0.733982\pi\)
−0.670643 + 0.741780i \(0.733982\pi\)
\(992\) 2.64030 + 4.57313i 0.0838296 + 0.145197i
\(993\) 0 0
\(994\) 5.67571 + 3.27687i 0.180022 + 0.103936i
\(995\) 51.2877 + 29.6110i 1.62593 + 0.938731i
\(996\) 0 0
\(997\) −0.308639 0.534579i −0.00977470 0.0169303i 0.861097 0.508441i \(-0.169778\pi\)
−0.870871 + 0.491511i \(0.836445\pi\)
\(998\) 0.992867 0.0314287
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.t.a.415.14 28
3.2 odd 2 234.2.t.a.103.3 yes 28
9.2 odd 6 234.2.t.a.25.10 yes 28
9.4 even 3 2106.2.b.d.649.8 14
9.5 odd 6 2106.2.b.c.649.7 14
9.7 even 3 inner 702.2.t.a.181.1 28
13.12 even 2 inner 702.2.t.a.415.1 28
39.38 odd 2 234.2.t.a.103.10 yes 28
117.25 even 6 inner 702.2.t.a.181.14 28
117.38 odd 6 234.2.t.a.25.3 28
117.77 odd 6 2106.2.b.c.649.8 14
117.103 even 6 2106.2.b.d.649.7 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.t.a.25.3 28 117.38 odd 6
234.2.t.a.25.10 yes 28 9.2 odd 6
234.2.t.a.103.3 yes 28 3.2 odd 2
234.2.t.a.103.10 yes 28 39.38 odd 2
702.2.t.a.181.1 28 9.7 even 3 inner
702.2.t.a.181.14 28 117.25 even 6 inner
702.2.t.a.415.1 28 13.12 even 2 inner
702.2.t.a.415.14 28 1.1 even 1 trivial
2106.2.b.c.649.7 14 9.5 odd 6
2106.2.b.c.649.8 14 117.77 odd 6
2106.2.b.d.649.7 14 117.103 even 6
2106.2.b.d.649.8 14 9.4 even 3