Properties

Label 700.2.m.a
Level $700$
Weight $2$
Character orbit 700.m
Analytic conductor $5.590$
Analytic rank $0$
Dimension $8$
CM discriminant -35
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [700,2,Mod(293,700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("700.293"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(700, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.7965941760000.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 113x^{4} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{3} + ( - \beta_{5} + \beta_1) q^{7} + ( - \beta_{7} - 3 \beta_{2}) q^{9} + ( - \beta_{4} + 2) q^{11} + ( - 2 \beta_{6} - \beta_{3}) q^{13} + ( - 2 \beta_{5} + \beta_1) q^{17} + (\beta_{4} - 4) q^{21}+ \cdots + ( - 4 \beta_{7} - 32 \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{11} - 28 q^{21} - 12 q^{51} + 96 q^{71} - 128 q^{81} - 28 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 113x^{4} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{6} + 117\nu^{2} ) / 44 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{7} + 117\nu^{3} ) / 44 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} + 62 ) / 11 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{5} + 117\nu ) / 22 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{7} + 113\nu^{3} ) / 8 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -3\nu^{6} - 329\nu^{2} ) / 22 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{7} + 6\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -2\beta_{6} + 11\beta_{3} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 11\beta_{4} - 62 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 22\beta_{5} - 117\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -117\beta_{7} - 658\beta_{2} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 234\beta_{6} - 1243\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(-1\) \(1\) \(-\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
293.1
2.30472 + 2.30472i
0.433892 + 0.433892i
−0.433892 0.433892i
−2.30472 2.30472i
2.30472 2.30472i
0.433892 0.433892i
−0.433892 + 0.433892i
−2.30472 + 2.30472i
0 −2.30472 + 2.30472i 0 0 0 1.87083 + 1.87083i 0 7.62348i 0
293.2 0 −0.433892 + 0.433892i 0 0 0 −1.87083 1.87083i 0 2.62348i 0
293.3 0 0.433892 0.433892i 0 0 0 1.87083 + 1.87083i 0 2.62348i 0
293.4 0 2.30472 2.30472i 0 0 0 −1.87083 1.87083i 0 7.62348i 0
657.1 0 −2.30472 2.30472i 0 0 0 1.87083 1.87083i 0 7.62348i 0
657.2 0 −0.433892 0.433892i 0 0 0 −1.87083 + 1.87083i 0 2.62348i 0
657.3 0 0.433892 + 0.433892i 0 0 0 1.87083 1.87083i 0 2.62348i 0
657.4 0 2.30472 + 2.30472i 0 0 0 −1.87083 + 1.87083i 0 7.62348i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 293.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
35.c odd 2 1 CM by \(\Q(\sqrt{-35}) \)
5.b even 2 1 inner
5.c odd 4 2 inner
7.b odd 2 1 inner
35.f even 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 700.2.m.a 8
5.b even 2 1 inner 700.2.m.a 8
5.c odd 4 2 inner 700.2.m.a 8
7.b odd 2 1 inner 700.2.m.a 8
35.c odd 2 1 CM 700.2.m.a 8
35.f even 4 2 inner 700.2.m.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
700.2.m.a 8 1.a even 1 1 trivial
700.2.m.a 8 5.b even 2 1 inner
700.2.m.a 8 5.c odd 4 2 inner
700.2.m.a 8 7.b odd 2 1 inner
700.2.m.a 8 35.c odd 2 1 CM
700.2.m.a 8 35.f even 4 2 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} + 113T_{3}^{4} + 16 \) acting on \(S_{2}^{\mathrm{new}}(700, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + 113T^{4} + 16 \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( (T^{4} + 49)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 3 T - 24)^{4} \) Copy content Toggle raw display
$13$ \( T^{8} + 2993 T^{4} + 1048576 \) Copy content Toggle raw display
$17$ \( T^{8} + 1233 T^{4} + 20736 \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( (T^{4} + 93 T^{2} + 36)^{2} \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( T^{8} + 35793 T^{4} + 37015056 \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( (T - 12)^{8} \) Copy content Toggle raw display
$73$ \( (T^{4} + 12544)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + 473 T^{2} + 55696)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} + 63504)^{2} \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( T^{8} + 51713 T^{4} + 7311616 \) Copy content Toggle raw display
show more
show less