Properties

Label 702.2.t.a.415.13
Level $702$
Weight $2$
Character 702.415
Analytic conductor $5.605$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [702,2,Mod(181,702)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(702, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("702.181"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 415.13
Character \(\chi\) \(=\) 702.415
Dual form 702.2.t.a.181.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(2.40542 + 1.38877i) q^{5} +(-0.759011 + 0.438215i) q^{7} -1.00000i q^{8} +2.77754 q^{10} +(1.92848 - 1.11341i) q^{11} +(0.180130 + 3.60105i) q^{13} +(-0.438215 + 0.759011i) q^{14} +(-0.500000 - 0.866025i) q^{16} +3.80878 q^{17} -2.22681i q^{19} +(2.40542 - 1.38877i) q^{20} +(1.11341 - 1.92848i) q^{22} +(-0.259586 + 0.449617i) q^{23} +(1.35738 + 2.35105i) q^{25} +(1.95652 + 3.02853i) q^{26} +0.876431i q^{28} +(3.81355 + 6.60527i) q^{29} +(-4.97617 - 2.87299i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(3.29850 - 1.90439i) q^{34} -2.43433 q^{35} -11.3538i q^{37} +(-1.11341 - 1.92848i) q^{38} +(1.38877 - 2.40542i) q^{40} +(3.52286 + 2.03392i) q^{41} +(2.81683 + 4.87889i) q^{43} -2.22681i q^{44} +0.519173i q^{46} +(-0.920402 + 0.531395i) q^{47} +(-3.11593 + 5.39696i) q^{49} +(2.35105 + 1.35738i) q^{50} +(3.20866 + 1.64453i) q^{52} -7.29301 q^{53} +6.18508 q^{55} +(0.438215 + 0.759011i) q^{56} +(6.60527 + 3.81355i) q^{58} +(-3.52376 - 2.03444i) q^{59} +(-3.94905 - 6.83995i) q^{61} -5.74599 q^{62} -1.00000 q^{64} +(-4.56775 + 8.91221i) q^{65} +(5.95399 + 3.43754i) q^{67} +(1.90439 - 3.29850i) q^{68} +(-2.10819 + 1.21716i) q^{70} -15.9569i q^{71} -5.24797i q^{73} +(-5.67689 - 9.83267i) q^{74} +(-1.92848 - 1.11341i) q^{76} +(-0.975824 + 1.69018i) q^{77} +(-7.09690 - 12.2922i) q^{79} -2.77754i q^{80} +4.06784 q^{82} +(0.641385 - 0.370304i) q^{83} +(9.16172 + 5.28952i) q^{85} +(4.87889 + 2.81683i) q^{86} +(-1.11341 - 1.92848i) q^{88} +9.89914i q^{89} +(-1.71476 - 2.65430i) q^{91} +(0.259586 + 0.449617i) q^{92} +(-0.531395 + 0.920402i) q^{94} +(3.09254 - 5.35643i) q^{95} +(-13.6212 + 7.86418i) q^{97} +6.23187i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 14 q^{4} + 2 q^{13} - 8 q^{14} - 14 q^{16} - 16 q^{17} + 8 q^{23} + 14 q^{25} - 8 q^{26} + 16 q^{29} + 68 q^{35} - 4 q^{43} + 10 q^{49} - 2 q^{52} + 120 q^{53} + 8 q^{56} + 28 q^{61} - 68 q^{62}+ \cdots - 8 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 2.40542 + 1.38877i 1.07574 + 0.621078i 0.929744 0.368207i \(-0.120028\pi\)
0.145995 + 0.989285i \(0.453362\pi\)
\(6\) 0 0
\(7\) −0.759011 + 0.438215i −0.286879 + 0.165630i −0.636534 0.771249i \(-0.719632\pi\)
0.349654 + 0.936879i \(0.386299\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 2.77754 0.878337
\(11\) 1.92848 1.11341i 0.581458 0.335705i −0.180255 0.983620i \(-0.557692\pi\)
0.761713 + 0.647915i \(0.224359\pi\)
\(12\) 0 0
\(13\) 0.180130 + 3.60105i 0.0499590 + 0.998751i
\(14\) −0.438215 + 0.759011i −0.117118 + 0.202854i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 3.80878 0.923764 0.461882 0.886941i \(-0.347174\pi\)
0.461882 + 0.886941i \(0.347174\pi\)
\(18\) 0 0
\(19\) 2.22681i 0.510866i −0.966827 0.255433i \(-0.917782\pi\)
0.966827 0.255433i \(-0.0822181\pi\)
\(20\) 2.40542 1.38877i 0.537869 0.310539i
\(21\) 0 0
\(22\) 1.11341 1.92848i 0.237379 0.411153i
\(23\) −0.259586 + 0.449617i −0.0541275 + 0.0937516i −0.891820 0.452391i \(-0.850571\pi\)
0.837692 + 0.546143i \(0.183904\pi\)
\(24\) 0 0
\(25\) 1.35738 + 2.35105i 0.271476 + 0.470209i
\(26\) 1.95652 + 3.02853i 0.383705 + 0.593945i
\(27\) 0 0
\(28\) 0.876431i 0.165630i
\(29\) 3.81355 + 6.60527i 0.708159 + 1.22657i 0.965539 + 0.260257i \(0.0838072\pi\)
−0.257381 + 0.966310i \(0.582859\pi\)
\(30\) 0 0
\(31\) −4.97617 2.87299i −0.893747 0.516005i −0.0185805 0.999827i \(-0.505915\pi\)
−0.875166 + 0.483822i \(0.839248\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 0 0
\(34\) 3.29850 1.90439i 0.565688 0.326600i
\(35\) −2.43433 −0.411476
\(36\) 0 0
\(37\) 11.3538i 1.86655i −0.359161 0.933276i \(-0.616937\pi\)
0.359161 0.933276i \(-0.383063\pi\)
\(38\) −1.11341 1.92848i −0.180619 0.312840i
\(39\) 0 0
\(40\) 1.38877 2.40542i 0.219584 0.380331i
\(41\) 3.52286 + 2.03392i 0.550178 + 0.317645i 0.749194 0.662351i \(-0.230441\pi\)
−0.199016 + 0.979996i \(0.563775\pi\)
\(42\) 0 0
\(43\) 2.81683 + 4.87889i 0.429562 + 0.744023i 0.996834 0.0795072i \(-0.0253347\pi\)
−0.567272 + 0.823530i \(0.692001\pi\)
\(44\) 2.22681i 0.335705i
\(45\) 0 0
\(46\) 0.519173i 0.0765479i
\(47\) −0.920402 + 0.531395i −0.134254 + 0.0775119i −0.565623 0.824664i \(-0.691364\pi\)
0.431368 + 0.902176i \(0.358031\pi\)
\(48\) 0 0
\(49\) −3.11593 + 5.39696i −0.445133 + 0.770994i
\(50\) 2.35105 + 1.35738i 0.332488 + 0.191962i
\(51\) 0 0
\(52\) 3.20866 + 1.64453i 0.444962 + 0.228055i
\(53\) −7.29301 −1.00177 −0.500886 0.865513i \(-0.666992\pi\)
−0.500886 + 0.865513i \(0.666992\pi\)
\(54\) 0 0
\(55\) 6.18508 0.833996
\(56\) 0.438215 + 0.759011i 0.0585590 + 0.101427i
\(57\) 0 0
\(58\) 6.60527 + 3.81355i 0.867314 + 0.500744i
\(59\) −3.52376 2.03444i −0.458754 0.264862i 0.252766 0.967527i \(-0.418660\pi\)
−0.711520 + 0.702666i \(0.751993\pi\)
\(60\) 0 0
\(61\) −3.94905 6.83995i −0.505624 0.875766i −0.999979 0.00650624i \(-0.997929\pi\)
0.494355 0.869260i \(-0.335404\pi\)
\(62\) −5.74599 −0.729741
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −4.56775 + 8.91221i −0.566560 + 1.10542i
\(66\) 0 0
\(67\) 5.95399 + 3.43754i 0.727395 + 0.419962i 0.817468 0.575973i \(-0.195377\pi\)
−0.0900733 + 0.995935i \(0.528710\pi\)
\(68\) 1.90439 3.29850i 0.230941 0.400002i
\(69\) 0 0
\(70\) −2.10819 + 1.21716i −0.251977 + 0.145479i
\(71\) 15.9569i 1.89374i −0.321622 0.946868i \(-0.604228\pi\)
0.321622 0.946868i \(-0.395772\pi\)
\(72\) 0 0
\(73\) 5.24797i 0.614228i −0.951673 0.307114i \(-0.900637\pi\)
0.951673 0.307114i \(-0.0993633\pi\)
\(74\) −5.67689 9.83267i −0.659926 1.14302i
\(75\) 0 0
\(76\) −1.92848 1.11341i −0.221212 0.127717i
\(77\) −0.975824 + 1.69018i −0.111206 + 0.192614i
\(78\) 0 0
\(79\) −7.09690 12.2922i −0.798463 1.38298i −0.920617 0.390468i \(-0.872313\pi\)
0.122153 0.992511i \(-0.461020\pi\)
\(80\) 2.77754i 0.310539i
\(81\) 0 0
\(82\) 4.06784 0.449218
\(83\) 0.641385 0.370304i 0.0704011 0.0406461i −0.464386 0.885633i \(-0.653725\pi\)
0.534787 + 0.844987i \(0.320392\pi\)
\(84\) 0 0
\(85\) 9.16172 + 5.28952i 0.993729 + 0.573729i
\(86\) 4.87889 + 2.81683i 0.526104 + 0.303746i
\(87\) 0 0
\(88\) −1.11341 1.92848i −0.118690 0.205576i
\(89\) 9.89914i 1.04931i 0.851316 + 0.524653i \(0.175805\pi\)
−0.851316 + 0.524653i \(0.824195\pi\)
\(90\) 0 0
\(91\) −1.71476 2.65430i −0.179755 0.278246i
\(92\) 0.259586 + 0.449617i 0.0270638 + 0.0468758i
\(93\) 0 0
\(94\) −0.531395 + 0.920402i −0.0548092 + 0.0949323i
\(95\) 3.09254 5.35643i 0.317288 0.549559i
\(96\) 0 0
\(97\) −13.6212 + 7.86418i −1.38302 + 0.798486i −0.992516 0.122116i \(-0.961032\pi\)
−0.390503 + 0.920602i \(0.627699\pi\)
\(98\) 6.23187i 0.629514i
\(99\) 0 0
\(100\) 2.71476 0.271476
\(101\) 9.76705 + 16.9170i 0.971858 + 1.68331i 0.689937 + 0.723870i \(0.257638\pi\)
0.281921 + 0.959438i \(0.409028\pi\)
\(102\) 0 0
\(103\) −4.09254 + 7.08848i −0.403250 + 0.698449i −0.994116 0.108320i \(-0.965453\pi\)
0.590866 + 0.806770i \(0.298786\pi\)
\(104\) 3.60105 0.180130i 0.353112 0.0176632i
\(105\) 0 0
\(106\) −6.31593 + 3.64650i −0.613457 + 0.354180i
\(107\) −13.5605 −1.31094 −0.655470 0.755221i \(-0.727529\pi\)
−0.655470 + 0.755221i \(0.727529\pi\)
\(108\) 0 0
\(109\) 8.50225i 0.814368i −0.913346 0.407184i \(-0.866511\pi\)
0.913346 0.407184i \(-0.133489\pi\)
\(110\) 5.35643 3.09254i 0.510716 0.294862i
\(111\) 0 0
\(112\) 0.759011 + 0.438215i 0.0717198 + 0.0414075i
\(113\) 1.65386 2.86458i 0.155582 0.269477i −0.777689 0.628650i \(-0.783608\pi\)
0.933271 + 0.359173i \(0.116941\pi\)
\(114\) 0 0
\(115\) −1.24883 + 0.721013i −0.116454 + 0.0672348i
\(116\) 7.62710 0.708159
\(117\) 0 0
\(118\) −4.06888 −0.374571
\(119\) −2.89090 + 1.66906i −0.265009 + 0.153003i
\(120\) 0 0
\(121\) −3.02065 + 5.23192i −0.274604 + 0.475629i
\(122\) −6.83995 3.94905i −0.619260 0.357530i
\(123\) 0 0
\(124\) −4.97617 + 2.87299i −0.446873 + 0.258002i
\(125\) 6.34737i 0.567726i
\(126\) 0 0
\(127\) −12.6397 −1.12160 −0.560798 0.827953i \(-0.689506\pi\)
−0.560798 + 0.827953i \(0.689506\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) 0.500318 + 10.0021i 0.0438808 + 0.877240i
\(131\) −3.71482 + 6.43426i −0.324565 + 0.562164i −0.981424 0.191850i \(-0.938551\pi\)
0.656859 + 0.754013i \(0.271885\pi\)
\(132\) 0 0
\(133\) 0.975824 + 1.69018i 0.0846147 + 0.146557i
\(134\) 6.87507 0.593916
\(135\) 0 0
\(136\) 3.80878i 0.326600i
\(137\) −14.1119 + 8.14752i −1.20566 + 0.696089i −0.961809 0.273723i \(-0.911745\pi\)
−0.243853 + 0.969812i \(0.578412\pi\)
\(138\) 0 0
\(139\) 5.31431 9.20466i 0.450754 0.780729i −0.547679 0.836689i \(-0.684488\pi\)
0.998433 + 0.0559594i \(0.0178218\pi\)
\(140\) −1.21716 + 2.10819i −0.102869 + 0.178174i
\(141\) 0 0
\(142\) −7.97845 13.8191i −0.669537 1.15967i
\(143\) 4.35681 + 6.74399i 0.364335 + 0.563960i
\(144\) 0 0
\(145\) 21.1846i 1.75929i
\(146\) −2.62398 4.54487i −0.217162 0.376136i
\(147\) 0 0
\(148\) −9.83267 5.67689i −0.808240 0.466638i
\(149\) −12.4936 7.21321i −1.02352 0.590929i −0.108398 0.994108i \(-0.534572\pi\)
−0.915121 + 0.403179i \(0.867905\pi\)
\(150\) 0 0
\(151\) −9.57392 + 5.52751i −0.779115 + 0.449822i −0.836116 0.548552i \(-0.815179\pi\)
0.0570018 + 0.998374i \(0.481846\pi\)
\(152\) −2.22681 −0.180619
\(153\) 0 0
\(154\) 1.95165i 0.157268i
\(155\) −7.97987 13.8215i −0.640959 1.11017i
\(156\) 0 0
\(157\) −1.92051 + 3.32643i −0.153274 + 0.265478i −0.932429 0.361353i \(-0.882315\pi\)
0.779155 + 0.626831i \(0.215648\pi\)
\(158\) −12.2922 7.09690i −0.977914 0.564599i
\(159\) 0 0
\(160\) −1.38877 2.40542i −0.109792 0.190165i
\(161\) 0.455019i 0.0358605i
\(162\) 0 0
\(163\) 19.5106i 1.52819i 0.645103 + 0.764096i \(0.276815\pi\)
−0.645103 + 0.764096i \(0.723185\pi\)
\(164\) 3.52286 2.03392i 0.275089 0.158823i
\(165\) 0 0
\(166\) 0.370304 0.641385i 0.0287411 0.0497811i
\(167\) 10.0701 + 5.81397i 0.779247 + 0.449898i 0.836163 0.548481i \(-0.184794\pi\)
−0.0569166 + 0.998379i \(0.518127\pi\)
\(168\) 0 0
\(169\) −12.9351 + 1.29731i −0.995008 + 0.0997932i
\(170\) 10.5790 0.811376
\(171\) 0 0
\(172\) 5.63365 0.429562
\(173\) −3.62242 6.27421i −0.275407 0.477020i 0.694830 0.719174i \(-0.255479\pi\)
−0.970238 + 0.242154i \(0.922146\pi\)
\(174\) 0 0
\(175\) −2.06053 1.18965i −0.155761 0.0899289i
\(176\) −1.92848 1.11341i −0.145364 0.0839262i
\(177\) 0 0
\(178\) 4.94957 + 8.57290i 0.370986 + 0.642566i
\(179\) 7.32606 0.547575 0.273788 0.961790i \(-0.411723\pi\)
0.273788 + 0.961790i \(0.411723\pi\)
\(180\) 0 0
\(181\) 10.0571 0.747536 0.373768 0.927522i \(-0.378066\pi\)
0.373768 + 0.927522i \(0.378066\pi\)
\(182\) −2.81217 1.44131i −0.208452 0.106837i
\(183\) 0 0
\(184\) 0.449617 + 0.259586i 0.0331462 + 0.0191370i
\(185\) 15.7678 27.3107i 1.15927 2.00792i
\(186\) 0 0
\(187\) 7.34514 4.24072i 0.537130 0.310112i
\(188\) 1.06279i 0.0775119i
\(189\) 0 0
\(190\) 6.18508i 0.448713i
\(191\) −9.39944 16.2803i −0.680120 1.17800i −0.974944 0.222451i \(-0.928594\pi\)
0.294824 0.955552i \(-0.404739\pi\)
\(192\) 0 0
\(193\) 11.4647 + 6.61912i 0.825244 + 0.476455i 0.852221 0.523181i \(-0.175255\pi\)
−0.0269777 + 0.999636i \(0.508588\pi\)
\(194\) −7.86418 + 13.6212i −0.564615 + 0.977942i
\(195\) 0 0
\(196\) 3.11593 + 5.39696i 0.222567 + 0.385497i
\(197\) 1.35286i 0.0963875i 0.998838 + 0.0481938i \(0.0153465\pi\)
−0.998838 + 0.0481938i \(0.984654\pi\)
\(198\) 0 0
\(199\) 1.42951 0.101335 0.0506677 0.998716i \(-0.483865\pi\)
0.0506677 + 0.998716i \(0.483865\pi\)
\(200\) 2.35105 1.35738i 0.166244 0.0959811i
\(201\) 0 0
\(202\) 16.9170 + 9.76705i 1.19028 + 0.687207i
\(203\) −5.78906 3.34231i −0.406312 0.234584i
\(204\) 0 0
\(205\) 5.64931 + 9.78489i 0.394565 + 0.683406i
\(206\) 8.18508i 0.570281i
\(207\) 0 0
\(208\) 3.02853 1.95652i 0.209991 0.135660i
\(209\) −2.47935 4.29436i −0.171500 0.297047i
\(210\) 0 0
\(211\) 6.32982 10.9636i 0.435763 0.754764i −0.561595 0.827413i \(-0.689812\pi\)
0.997358 + 0.0726489i \(0.0231453\pi\)
\(212\) −3.64650 + 6.31593i −0.250443 + 0.433780i
\(213\) 0 0
\(214\) −11.7437 + 6.78023i −0.802784 + 0.463487i
\(215\) 15.6477i 1.06717i
\(216\) 0 0
\(217\) 5.03596 0.341863
\(218\) −4.25113 7.36317i −0.287923 0.498697i
\(219\) 0 0
\(220\) 3.09254 5.35643i 0.208499 0.361131i
\(221\) 0.686074 + 13.7156i 0.0461503 + 0.922610i
\(222\) 0 0
\(223\) 25.8125 14.9028i 1.72853 0.997968i 0.832408 0.554164i \(-0.186962\pi\)
0.896124 0.443804i \(-0.146372\pi\)
\(224\) 0.876431 0.0585590
\(225\) 0 0
\(226\) 3.30773i 0.220027i
\(227\) 19.4683 11.2401i 1.29216 0.746029i 0.313123 0.949713i \(-0.398625\pi\)
0.979037 + 0.203684i \(0.0652915\pi\)
\(228\) 0 0
\(229\) −15.7207 9.07634i −1.03885 0.599781i −0.119344 0.992853i \(-0.538079\pi\)
−0.919508 + 0.393072i \(0.871412\pi\)
\(230\) −0.721013 + 1.24883i −0.0475422 + 0.0823455i
\(231\) 0 0
\(232\) 6.60527 3.81355i 0.433657 0.250372i
\(233\) 11.1281 0.729027 0.364514 0.931198i \(-0.381235\pi\)
0.364514 + 0.931198i \(0.381235\pi\)
\(234\) 0 0
\(235\) −2.95194 −0.192564
\(236\) −3.52376 + 2.03444i −0.229377 + 0.132431i
\(237\) 0 0
\(238\) −1.66906 + 2.89090i −0.108189 + 0.187390i
\(239\) −7.49042 4.32460i −0.484515 0.279735i 0.237781 0.971319i \(-0.423580\pi\)
−0.722296 + 0.691584i \(0.756913\pi\)
\(240\) 0 0
\(241\) 2.19103 1.26499i 0.141137 0.0814853i −0.427769 0.903888i \(-0.640700\pi\)
0.568906 + 0.822403i \(0.307367\pi\)
\(242\) 6.04130i 0.388349i
\(243\) 0 0
\(244\) −7.89810 −0.505624
\(245\) −14.9903 + 8.65465i −0.957694 + 0.552925i
\(246\) 0 0
\(247\) 8.01887 0.401116i 0.510228 0.0255224i
\(248\) −2.87299 + 4.97617i −0.182435 + 0.315987i
\(249\) 0 0
\(250\) −3.17368 5.49698i −0.200721 0.347660i
\(251\) −22.5341 −1.42234 −0.711170 0.703020i \(-0.751834\pi\)
−0.711170 + 0.703020i \(0.751834\pi\)
\(252\) 0 0
\(253\) 1.15610i 0.0726835i
\(254\) −10.9463 + 6.31987i −0.686834 + 0.396544i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 3.37154 5.83968i 0.210311 0.364269i −0.741501 0.670952i \(-0.765886\pi\)
0.951812 + 0.306683i \(0.0992190\pi\)
\(258\) 0 0
\(259\) 4.97540 + 8.61765i 0.309157 + 0.535475i
\(260\) 5.43433 + 8.41189i 0.337023 + 0.521683i
\(261\) 0 0
\(262\) 7.42964i 0.459005i
\(263\) 4.11486 + 7.12715i 0.253733 + 0.439479i 0.964551 0.263898i \(-0.0850081\pi\)
−0.710817 + 0.703377i \(0.751675\pi\)
\(264\) 0 0
\(265\) −17.5428 10.1283i −1.07764 0.622178i
\(266\) 1.69018 + 0.975824i 0.103631 + 0.0598316i
\(267\) 0 0
\(268\) 5.95399 3.43754i 0.363698 0.209981i
\(269\) 23.8369 1.45336 0.726680 0.686976i \(-0.241062\pi\)
0.726680 + 0.686976i \(0.241062\pi\)
\(270\) 0 0
\(271\) 15.4310i 0.937367i −0.883366 0.468684i \(-0.844728\pi\)
0.883366 0.468684i \(-0.155272\pi\)
\(272\) −1.90439 3.29850i −0.115471 0.200001i
\(273\) 0 0
\(274\) −8.14752 + 14.1119i −0.492209 + 0.852532i
\(275\) 5.23535 + 3.02263i 0.315703 + 0.182271i
\(276\) 0 0
\(277\) −4.62513 8.01097i −0.277897 0.481332i 0.692965 0.720972i \(-0.256304\pi\)
−0.970862 + 0.239639i \(0.922971\pi\)
\(278\) 10.6286i 0.637463i
\(279\) 0 0
\(280\) 2.43433i 0.145479i
\(281\) 17.0788 9.86047i 1.01884 0.588226i 0.105071 0.994465i \(-0.466493\pi\)
0.913767 + 0.406239i \(0.133160\pi\)
\(282\) 0 0
\(283\) −3.75118 + 6.49723i −0.222984 + 0.386220i −0.955713 0.294301i \(-0.904913\pi\)
0.732728 + 0.680521i \(0.238247\pi\)
\(284\) −13.8191 7.97845i −0.820012 0.473434i
\(285\) 0 0
\(286\) 7.14510 + 3.66206i 0.422499 + 0.216542i
\(287\) −3.56518 −0.210446
\(288\) 0 0
\(289\) −2.49322 −0.146660
\(290\) 10.5923 + 18.3464i 0.622002 + 1.07734i
\(291\) 0 0
\(292\) −4.54487 2.62398i −0.265969 0.153557i
\(293\) 18.7239 + 10.8103i 1.09386 + 0.631543i 0.934603 0.355694i \(-0.115755\pi\)
0.159261 + 0.987236i \(0.449089\pi\)
\(294\) 0 0
\(295\) −5.65075 9.78739i −0.328999 0.569844i
\(296\) −11.3538 −0.659926
\(297\) 0 0
\(298\) −14.4264 −0.835700
\(299\) −1.66585 0.853794i −0.0963387 0.0493762i
\(300\) 0 0
\(301\) −4.27601 2.46875i −0.246465 0.142297i
\(302\) −5.52751 + 9.57392i −0.318072 + 0.550917i
\(303\) 0 0
\(304\) −1.92848 + 1.11341i −0.110606 + 0.0638583i
\(305\) 21.9373i 1.25613i
\(306\) 0 0
\(307\) 7.81179i 0.445842i −0.974836 0.222921i \(-0.928441\pi\)
0.974836 0.222921i \(-0.0715593\pi\)
\(308\) 0.975824 + 1.69018i 0.0556028 + 0.0963068i
\(309\) 0 0
\(310\) −13.8215 7.97987i −0.785011 0.453226i
\(311\) −4.85008 + 8.40058i −0.275023 + 0.476353i −0.970141 0.242542i \(-0.922019\pi\)
0.695118 + 0.718896i \(0.255352\pi\)
\(312\) 0 0
\(313\) 15.9559 + 27.6364i 0.901880 + 1.56210i 0.825051 + 0.565058i \(0.191146\pi\)
0.0768289 + 0.997044i \(0.475520\pi\)
\(314\) 3.84103i 0.216762i
\(315\) 0 0
\(316\) −14.1938 −0.798463
\(317\) 24.4893 14.1389i 1.37546 0.794119i 0.383847 0.923397i \(-0.374599\pi\)
0.991608 + 0.129277i \(0.0412658\pi\)
\(318\) 0 0
\(319\) 14.7087 + 8.49207i 0.823529 + 0.475465i
\(320\) −2.40542 1.38877i −0.134467 0.0776347i
\(321\) 0 0
\(322\) −0.227510 0.394058i −0.0126786 0.0219600i
\(323\) 8.48144i 0.471920i
\(324\) 0 0
\(325\) −8.22173 + 5.31148i −0.456060 + 0.294628i
\(326\) 9.75532 + 16.8967i 0.540297 + 0.935823i
\(327\) 0 0
\(328\) 2.03392 3.52286i 0.112305 0.194517i
\(329\) 0.465731 0.806669i 0.0256766 0.0444731i
\(330\) 0 0
\(331\) 9.22435 5.32568i 0.507016 0.292726i −0.224590 0.974453i \(-0.572104\pi\)
0.731606 + 0.681727i \(0.238771\pi\)
\(332\) 0.740607i 0.0406461i
\(333\) 0 0
\(334\) 11.6279 0.636252
\(335\) 9.54791 + 16.5375i 0.521658 + 0.903538i
\(336\) 0 0
\(337\) 0.320956 0.555913i 0.0174836 0.0302825i −0.857151 0.515065i \(-0.827768\pi\)
0.874635 + 0.484782i \(0.161101\pi\)
\(338\) −10.5535 + 7.59106i −0.574033 + 0.412899i
\(339\) 0 0
\(340\) 9.16172 5.28952i 0.496864 0.286865i
\(341\) −12.7952 −0.692902
\(342\) 0 0
\(343\) 11.5968i 0.626169i
\(344\) 4.87889 2.81683i 0.263052 0.151873i
\(345\) 0 0
\(346\) −6.27421 3.62242i −0.337304 0.194742i
\(347\) −12.7951 + 22.1617i −0.686876 + 1.18970i 0.285968 + 0.958239i \(0.407685\pi\)
−0.972843 + 0.231464i \(0.925648\pi\)
\(348\) 0 0
\(349\) −3.03854 + 1.75430i −0.162649 + 0.0939056i −0.579115 0.815246i \(-0.696602\pi\)
0.416466 + 0.909151i \(0.363269\pi\)
\(350\) −2.37930 −0.127179
\(351\) 0 0
\(352\) −2.22681 −0.118690
\(353\) −6.32742 + 3.65314i −0.336774 + 0.194437i −0.658845 0.752279i \(-0.728955\pi\)
0.322070 + 0.946716i \(0.395621\pi\)
\(354\) 0 0
\(355\) 22.1605 38.3831i 1.17616 2.03716i
\(356\) 8.57290 + 4.94957i 0.454363 + 0.262327i
\(357\) 0 0
\(358\) 6.34455 3.66303i 0.335320 0.193597i
\(359\) 15.7989i 0.833832i −0.908945 0.416916i \(-0.863111\pi\)
0.908945 0.416916i \(-0.136889\pi\)
\(360\) 0 0
\(361\) 14.0413 0.739016
\(362\) 8.70968 5.02853i 0.457771 0.264294i
\(363\) 0 0
\(364\) −3.15607 + 0.157871i −0.165423 + 0.00827470i
\(365\) 7.28823 12.6236i 0.381484 0.660749i
\(366\) 0 0
\(367\) −5.26543 9.11999i −0.274853 0.476060i 0.695245 0.718773i \(-0.255296\pi\)
−0.970098 + 0.242713i \(0.921963\pi\)
\(368\) 0.519173 0.0270638
\(369\) 0 0
\(370\) 31.5357i 1.63946i
\(371\) 5.53548 3.19591i 0.287388 0.165923i
\(372\) 0 0
\(373\) 4.86520 8.42678i 0.251911 0.436322i −0.712141 0.702036i \(-0.752274\pi\)
0.964052 + 0.265714i \(0.0856077\pi\)
\(374\) 4.24072 7.34514i 0.219282 0.379808i
\(375\) 0 0
\(376\) 0.531395 + 0.920402i 0.0274046 + 0.0474661i
\(377\) −23.0989 + 14.9226i −1.18966 + 0.768553i
\(378\) 0 0
\(379\) 32.8344i 1.68659i 0.537450 + 0.843296i \(0.319388\pi\)
−0.537450 + 0.843296i \(0.680612\pi\)
\(380\) −3.09254 5.35643i −0.158644 0.274779i
\(381\) 0 0
\(382\) −16.2803 9.39944i −0.832973 0.480917i
\(383\) 11.9352 + 6.89079i 0.609860 + 0.352103i 0.772911 0.634515i \(-0.218800\pi\)
−0.163050 + 0.986618i \(0.552133\pi\)
\(384\) 0 0
\(385\) −4.69454 + 2.71040i −0.239256 + 0.138135i
\(386\) 13.2382 0.673809
\(387\) 0 0
\(388\) 15.7284i 0.798486i
\(389\) 9.32704 + 16.1549i 0.472900 + 0.819086i 0.999519 0.0310151i \(-0.00987401\pi\)
−0.526619 + 0.850101i \(0.676541\pi\)
\(390\) 0 0
\(391\) −0.988707 + 1.71249i −0.0500011 + 0.0866044i
\(392\) 5.39696 + 3.11593i 0.272587 + 0.157378i
\(393\) 0 0
\(394\) 0.676432 + 1.17161i 0.0340781 + 0.0590251i
\(395\) 39.4239i 1.98363i
\(396\) 0 0
\(397\) 7.73466i 0.388191i −0.980983 0.194096i \(-0.937823\pi\)
0.980983 0.194096i \(-0.0621772\pi\)
\(398\) 1.23799 0.714756i 0.0620550 0.0358275i
\(399\) 0 0
\(400\) 1.35738 2.35105i 0.0678689 0.117552i
\(401\) 5.91085 + 3.41263i 0.295174 + 0.170419i 0.640273 0.768148i \(-0.278821\pi\)
−0.345099 + 0.938566i \(0.612155\pi\)
\(402\) 0 0
\(403\) 9.44943 18.4369i 0.470710 0.918410i
\(404\) 19.5341 0.971858
\(405\) 0 0
\(406\) −6.68463 −0.331753
\(407\) −12.6414 21.8955i −0.626610 1.08532i
\(408\) 0 0
\(409\) −27.0687 15.6281i −1.33846 0.772760i −0.351881 0.936045i \(-0.614458\pi\)
−0.986579 + 0.163285i \(0.947791\pi\)
\(410\) 9.78489 + 5.64931i 0.483241 + 0.278999i
\(411\) 0 0
\(412\) 4.09254 + 7.08848i 0.201625 + 0.349225i
\(413\) 3.56609 0.175476
\(414\) 0 0
\(415\) 2.05707 0.100978
\(416\) 1.64453 3.20866i 0.0806296 0.157318i
\(417\) 0 0
\(418\) −4.29436 2.47935i −0.210044 0.121269i
\(419\) 8.68385 15.0409i 0.424234 0.734794i −0.572115 0.820174i \(-0.693877\pi\)
0.996349 + 0.0853793i \(0.0272102\pi\)
\(420\) 0 0
\(421\) 5.91995 3.41788i 0.288521 0.166577i −0.348754 0.937214i \(-0.613395\pi\)
0.637275 + 0.770637i \(0.280062\pi\)
\(422\) 12.6596i 0.616262i
\(423\) 0 0
\(424\) 7.29301i 0.354180i
\(425\) 5.16995 + 8.95461i 0.250779 + 0.434363i
\(426\) 0 0
\(427\) 5.99475 + 3.46107i 0.290106 + 0.167493i
\(428\) −6.78023 + 11.7437i −0.327735 + 0.567654i
\(429\) 0 0
\(430\) 7.82386 + 13.5513i 0.377300 + 0.653503i
\(431\) 37.9595i 1.82844i 0.405215 + 0.914221i \(0.367197\pi\)
−0.405215 + 0.914221i \(0.632803\pi\)
\(432\) 0 0
\(433\) 5.83476 0.280401 0.140200 0.990123i \(-0.455225\pi\)
0.140200 + 0.990123i \(0.455225\pi\)
\(434\) 4.36127 2.51798i 0.209348 0.120867i
\(435\) 0 0
\(436\) −7.36317 4.25113i −0.352632 0.203592i
\(437\) 1.00121 + 0.578051i 0.0478945 + 0.0276519i
\(438\) 0 0
\(439\) −0.772490 1.33799i −0.0368690 0.0638589i 0.847002 0.531590i \(-0.178405\pi\)
−0.883871 + 0.467731i \(0.845072\pi\)
\(440\) 6.18508i 0.294862i
\(441\) 0 0
\(442\) 7.45195 + 11.5350i 0.354453 + 0.548665i
\(443\) 1.77937 + 3.08196i 0.0845403 + 0.146428i 0.905195 0.424996i \(-0.139724\pi\)
−0.820655 + 0.571424i \(0.806391\pi\)
\(444\) 0 0
\(445\) −13.7477 + 23.8116i −0.651701 + 1.12878i
\(446\) 14.9028 25.8125i 0.705670 1.22226i
\(447\) 0 0
\(448\) 0.759011 0.438215i 0.0358599 0.0207037i
\(449\) 10.1607i 0.479515i 0.970833 + 0.239757i \(0.0770679\pi\)
−0.970833 + 0.239757i \(0.922932\pi\)
\(450\) 0 0
\(451\) 9.05833 0.426540
\(452\) −1.65386 2.86458i −0.0777912 0.134738i
\(453\) 0 0
\(454\) 11.2401 19.4683i 0.527522 0.913695i
\(455\) −0.438494 8.76613i −0.0205569 0.410962i
\(456\) 0 0
\(457\) 18.4597 10.6577i 0.863506 0.498546i −0.00167864 0.999999i \(-0.500534\pi\)
0.865185 + 0.501453i \(0.167201\pi\)
\(458\) −18.1527 −0.848219
\(459\) 0 0
\(460\) 1.44203i 0.0672348i
\(461\) −18.6408 + 10.7623i −0.868188 + 0.501248i −0.866746 0.498750i \(-0.833792\pi\)
−0.00144222 + 0.999999i \(0.500459\pi\)
\(462\) 0 0
\(463\) 31.0148 + 17.9064i 1.44138 + 0.832180i 0.997942 0.0641254i \(-0.0204258\pi\)
0.443437 + 0.896306i \(0.353759\pi\)
\(464\) 3.81355 6.60527i 0.177040 0.306642i
\(465\) 0 0
\(466\) 9.63723 5.56406i 0.446436 0.257750i
\(467\) 21.4529 0.992723 0.496362 0.868116i \(-0.334669\pi\)
0.496362 + 0.868116i \(0.334669\pi\)
\(468\) 0 0
\(469\) −6.02552 −0.278233
\(470\) −2.55646 + 1.47597i −0.117921 + 0.0680815i
\(471\) 0 0
\(472\) −2.03444 + 3.52376i −0.0936427 + 0.162194i
\(473\) 10.8644 + 6.27255i 0.499544 + 0.288412i
\(474\) 0 0
\(475\) 5.23535 3.02263i 0.240214 0.138688i
\(476\) 3.33813i 0.153003i
\(477\) 0 0
\(478\) −8.64919 −0.395605
\(479\) 5.00102 2.88734i 0.228502 0.131926i −0.381379 0.924419i \(-0.624551\pi\)
0.609881 + 0.792493i \(0.291217\pi\)
\(480\) 0 0
\(481\) 40.8855 2.04515i 1.86422 0.0932510i
\(482\) 1.26499 2.19103i 0.0576188 0.0997987i
\(483\) 0 0
\(484\) 3.02065 + 5.23192i 0.137302 + 0.237814i
\(485\) −43.6862 −1.98369
\(486\) 0 0
\(487\) 32.9124i 1.49140i −0.666280 0.745702i \(-0.732114\pi\)
0.666280 0.745702i \(-0.267886\pi\)
\(488\) −6.83995 + 3.94905i −0.309630 + 0.178765i
\(489\) 0 0
\(490\) −8.65465 + 14.9903i −0.390977 + 0.677192i
\(491\) −4.89961 + 8.48638i −0.221116 + 0.382985i −0.955147 0.296131i \(-0.904303\pi\)
0.734031 + 0.679116i \(0.237637\pi\)
\(492\) 0 0
\(493\) 14.5250 + 25.1580i 0.654172 + 1.13306i
\(494\) 6.74399 4.35681i 0.303426 0.196022i
\(495\) 0 0
\(496\) 5.74599i 0.258002i
\(497\) 6.99256 + 12.1115i 0.313659 + 0.543274i
\(498\) 0 0
\(499\) −35.7763 20.6555i −1.60157 0.924666i −0.991174 0.132569i \(-0.957677\pi\)
−0.610395 0.792097i \(-0.708989\pi\)
\(500\) −5.49698 3.17368i −0.245833 0.141931i
\(501\) 0 0
\(502\) −19.5151 + 11.2671i −0.871002 + 0.502873i
\(503\) 11.0563 0.492976 0.246488 0.969146i \(-0.420723\pi\)
0.246488 + 0.969146i \(0.420723\pi\)
\(504\) 0 0
\(505\) 54.2568i 2.41440i
\(506\) 0.578051 + 1.00121i 0.0256975 + 0.0445094i
\(507\) 0 0
\(508\) −6.31987 + 10.9463i −0.280399 + 0.485665i
\(509\) 0.959102 + 0.553738i 0.0425115 + 0.0245440i 0.521105 0.853493i \(-0.325520\pi\)
−0.478594 + 0.878037i \(0.658853\pi\)
\(510\) 0 0
\(511\) 2.29974 + 3.98327i 0.101735 + 0.176209i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 6.74309i 0.297425i
\(515\) −19.6886 + 11.3672i −0.867583 + 0.500899i
\(516\) 0 0
\(517\) −1.18332 + 2.04957i −0.0520422 + 0.0901398i
\(518\) 8.61765 + 4.97540i 0.378638 + 0.218607i
\(519\) 0 0
\(520\) 8.91221 + 4.56775i 0.390826 + 0.200309i
\(521\) 9.02695 0.395478 0.197739 0.980255i \(-0.436640\pi\)
0.197739 + 0.980255i \(0.436640\pi\)
\(522\) 0 0
\(523\) 9.47081 0.414130 0.207065 0.978327i \(-0.433609\pi\)
0.207065 + 0.978327i \(0.433609\pi\)
\(524\) 3.71482 + 6.43426i 0.162283 + 0.281082i
\(525\) 0 0
\(526\) 7.12715 + 4.11486i 0.310759 + 0.179417i
\(527\) −18.9531 10.9426i −0.825611 0.476667i
\(528\) 0 0
\(529\) 11.3652 + 19.6852i 0.494140 + 0.855876i
\(530\) −20.2567 −0.879893
\(531\) 0 0
\(532\) 1.95165 0.0846147
\(533\) −6.68968 + 13.0523i −0.289762 + 0.565360i
\(534\) 0 0
\(535\) −32.6187 18.8324i −1.41023 0.814196i
\(536\) 3.43754 5.95399i 0.148479 0.257173i
\(537\) 0 0
\(538\) 20.6433 11.9184i 0.889998 0.513840i
\(539\) 13.8772i 0.597734i
\(540\) 0 0
\(541\) 29.1499i 1.25325i −0.779320 0.626626i \(-0.784436\pi\)
0.779320 0.626626i \(-0.215564\pi\)
\(542\) −7.71551 13.3637i −0.331409 0.574018i
\(543\) 0 0
\(544\) −3.29850 1.90439i −0.141422 0.0816500i
\(545\) 11.8077 20.4515i 0.505786 0.876047i
\(546\) 0 0
\(547\) −14.6450 25.3659i −0.626175 1.08457i −0.988312 0.152442i \(-0.951286\pi\)
0.362137 0.932125i \(-0.382047\pi\)
\(548\) 16.2950i 0.696089i
\(549\) 0 0
\(550\) 6.04526 0.257771
\(551\) 14.7087 8.49207i 0.626612 0.361774i
\(552\) 0 0
\(553\) 10.7733 + 6.21994i 0.458125 + 0.264499i
\(554\) −8.01097 4.62513i −0.340353 0.196503i
\(555\) 0 0
\(556\) −5.31431 9.20466i −0.225377 0.390365i
\(557\) 14.0519i 0.595400i −0.954659 0.297700i \(-0.903780\pi\)
0.954659 0.297700i \(-0.0962195\pi\)
\(558\) 0 0
\(559\) −17.0617 + 11.0224i −0.721634 + 0.466196i
\(560\) 1.21716 + 2.10819i 0.0514345 + 0.0890872i
\(561\) 0 0
\(562\) 9.86047 17.0788i 0.415939 0.720427i
\(563\) 1.73120 2.99852i 0.0729612 0.126373i −0.827237 0.561854i \(-0.810088\pi\)
0.900198 + 0.435481i \(0.143422\pi\)
\(564\) 0 0
\(565\) 7.95649 4.59368i 0.334732 0.193258i
\(566\) 7.50235i 0.315347i
\(567\) 0 0
\(568\) −15.9569 −0.669537
\(569\) −7.89491 13.6744i −0.330972 0.573260i 0.651731 0.758450i \(-0.274043\pi\)
−0.982703 + 0.185190i \(0.940710\pi\)
\(570\) 0 0
\(571\) −15.2110 + 26.3463i −0.636562 + 1.10256i 0.349620 + 0.936892i \(0.386311\pi\)
−0.986182 + 0.165666i \(0.947023\pi\)
\(572\) 8.01887 0.401116i 0.335286 0.0167715i
\(573\) 0 0
\(574\) −3.08754 + 1.78259i −0.128871 + 0.0744039i
\(575\) −1.40943 −0.0587772
\(576\) 0 0
\(577\) 3.19469i 0.132997i 0.997787 + 0.0664984i \(0.0211827\pi\)
−0.997787 + 0.0664984i \(0.978817\pi\)
\(578\) −2.15919 + 1.24661i −0.0898106 + 0.0518521i
\(579\) 0 0
\(580\) 18.3464 + 10.5923i 0.761794 + 0.439822i
\(581\) −0.324546 + 0.562129i −0.0134644 + 0.0233211i
\(582\) 0 0
\(583\) −14.0644 + 8.12009i −0.582488 + 0.336300i
\(584\) −5.24797 −0.217162
\(585\) 0 0
\(586\) 21.6205 0.893136
\(587\) −11.2778 + 6.51126i −0.465486 + 0.268748i −0.714348 0.699790i \(-0.753277\pi\)
0.248862 + 0.968539i \(0.419943\pi\)
\(588\) 0 0
\(589\) −6.39762 + 11.0810i −0.263610 + 0.456585i
\(590\) −9.78739 5.65075i −0.402940 0.232638i
\(591\) 0 0
\(592\) −9.83267 + 5.67689i −0.404120 + 0.233319i
\(593\) 11.9872i 0.492254i 0.969238 + 0.246127i \(0.0791581\pi\)
−0.969238 + 0.246127i \(0.920842\pi\)
\(594\) 0 0
\(595\) −9.27180 −0.380107
\(596\) −12.4936 + 7.21321i −0.511760 + 0.295465i
\(597\) 0 0
\(598\) −1.86957 + 0.0935185i −0.0764523 + 0.00382425i
\(599\) −9.75297 + 16.8926i −0.398495 + 0.690214i −0.993541 0.113478i \(-0.963801\pi\)
0.595045 + 0.803692i \(0.297134\pi\)
\(600\) 0 0
\(601\) 8.24140 + 14.2745i 0.336174 + 0.582270i 0.983710 0.179765i \(-0.0575337\pi\)
−0.647536 + 0.762035i \(0.724200\pi\)
\(602\) −4.93751 −0.201238
\(603\) 0 0
\(604\) 11.0550i 0.449822i
\(605\) −14.5319 + 8.38999i −0.590805 + 0.341101i
\(606\) 0 0
\(607\) −1.49710 + 2.59306i −0.0607655 + 0.105249i −0.894808 0.446452i \(-0.852688\pi\)
0.834042 + 0.551700i \(0.186021\pi\)
\(608\) −1.11341 + 1.92848i −0.0451546 + 0.0782101i
\(609\) 0 0
\(610\) −10.9687 18.9983i −0.444108 0.769218i
\(611\) −2.07937 3.21869i −0.0841223 0.130214i
\(612\) 0 0
\(613\) 27.2249i 1.09961i 0.835295 + 0.549803i \(0.185297\pi\)
−0.835295 + 0.549803i \(0.814703\pi\)
\(614\) −3.90590 6.76521i −0.157629 0.273022i
\(615\) 0 0
\(616\) 1.69018 + 0.975824i 0.0680992 + 0.0393171i
\(617\) 7.28671 + 4.20698i 0.293352 + 0.169367i 0.639453 0.768831i \(-0.279161\pi\)
−0.346101 + 0.938197i \(0.612494\pi\)
\(618\) 0 0
\(619\) −30.4315 + 17.5696i −1.22314 + 0.706182i −0.965587 0.260081i \(-0.916251\pi\)
−0.257557 + 0.966263i \(0.582917\pi\)
\(620\) −15.9597 −0.640959
\(621\) 0 0
\(622\) 9.70016i 0.388941i
\(623\) −4.33795 7.51356i −0.173796 0.301024i
\(624\) 0 0
\(625\) 15.6019 27.0234i 0.624078 1.08093i
\(626\) 27.6364 + 15.9559i 1.10457 + 0.637726i
\(627\) 0 0
\(628\) 1.92051 + 3.32643i 0.0766369 + 0.132739i
\(629\) 43.2440i 1.72425i
\(630\) 0 0
\(631\) 21.0022i 0.836083i 0.908428 + 0.418042i \(0.137283\pi\)
−0.908428 + 0.418042i \(0.862717\pi\)
\(632\) −12.2922 + 7.09690i −0.488957 + 0.282299i
\(633\) 0 0
\(634\) 14.1389 24.4893i 0.561527 0.972594i
\(635\) −30.4040 17.5537i −1.20654 0.696599i
\(636\) 0 0
\(637\) −19.9960 10.2485i −0.792269 0.406060i
\(638\) 16.9841 0.672409
\(639\) 0 0
\(640\) −2.77754 −0.109792
\(641\) 11.7828 + 20.4085i 0.465394 + 0.806087i 0.999219 0.0395083i \(-0.0125792\pi\)
−0.533825 + 0.845595i \(0.679246\pi\)
\(642\) 0 0
\(643\) −19.7342 11.3935i −0.778240 0.449317i 0.0575663 0.998342i \(-0.481666\pi\)
−0.835806 + 0.549025i \(0.814999\pi\)
\(644\) −0.394058 0.227510i −0.0155281 0.00896513i
\(645\) 0 0
\(646\) −4.24072 7.34514i −0.166849 0.288991i
\(647\) 45.8902 1.80413 0.902065 0.431600i \(-0.142051\pi\)
0.902065 + 0.431600i \(0.142051\pi\)
\(648\) 0 0
\(649\) −9.06065 −0.355661
\(650\) −4.46449 + 8.71074i −0.175112 + 0.341663i
\(651\) 0 0
\(652\) 16.8967 + 9.75532i 0.661726 + 0.382048i
\(653\) −7.28145 + 12.6118i −0.284945 + 0.493539i −0.972596 0.232502i \(-0.925309\pi\)
0.687651 + 0.726042i \(0.258642\pi\)
\(654\) 0 0
\(655\) −17.8714 + 10.3181i −0.698295 + 0.403161i
\(656\) 4.06784i 0.158823i
\(657\) 0 0
\(658\) 0.931461i 0.0363121i
\(659\) −12.3920 21.4636i −0.482724 0.836102i 0.517080 0.855937i \(-0.327019\pi\)
−0.999803 + 0.0198353i \(0.993686\pi\)
\(660\) 0 0
\(661\) −16.5731 9.56850i −0.644620 0.372172i 0.141772 0.989899i \(-0.454720\pi\)
−0.786392 + 0.617728i \(0.788053\pi\)
\(662\) 5.32568 9.22435i 0.206989 0.358515i
\(663\) 0 0
\(664\) −0.370304 0.641385i −0.0143706 0.0248906i
\(665\) 5.42079i 0.210209i
\(666\) 0 0
\(667\) −3.95979 −0.153324
\(668\) 10.0701 5.81397i 0.389623 0.224949i
\(669\) 0 0
\(670\) 16.5375 + 9.54791i 0.638898 + 0.368868i
\(671\) −15.2313 8.79380i −0.587998 0.339481i
\(672\) 0 0
\(673\) 7.35301 + 12.7358i 0.283438 + 0.490929i 0.972229 0.234031i \(-0.0751917\pi\)
−0.688791 + 0.724960i \(0.741858\pi\)
\(674\) 0.641913i 0.0247256i
\(675\) 0 0
\(676\) −5.34405 + 11.8508i −0.205540 + 0.455799i
\(677\) −19.0892 33.0634i −0.733656 1.27073i −0.955311 0.295604i \(-0.904479\pi\)
0.221655 0.975125i \(-0.428854\pi\)
\(678\) 0 0
\(679\) 6.89241 11.9380i 0.264506 0.458138i
\(680\) 5.28952 9.16172i 0.202844 0.351336i
\(681\) 0 0
\(682\) −11.0810 + 6.39762i −0.424314 + 0.244978i
\(683\) 50.5922i 1.93586i 0.251229 + 0.967928i \(0.419165\pi\)
−0.251229 + 0.967928i \(0.580835\pi\)
\(684\) 0 0
\(685\) −45.2602 −1.72930
\(686\) −5.79841 10.0431i −0.221384 0.383449i
\(687\) 0 0
\(688\) 2.81683 4.87889i 0.107390 0.186006i
\(689\) −1.31369 26.2625i −0.0500475 1.00052i
\(690\) 0 0
\(691\) 11.4208 6.59378i 0.434466 0.250839i −0.266781 0.963757i \(-0.585960\pi\)
0.701247 + 0.712918i \(0.252627\pi\)
\(692\) −7.24484 −0.275407
\(693\) 0 0
\(694\) 25.5902i 0.971389i
\(695\) 25.5664 14.7607i 0.969787 0.559907i
\(696\) 0 0
\(697\) 13.4178 + 7.74675i 0.508234 + 0.293429i
\(698\) −1.75430 + 3.03854i −0.0664013 + 0.115010i
\(699\) 0 0
\(700\) −2.06053 + 1.18965i −0.0778807 + 0.0449645i
\(701\) −17.7794 −0.671519 −0.335759 0.941948i \(-0.608993\pi\)
−0.335759 + 0.941948i \(0.608993\pi\)
\(702\) 0 0
\(703\) −25.2828 −0.953558
\(704\) −1.92848 + 1.11341i −0.0726822 + 0.0419631i
\(705\) 0 0
\(706\) −3.65314 + 6.32742i −0.137488 + 0.238135i
\(707\) −14.8266 8.56014i −0.557612 0.321937i
\(708\) 0 0
\(709\) 2.99306 1.72804i 0.112407 0.0648980i −0.442743 0.896649i \(-0.645994\pi\)
0.555149 + 0.831751i \(0.312661\pi\)
\(710\) 44.3210i 1.66334i
\(711\) 0 0
\(712\) 9.89914 0.370986
\(713\) 2.58349 1.49158i 0.0967526 0.0558601i
\(714\) 0 0
\(715\) 1.11412 + 22.2728i 0.0416656 + 0.832954i
\(716\) 3.66303 6.34455i 0.136894 0.237107i
\(717\) 0 0
\(718\) −7.89943 13.6822i −0.294804 0.510616i
\(719\) 39.2187 1.46261 0.731305 0.682051i \(-0.238912\pi\)
0.731305 + 0.682051i \(0.238912\pi\)
\(720\) 0 0
\(721\) 7.17365i 0.267161i
\(722\) 12.1601 7.02065i 0.452553 0.261281i
\(723\) 0 0
\(724\) 5.02853 8.70968i 0.186884 0.323693i
\(725\) −10.3529 + 17.9317i −0.384496 + 0.665966i
\(726\) 0 0
\(727\) 1.64755 + 2.85364i 0.0611042 + 0.105836i 0.894959 0.446148i \(-0.147204\pi\)
−0.833855 + 0.551983i \(0.813871\pi\)
\(728\) −2.65430 + 1.71476i −0.0983750 + 0.0635531i
\(729\) 0 0
\(730\) 14.5765i 0.539499i
\(731\) 10.7287 + 18.5826i 0.396814 + 0.687302i
\(732\) 0 0
\(733\) −19.3253 11.1575i −0.713796 0.412110i 0.0986691 0.995120i \(-0.468541\pi\)
−0.812465 + 0.583010i \(0.801875\pi\)
\(734\) −9.11999 5.26543i −0.336625 0.194351i
\(735\) 0 0
\(736\) 0.449617 0.259586i 0.0165731 0.00956848i
\(737\) 15.3095 0.563933
\(738\) 0 0
\(739\) 6.45694i 0.237522i 0.992923 + 0.118761i \(0.0378923\pi\)
−0.992923 + 0.118761i \(0.962108\pi\)
\(740\) −15.7678 27.3107i −0.579637 1.00396i
\(741\) 0 0
\(742\) 3.19591 5.53548i 0.117325 0.203214i
\(743\) −19.1556 11.0595i −0.702750 0.405733i 0.105621 0.994406i \(-0.466317\pi\)
−0.808371 + 0.588673i \(0.799650\pi\)
\(744\) 0 0
\(745\) −20.0350 34.7017i −0.734026 1.27137i
\(746\) 9.73041i 0.356256i
\(747\) 0 0
\(748\) 8.48144i 0.310112i
\(749\) 10.2926 5.94241i 0.376082 0.217131i
\(750\) 0 0
\(751\) −7.90342 + 13.6891i −0.288400 + 0.499523i −0.973428 0.228993i \(-0.926457\pi\)
0.685028 + 0.728517i \(0.259790\pi\)
\(752\) 0.920402 + 0.531395i 0.0335636 + 0.0193780i
\(753\) 0 0
\(754\) −12.5430 + 24.4728i −0.456788 + 0.891247i
\(755\) −30.7058 −1.11750
\(756\) 0 0
\(757\) −44.5733 −1.62004 −0.810021 0.586400i \(-0.800545\pi\)
−0.810021 + 0.586400i \(0.800545\pi\)
\(758\) 16.4172 + 28.4354i 0.596300 + 1.03282i
\(759\) 0 0
\(760\) −5.35643 3.09254i −0.194298 0.112178i
\(761\) 19.2427 + 11.1098i 0.697547 + 0.402729i 0.806433 0.591325i \(-0.201395\pi\)
−0.108886 + 0.994054i \(0.534728\pi\)
\(762\) 0 0
\(763\) 3.72582 + 6.45331i 0.134884 + 0.233625i
\(764\) −18.7989 −0.680120
\(765\) 0 0
\(766\) 13.7816 0.497949
\(767\) 6.69139 13.0557i 0.241612 0.471413i
\(768\) 0 0
\(769\) −30.5190 17.6202i −1.10054 0.635399i −0.164180 0.986430i \(-0.552498\pi\)
−0.936364 + 0.351031i \(0.885831\pi\)
\(770\) −2.71040 + 4.69454i −0.0976759 + 0.169180i
\(771\) 0 0
\(772\) 11.4647 6.61912i 0.412622 0.238227i
\(773\) 12.6527i 0.455086i 0.973768 + 0.227543i \(0.0730693\pi\)
−0.973768 + 0.227543i \(0.926931\pi\)
\(774\) 0 0
\(775\) 15.5990i 0.560331i
\(776\) 7.86418 + 13.6212i 0.282308 + 0.488971i
\(777\) 0 0
\(778\) 16.1549 + 9.32704i 0.579181 + 0.334390i
\(779\) 4.52917 7.84475i 0.162274 0.281067i
\(780\) 0 0
\(781\) −17.7665 30.7725i −0.635736 1.10113i
\(782\) 1.97741i 0.0707122i
\(783\) 0 0
\(784\) 6.23187 0.222567
\(785\) −9.23931 + 5.33432i −0.329765 + 0.190390i
\(786\) 0 0
\(787\) 13.1205 + 7.57513i 0.467695 + 0.270024i 0.715274 0.698844i \(-0.246302\pi\)
−0.247579 + 0.968868i \(0.579635\pi\)
\(788\) 1.17161 + 0.676432i 0.0417370 + 0.0240969i
\(789\) 0 0
\(790\) −19.7120 34.1421i −0.701320 1.21472i
\(791\) 2.89899i 0.103076i
\(792\) 0 0
\(793\) 23.9197 15.4528i 0.849412 0.548745i
\(794\) −3.86733 6.69841i −0.137246 0.237718i
\(795\) 0 0
\(796\) 0.714756 1.23799i 0.0253338 0.0438795i
\(797\) −5.91305 + 10.2417i −0.209451 + 0.362780i −0.951542 0.307520i \(-0.900501\pi\)
0.742091 + 0.670300i \(0.233834\pi\)
\(798\) 0 0
\(799\) −3.50561 + 2.02396i −0.124019 + 0.0716027i
\(800\) 2.71476i 0.0959811i
\(801\) 0 0
\(802\) 6.82526 0.241008
\(803\) −5.84313 10.1206i −0.206199 0.357148i
\(804\) 0 0
\(805\) 0.631918 1.09451i 0.0222722 0.0385766i
\(806\) −1.03502 20.6916i −0.0364571 0.728830i
\(807\) 0 0
\(808\) 16.9170 9.76705i 0.595139 0.343604i
\(809\) 18.4258 0.647815 0.323908 0.946089i \(-0.395003\pi\)
0.323908 + 0.946089i \(0.395003\pi\)
\(810\) 0 0
\(811\) 32.9748i 1.15790i 0.815362 + 0.578952i \(0.196538\pi\)
−0.815362 + 0.578952i \(0.803462\pi\)
\(812\) −5.78906 + 3.34231i −0.203156 + 0.117292i
\(813\) 0 0
\(814\) −21.8955 12.6414i −0.767438 0.443080i
\(815\) −27.0958 + 46.9314i −0.949126 + 1.64393i
\(816\) 0 0
\(817\) 10.8644 6.27255i 0.380096 0.219449i
\(818\) −31.2562 −1.09285
\(819\) 0 0
\(820\) 11.2986 0.394565
\(821\) −28.9333 + 16.7047i −1.00978 + 0.582996i −0.911127 0.412125i \(-0.864787\pi\)
−0.0986524 + 0.995122i \(0.531453\pi\)
\(822\) 0 0
\(823\) −25.3516 + 43.9103i −0.883702 + 1.53062i −0.0365085 + 0.999333i \(0.511624\pi\)
−0.847194 + 0.531284i \(0.821710\pi\)
\(824\) 7.08848 + 4.09254i 0.246939 + 0.142570i
\(825\) 0 0
\(826\) 3.08833 1.78305i 0.107457 0.0620401i
\(827\) 17.9261i 0.623350i 0.950189 + 0.311675i \(0.100890\pi\)
−0.950189 + 0.311675i \(0.899110\pi\)
\(828\) 0 0
\(829\) 18.4342 0.640247 0.320123 0.947376i \(-0.396276\pi\)
0.320123 + 0.947376i \(0.396276\pi\)
\(830\) 1.78147 1.02853i 0.0618359 0.0357010i
\(831\) 0 0
\(832\) −0.180130 3.60105i −0.00624487 0.124844i
\(833\) −11.8679 + 20.5558i −0.411198 + 0.712216i
\(834\) 0 0
\(835\) 16.1486 + 27.9701i 0.558844 + 0.967946i
\(836\) −4.95870 −0.171500
\(837\) 0 0
\(838\) 17.3677i 0.599957i
\(839\) −38.0045 + 21.9419i −1.31206 + 0.757519i −0.982437 0.186594i \(-0.940255\pi\)
−0.329624 + 0.944112i \(0.606922\pi\)
\(840\) 0 0
\(841\) −14.5864 + 25.2643i −0.502978 + 0.871183i
\(842\) 3.41788 5.91995i 0.117788 0.204015i
\(843\) 0 0
\(844\) −6.32982 10.9636i −0.217882 0.377382i
\(845\) −32.9161 14.8433i −1.13235 0.510626i
\(846\) 0 0
\(847\) 5.29478i 0.181931i
\(848\) 3.64650 + 6.31593i 0.125221 + 0.216890i
\(849\) 0 0
\(850\) 8.95461 + 5.16995i 0.307141 + 0.177328i
\(851\) 5.10486 + 2.94729i 0.174992 + 0.101032i
\(852\) 0 0
\(853\) 18.1041 10.4524i 0.619872 0.357884i −0.156947 0.987607i \(-0.550165\pi\)
0.776819 + 0.629723i \(0.216832\pi\)
\(854\) 6.92214 0.236871
\(855\) 0 0
\(856\) 13.5605i 0.463487i
\(857\) 16.2026 + 28.0637i 0.553470 + 0.958638i 0.998021 + 0.0628846i \(0.0200300\pi\)
−0.444551 + 0.895754i \(0.646637\pi\)
\(858\) 0 0
\(859\) 12.7736 22.1245i 0.435829 0.754877i −0.561534 0.827454i \(-0.689789\pi\)
0.997363 + 0.0725761i \(0.0231220\pi\)
\(860\) 13.5513 + 7.82386i 0.462096 + 0.266791i
\(861\) 0 0
\(862\) 18.9797 + 32.8739i 0.646452 + 1.11969i
\(863\) 37.5472i 1.27812i 0.769156 + 0.639061i \(0.220677\pi\)
−0.769156 + 0.639061i \(0.779323\pi\)
\(864\) 0 0
\(865\) 20.1229i 0.684198i
\(866\) 5.05305 2.91738i 0.171710 0.0991366i
\(867\) 0 0
\(868\) 2.51798 4.36127i 0.0854658 0.148031i
\(869\) −27.3724 15.8035i −0.928546 0.536096i
\(870\) 0 0
\(871\) −11.3062 + 22.0598i −0.383097 + 0.747468i
\(872\) −8.50225 −0.287923
\(873\) 0 0
\(874\) 1.15610 0.0391057
\(875\) 2.78151 + 4.81773i 0.0940324 + 0.162869i
\(876\) 0 0
\(877\) 13.1982 + 7.61997i 0.445670 + 0.257308i 0.706000 0.708212i \(-0.250498\pi\)
−0.260329 + 0.965520i \(0.583831\pi\)
\(878\) −1.33799 0.772490i −0.0451551 0.0260703i
\(879\) 0 0
\(880\) −3.09254 5.35643i −0.104249 0.180565i
\(881\) −1.19345 −0.0402084 −0.0201042 0.999798i \(-0.506400\pi\)
−0.0201042 + 0.999798i \(0.506400\pi\)
\(882\) 0 0
\(883\) 8.26791 0.278237 0.139119 0.990276i \(-0.455573\pi\)
0.139119 + 0.990276i \(0.455573\pi\)
\(884\) 12.2211 + 6.26364i 0.411040 + 0.210669i
\(885\) 0 0
\(886\) 3.08196 + 1.77937i 0.103540 + 0.0597790i
\(887\) −13.5452 + 23.4610i −0.454803 + 0.787743i −0.998677 0.0514245i \(-0.983624\pi\)
0.543873 + 0.839167i \(0.316957\pi\)
\(888\) 0 0
\(889\) 9.59371 5.53893i 0.321763 0.185770i
\(890\) 27.4953i 0.921645i
\(891\) 0 0
\(892\) 29.8057i 0.997968i
\(893\) 1.18332 + 2.04957i 0.0395982 + 0.0685861i
\(894\) 0 0
\(895\) 17.6223 + 10.1742i 0.589048 + 0.340087i
\(896\) 0.438215 0.759011i 0.0146397 0.0253568i
\(897\) 0 0
\(898\) 5.08037 + 8.79945i 0.169534 + 0.293642i
\(899\) 43.8252i 1.46165i
\(900\) 0 0
\(901\) −27.7774 −0.925401
\(902\) 7.84475 4.52917i 0.261202 0.150805i
\(903\) 0 0
\(904\) −2.86458 1.65386i −0.0952744 0.0550067i
\(905\) 24.1915 + 13.9670i 0.804153 + 0.464278i
\(906\) 0 0
\(907\) 20.9922 + 36.3595i 0.697033 + 1.20730i 0.969490 + 0.245129i \(0.0788303\pi\)
−0.272457 + 0.962168i \(0.587836\pi\)
\(908\) 22.4801i 0.746029i
\(909\) 0 0
\(910\) −4.76281 7.37244i −0.157886 0.244394i
\(911\) −21.4808 37.2059i −0.711692 1.23269i −0.964222 0.265097i \(-0.914596\pi\)
0.252530 0.967589i \(-0.418737\pi\)
\(912\) 0 0
\(913\) 0.824598 1.42824i 0.0272902 0.0472680i
\(914\) 10.6577 18.4597i 0.352525 0.610591i
\(915\) 0 0
\(916\) −15.7207 + 9.07634i −0.519426 + 0.299891i
\(917\) 6.51157i 0.215031i
\(918\) 0 0
\(919\) −7.24189 −0.238888 −0.119444 0.992841i \(-0.538111\pi\)
−0.119444 + 0.992841i \(0.538111\pi\)
\(920\) 0.721013 + 1.24883i 0.0237711 + 0.0411727i
\(921\) 0 0
\(922\) −10.7623 + 18.6408i −0.354436 + 0.613902i
\(923\) 57.4616 2.87431i 1.89137 0.0946092i
\(924\) 0 0
\(925\) 26.6933 15.4114i 0.877670 0.506723i
\(926\) 35.8128 1.17688
\(927\) 0 0
\(928\) 7.62710i 0.250372i
\(929\) −3.51403 + 2.02883i −0.115292 + 0.0665636i −0.556537 0.830823i \(-0.687870\pi\)
0.441245 + 0.897387i \(0.354537\pi\)
\(930\) 0 0
\(931\) 12.0180 + 6.93861i 0.393875 + 0.227404i
\(932\) 5.56406 9.63723i 0.182257 0.315678i
\(933\) 0 0
\(934\) 18.5788 10.7265i 0.607916 0.350981i
\(935\) 23.5576 0.770415
\(936\) 0 0
\(937\) 60.3456 1.97140 0.985702 0.168497i \(-0.0538915\pi\)
0.985702 + 0.168497i \(0.0538915\pi\)
\(938\) −5.21826 + 3.01276i −0.170382 + 0.0983702i
\(939\) 0 0
\(940\) −1.47597 + 2.55646i −0.0481409 + 0.0833825i
\(941\) −38.1340 22.0167i −1.24313 0.717723i −0.273401 0.961900i \(-0.588149\pi\)
−0.969731 + 0.244177i \(0.921482\pi\)
\(942\) 0 0
\(943\) −1.82897 + 1.05596i −0.0595595 + 0.0343867i
\(944\) 4.06888i 0.132431i
\(945\) 0 0
\(946\) 12.5451 0.407876
\(947\) 15.2058 8.77906i 0.494122 0.285281i −0.232161 0.972677i \(-0.574580\pi\)
0.726283 + 0.687396i \(0.241246\pi\)
\(948\) 0 0
\(949\) 18.8982 0.945315i 0.613461 0.0306862i
\(950\) 3.02263 5.23535i 0.0980670 0.169857i
\(951\) 0 0
\(952\) 1.66906 + 2.89090i 0.0540947 + 0.0936948i
\(953\) 28.3807 0.919342 0.459671 0.888089i \(-0.347967\pi\)
0.459671 + 0.888089i \(0.347967\pi\)
\(954\) 0 0
\(955\) 52.2148i 1.68963i
\(956\) −7.49042 + 4.32460i −0.242258 + 0.139867i
\(957\) 0 0
\(958\) 2.88734 5.00102i 0.0932857 0.161575i
\(959\) 7.14073 12.3681i 0.230586 0.399387i
\(960\) 0 0
\(961\) 1.00819 + 1.74623i 0.0325221 + 0.0563300i
\(962\) 34.3853 22.2139i 1.10863 0.716206i
\(963\) 0 0
\(964\) 2.52998i 0.0814853i
\(965\) 18.3849 + 31.8436i 0.591831 + 1.02508i
\(966\) 0 0
\(967\) 6.52590 + 3.76773i 0.209859 + 0.121162i 0.601246 0.799064i \(-0.294671\pi\)
−0.391387 + 0.920226i \(0.628005\pi\)
\(968\) 5.23192 + 3.02065i 0.168160 + 0.0970873i
\(969\) 0 0
\(970\) −37.8334 + 21.8431i −1.21476 + 0.701340i
\(971\) −32.9658 −1.05792 −0.528962 0.848645i \(-0.677419\pi\)
−0.528962 + 0.848645i \(0.677419\pi\)
\(972\) 0 0
\(973\) 9.31526i 0.298633i
\(974\) −16.4562 28.5030i −0.527291 0.913294i
\(975\) 0 0
\(976\) −3.94905 + 6.83995i −0.126406 + 0.218942i
\(977\) 3.30414 + 1.90765i 0.105709 + 0.0610311i 0.551922 0.833895i \(-0.313894\pi\)
−0.446213 + 0.894927i \(0.647228\pi\)
\(978\) 0 0
\(979\) 11.0218 + 19.0903i 0.352257 + 0.610128i
\(980\) 17.3093i 0.552925i
\(981\) 0 0
\(982\) 9.79923i 0.312706i
\(983\) 39.1001 22.5745i 1.24710 0.720013i 0.276570 0.960994i \(-0.410802\pi\)
0.970530 + 0.240981i \(0.0774690\pi\)
\(984\) 0 0
\(985\) −1.87882 + 3.25421i −0.0598642 + 0.103688i
\(986\) 25.1580 + 14.5250i 0.801193 + 0.462569i
\(987\) 0 0
\(988\) 3.66206 7.14510i 0.116506 0.227316i
\(989\) −2.92484 −0.0930045
\(990\) 0 0
\(991\) 43.7885 1.39099 0.695493 0.718533i \(-0.255186\pi\)
0.695493 + 0.718533i \(0.255186\pi\)
\(992\) 2.87299 + 4.97617i 0.0912176 + 0.157994i
\(993\) 0 0
\(994\) 12.1115 + 6.99256i 0.384153 + 0.221791i
\(995\) 3.43858 + 1.98527i 0.109010 + 0.0629372i
\(996\) 0 0
\(997\) −27.1339 46.9972i −0.859338 1.48842i −0.872561 0.488504i \(-0.837543\pi\)
0.0132236 0.999913i \(-0.495791\pi\)
\(998\) −41.3110 −1.30768
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.t.a.415.13 28
3.2 odd 2 234.2.t.a.103.4 yes 28
9.2 odd 6 234.2.t.a.25.11 yes 28
9.4 even 3 2106.2.b.d.649.9 14
9.5 odd 6 2106.2.b.c.649.6 14
9.7 even 3 inner 702.2.t.a.181.2 28
13.12 even 2 inner 702.2.t.a.415.2 28
39.38 odd 2 234.2.t.a.103.11 yes 28
117.25 even 6 inner 702.2.t.a.181.13 28
117.38 odd 6 234.2.t.a.25.4 28
117.77 odd 6 2106.2.b.c.649.9 14
117.103 even 6 2106.2.b.d.649.6 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.t.a.25.4 28 117.38 odd 6
234.2.t.a.25.11 yes 28 9.2 odd 6
234.2.t.a.103.4 yes 28 3.2 odd 2
234.2.t.a.103.11 yes 28 39.38 odd 2
702.2.t.a.181.2 28 9.7 even 3 inner
702.2.t.a.181.13 28 117.25 even 6 inner
702.2.t.a.415.2 28 13.12 even 2 inner
702.2.t.a.415.13 28 1.1 even 1 trivial
2106.2.b.c.649.6 14 9.5 odd 6
2106.2.b.c.649.9 14 117.77 odd 6
2106.2.b.d.649.6 14 117.103 even 6
2106.2.b.d.649.9 14 9.4 even 3